第7讲 有趣的数阵图
- 格式:ppt
- 大小:735.00 KB
- 文档页数:26
第七讲有趣的数阵图(二)例1将1~7这七个自然数分别填入右图的7个小圆圈中,使三个大圆圆周上及内部的四个数之和都等于定数S,并指出这个定数S的取值范围,最小是多少,最大是多少?并对S最小值填出数阵.分析为了叙述方便,用字母表示圆圈中的数.通过观察,我们发现,三个大圆上,每个大圆上都有4个小圆,由题设每个大圆上的4个小圆之和为S.从图中不难看出:B是三个圆的公共部分,A、C、D分别是两个圆的公共部分而E、F、G仅各自属于一个圆.这样三个大圆的数字和为:3S=3B+2A+2C+2D+E+F+G,而A、B、…、F、G这7个数的全体恰好是1、2、…、6、7.∴3S=1+2+3+4+5+6+7+2B+A+C+D.3S=28+2B+A+C+D.如果设2B+A+C+D=W,要使S等于定数即W最小发生于B=1、A=2、C=3、D=4W最大发生于B=7、A=6、C=5、D=4,综上所述,得出:13≤S≤19即定数可以取13~19中间的整数.本题要求S=13,那么A=2、B=1、C=3、D=4、E=5、 F=6、 G=7.注意:解答这类问题常常抓两个要点,一是某种共同的“和数” S.(同一条边上各数和,同一三角形上各数和,同一圆上各数和等等).二是全局考虑数阵的各数被相加的“次”数.主要突破口是估算或确定出S的值.从“中心数”B处考虑.(B是三个大圆的公共部分,常根据S来设定B的可能值.这里重视B不是简单地看到B处于几何中心,主要因为B参与相加的次数最多)此处因为定数是13,中心数可从1开始考虑.确定了S和中心数B,其他问题就容易解决了.解:例2把20以内的质数分别填入右图的八个圆圈中,使圈中用箭头连接起来的每条路上的四个数之和都相等.分析观察右图,我们发现:①有3条路,每条路上有4个数,且4个数相加的和要相等.②图形两端的两个数是三条路的公共起点和终点.因此只要使三条路上其余两个数的和相等,就可以确保每条路上的四个数的和相等.③20以内的质数共有8个,依次是2、3、5、7、11、13、17、19.如果能从这八个数中选出六个数凑成相等的三对数,问题就可迎刃而解.如要分析,设起点数为X,终点数为y,每条路上4个数之和为S,显然有:3S=2x+2y+2+3+5+7+11+13+17+19=2x+2y+77.即S最小=29,此时x=2,y=3但这时,中间二个质数之和为47-(19+13)=15,但17>15,17无处填.所以S=47是无法实现的.这题还另有一个独特的分析推理.即惟一的偶质数必处于起点或终点位上.不然,其他路上为4个质数之和,2处于中间位的路上.这条路为3奇1偶相加,另两条路上为4个奇相加,形成矛盾.再进一步分析,(终点,始点地位对称)始点放上2,终点放上另一个质数,其他6个质数之和必为3的倍数.而经试算,只有终点放上3,而可满足的解法只有一种(已在下图中表出).解:这样,轻而举地可得到:5+19=24,7+17=24,11+13=24.例3 把1、2、3、4、5、6、7、8这八个数分别填入右图中的正方形的各个圆圈中,使得正方形每边上的三个数的和相等.分析和解假设每边上的三数之和为S,四边上中间圆圈内所填数分别为a、b、c、d,那么:a+c=b+d=(1+2+…+8)-2S=36-2S∴2S=36-(a+C)=36-(b+d)①若S=15,则a+c=b+d=6,又1+5=2+4=6,试验可得下图②若S=14,则a+c=b+d=8,又1+7=2+6=3+5=8,试验可得下两图③若S=13,则a+c=b+d=10,又2+8=3+7=4+610,试验可得下两图④若S=12,则a+c=b+d=12,又4+8=5+7=12,试验可得下图例4在一个立方体各个顶点上分别填入1~9这九个数中的八个数,使得每个面上四个顶点所填数字之和彼此相等,并且这个和数不能被那个没有被标上的数字整除.试求:没有被标上的数字是多少?并给出一种填数的方法.分析为了叙述方便,设没有被标上的数字为a,S是每个面上的四个顶点上的数字之和.由于每个顶点数都属于3个面,所以得到:6S=3×(1+2+3+4+5+6+7+8+9)-3a6S=3×45-3a2S=45-a (1)根据(1)式可看出:因为左边2S是偶数,所以右边45-a也必须是偶数,故a必须是奇数.又因为根据题意,S不能被a整除,而2与a互质,所以2S不能被a整除,45也一定不能被a整除.”在奇数数字1、3、5、7、9中,只有7不能整除45,所以可以确定a=7.这就证明正方体每个面上四个顶点所填数字之和是19,解法如图.例5 将1~8这八个数标在立方体的八个顶点上,使得每个面的四个顶点所标数字之和都相等.分析观察下图,知道每个顶点属于三个面,正方体有6个面,所以每个面的数字之和为:(1+2+3+4+5+6+7+8)×3÷6=18.这就是说明正方体每个面上四个顶点所填数字之和是18.下面有3种填法的提示,作为练习,请读者补充完整.解:例6在下左图中,将1~9这九个数,填人圆圈内,使每个三角形三个顶点的数字之和都相等.分析为了便于叙述说明,圆圈内应填的数,先由字母代替.设每个三角形三个顶点圆圈内的数字和为S.即:A+B+C=S、D+E+F=S、G+H+I=S、C+G+E=S、A+G+D=S、B+H+E=S、C+I+F=S.将上面七个等式相加得到:2(A+B+C+D+E+F+G+H+I)+C+G+E=7S.即:A+B+C+D+E+F+G+H+I=3S又∵A、B、C、D、E、F、G、H、I,分别代表1~9这九个数.即:1+2+3+4+5+6+7+8+9=45.3S=45S=15.这15就说明每个三角形三个顶点的数字之和是15.在1~9九个数中,三个数的和等于15的组合情况有以下8种即:(1、9、5);(1、8、6);(2、9、4);(2、8、5);(3、7、5);(2、7、6);(3、8、4);(4、5、6);观察九个数字在上述8种情况下出现的次数看,数字2、4、5、6、8都均出现了三次,其他数字均只出现两次,所以,符合题意的组合中的2、8、5和4、5、6可填入图中的圆圈内,这样就得到本题的两个解.解:例7在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.分析为了叙述方便,我们将各个圆圈内填入字母,如上右图所示.如果设每个正方形角上四个数字之和为S,那么图中六个正方形可得到:a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S.9S=4×45S=20.这就说明每个正方形角上四个数字之和为20.所以:b2=5.从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数.这样,就比较容易找到此解.解:注:也可以这样想:因为1+2+3+4+5+6+7+8+9=45,中心数用5试填后,余下40,那么大正方形、中正方形对角数字之和一定为10,比如:2+8=10、3+7=10、1+9=10、4+6=10.再利用小正方形调整一下,便可以凑出结果了.习题十1.将1~6六个自然数字分别填入下图的圆圈内,使三角形每边上的三数之和都等于定数S,指出这个定数S的取值范围.并对S=11时给出一种填法.2.将1~10这十个自然数分别填入下左图中的10个圆圈内,使五边形每条边上的三数之和都相等,并使值尽可能大.3.将1~8填入上右图中圆圈内,使每个大圆周上的五个数之和为21.习题十解答1.分析设三个顶点为x、y、Z,三条边中点处放置a、b、c,每边三数之和为S.则有2(x+y+z)+a+b+c=3S.对 x+y+z+a+b+c=1+2+…+6=21∴定数S可取 9、10、11、12.经过试探、搜索知道:顶点放2、4、6,而2、4之间放5,2、6之间放上3,4、6之间放上1,即可.2.3.。
有趣的数阵图有些数按照一定的要求排列成各种各样的图形,就叫做数阵图,数阵填数的游戏是非常有趣的,有时也有一定的难度。
不过它能促使我们积极地思考问题,分析问题,拓展我们的能力。
有的同学说:这样的数阵图填写时只能采取试的方法,没有其他捷径好走。
其实这话不对。
填写数阵图时,我们应抓住数阵中的关键位置(例如两种线的交点,长方形和正方形的顶点),再根据题目的要求,进行必要的计算,先填写这些关键位置的数,再填写出其他位置的数。
例1:将1,2,3,4,5这五个数分别填入下图的各正方形中,组成一个“十字数阵图”,使图中横行三个数的和与竖行三个数据的和相等。
根据图形的特点,中间那个数是横行与竖行共用的,要使横行与竖行三个数的和相等,可以先确定中间的数,再让左右两数的和与上、下两数的和相等。
①中间填1,则剩下2,3,4,5,而2+5=4+3,共有8种填法。
②中间填2,则余下1,3,4,5而这四个数无法组成□+□=□+□的形式所以中间不可以填?③中间填3,则剩下1,2,4,5,而1+5=2+4,共有8种填法:④中间填4,则剩下1,2,3,5而这四个数无法组成□+□=□+□的形式所以中间可能填4。
⑤中间填5,则剩下1,2,3,4,1+4=2+3共有8种填法。
例1将1,2,3,5,6,7这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。
因为表中有2行、3行,这样六个数可分成(7,3,2)和(6,5,1)每列两个数的和为24÷3=8,同样这六个数也可分为(7,1)、(6,2)和(5,3)三组。
根据题意,我们同时考虑使每行中的数和每列中数的和分别相等。
你能想出其他11种填法吗?例2请你把1-6这六个数字填在下面三角形的O内,使每条边上的数字之和相等。
你能做到吗?这是一种封闭型的数阵图,填写时的关键是确定三个顶点上的数。
1+2+3+4+5+6=21,用k表示每边上三个数的和,因为三个顶点上的数在求和时,都用了两次,用a,b,c表示三个顶点的数,使有21+a+b+c=3k因为a+b+c的最小值为6,最大值为15,所以3个k的最小值为27,最大为36,那么k的最小值是9,最大值是12。
有趣的数阵图教案教案名称:有趣的数阵图教学对象:小学三年级教学目标:1.能认识、理解数阵概念,并能找出数阵的规律。
2.能运用数阵的规律计算出其中任意一个数。
3.能在数阵的基础上进行数字游戏。
教学内容:1. 什么是数阵?如何表示数阵?2. 数阵有哪些规律?如何运用规律计算数阵中任意一个数?3. 数阵在数字游戏中的应用。
教学步骤:Step 1 引入教师在黑板上画出一个类似于3x3 的矩阵,然后给学生出示一组数字:1、5、9、13、17、21、25、29、33。
请学生想办法将这组数字填到黑板上的矩阵中。
Step 2 导入教师解释这样的数字矩阵被称为数阵。
Step 3 讲解根据学生填出来的答案,教师介绍数阵的表示方法和构成规则,并举例说明数阵的常见形式和不同类型。
Step 4 发现规律教师给学生出示 4x4 的数阵,让他们归纳数阵中的规律,并尝试计算出其中某些数字的值。
Step 5 练习教师提供一个5x5 的数阵,要求学生通过观察数阵中数字之间的规律,计算出其中某个位置的数字,并将计算过程写在纸上。
Step 6 游戏教师向学生介绍一些基于数阵的数字游戏。
比如:1. 计算数列:在数阵中找到某一列的数字,将它们相加起来,看谁的计算结果最大。
2. 打动棋:将 5x5 的数阵看作棋盘,在数阵中找到相邻的数字,将它们用连线连接起来,看谁能画出最长的线,就赢了。
Step 7 总结教师让学生分享他们在游戏中的经验,然后总结今天所学的内容,并提高学生分析整理信息的能力。
教学方法:1.引入法:通过互动活动引起学生兴趣,引导学生进入学习状态。
2.归纳法:通过展示具体的实例,引导学生从中发现规律。
3.练习法:给予学生大量练习,巩固掌握所学的知识。
教学手段:1.黑板、白板2.幻灯片3.游戏卡片教学时间:一课时(40分钟)教学评估:1.针对学生在课上的表现进行口头评价。
2.布置课后作业,要求学生完成指定练习。
3.布置在课下进行数字游戏。
趣味数阵图
1、把5-9这五个数字分别填在下图的○中,使得每条直线上的三
个数字之和都等于22.
2、把10-14这五个数字分别填在下图的○中,使得每条直线上的
三个数字之和相等。
3、将1-11这11个数填入圆圈里,使每条线上的三个圆圈里的数
的和是22.
4、把1-9这9个数分别填入下图的○内,使每条线上3个数的和
都等于15.
5、将1-9各数填入图中的○内(其中重叠数9已经填好),使得四
角到中心的每3个数的和都相等.
6、把1-11这11个数,分别填入图中的○内,使每条虚线上3个
○内的和都等于18.
7、如图所示,在○内填上不同的数,使每条直线上三个数相加之
和等于12.。