普通机床控制电路与原理
- 格式:ppt
- 大小:2.61 MB
- 文档页数:64
4.2 学习指导4.2.1 Z3050型钻床电气控制系统钻床主要用于工件钻削加工。
主要用于钻孔、括孔、铰孔、攻丝。
常见的钻床可以分立式钻床、台式钻床、摇臂钻床、专用钻床等种类。
我们主要向大家介绍摇臂钻床的电气控制系统。
一.钻床的结构运动:1.摇臂钻床结构:摇臂钻床由底座、立柱(分内立柱、外立柱)、摇臂、主轴箱、工作台,和摇臂升降机构、摇臂升降夹紧机构、主轴箱平移夹紧机构、外立柱绕内立柱旋转夹紧机构等部件组成。
如右图。
2.运动:摇臂钻床的主运动是主轴的旋转运动,辅运动包括摇臂的升降运动、摇臂(通过外立柱绕内立柱)做旋转运动、主轴箱(沿摇臂)的平移运动、夹紧机构的夹紧/放松运动和冷却泵的旋转运动。
二、摇臂钻床的控制要求与特点:任何一台设备的控制都有它的控制要求,控制要求是根据机械、电气要求决定的。
除了控制的共性外, 每台设备还有它自身的控制特点。
下面是 Z3050 型钻床的控制要求:1.主轴电动机的单向运行,主轴的分合、换向、 调速由机械完成;2.所有夹紧机构由双向旋转的液压泵供油给夹紧油缸驱动。
液压泵电动机正转,放松;反转,夹紧;3.摇臂升降之前,需自动将其夹紧机构放松;摇臂升降结束,需一定的延时用于消除 升降电动机惯性旋转后,再自动夹紧;4.摇臂升降为点动控制,包括下述过程:给升(降)信号→升降夹紧机构放松→(到位)升(降)→(到位)→拆除升(降) 信号→延时→升降夹紧机构夹紧→(到位)→停止(整个过程结束)5.具有摇臂升降限位保护;6. .摇臂钻床有三个夹紧机构, 夹紧/放松由液压系统驱动。
油路由电磁铁 (电磁阀) YA 1、 YA 2 控制。
当 YA 1、YA 2 都失电,油路向摇臂升降夹紧机构供油;当 YA 1、YA 2 分别或同时 得电,油路分别或同时向主轴箱、立柱夹紧机构供油;7.主轴箱平移、立柱旋转由人力完成,其夹紧机构动力由液压液压系统实现。
在主轴 箱、立柱的夹紧机构液压泵(电动机)起动前,YA 1、YA 2 得电,需一定的延时,保证油路 完全接通后,才能起动液压泵(电动机);夹紧机构的液压泵(电动机)停止后,需一定的 延时,保证液压泵(电动机)惯性旋转结束后,才能断开 YA 1、YA 2,以防止惯性旋转产生 的压力油的堵塞,造成油路干涉,损坏油路;8.具有必要的指示电路和照明电路;9.具有完善的电气保护。
机床的几种控制线路一、点动控制线路如图5—8所示是接触器点动控制线路。
这种控制线路的特点是按下按钮,电动机就转动,松开按钮,电动机就停转,所以叫做点动控制线路。
电动葫芦的起重电动机控制,车床拖板箱快速移动的电动机控制等,都采用点动控制线路。
部分,一是由三相电源L1,L2和L3经熔断器FU1和接触器的三对主触头KM到三相异步电动机电路,是动力电路又称主电路。
二是由熔断器FU2、按钮SB和接触器线圈KM组成的控制电路,又称辅助电路。
该线路的工作原理如下:1.准备使用时先合上开关S。
2.启动与运行按下SB→线圈KM得电→三对主触头KM闭合(电源与负载接通)→电动机M启动、运行。
3.停止松开SB→线圈KM失电→三对主触头KM断开(电源与负载断开)→电动机M停转。
二、看懂机床控制线路的基本要领为了便于掌握机床控制线路,下面介绍一些识图的基本要求。
1.电气原理图用以表达机床控制线路工作原理的是电气原理图。
电气原理图是根据电气作用原理用展开法绘制的,不考虑电气设备和电气元件的实际结构及安装情况,只作研究电气原理与分析故障用。
它能清楚地指出电流的路径、控制电器与用电器的相互关系和线路的工作原理。
所谓展开法,就是把某个电气设备的一条或数条电路按水平或垂直位置画出,按照电路的先后工作顺序一一排列起来,然后接到电源上。
一般将主电路画在图样左边或上部,把控制电路画在图样的右边或下部。
这种画法可把同一电气的部件分开,分别画在主电路和控制电路的相应部位,但要用同一符号表示。
如图5—8所示,接触器的主触头在主电路中,而接触器的线圈在控制电路中,但是都用KM符号表示,说明它们是同一电气的部件。
这样使得主电路与控制电路容易区别,便于单独对主电路与控制电路的各自工作过程,及它们的相互联系进行分析。
各电气触头的位置是电路没有通电或电气未受外力的常态位置,分析控制线路工作时应从触头的常态位置进行。
2.看图的基本原则看图时,先分析主电路,然后研究控制电路,以及控制电路对主电路的控制作用。
车床电气线路分析车床是一种常用的机械设备,用于加工金属和其他材料。
在车床的使用过程中,电气线路是至关重要的系统之一,对车床的正常运行起着重要的作用。
下面将对车床电气线路进行详细的分析。
车床的电气线路由电源系统、控制系统和电机系统组成。
电源系统提供车床所需的电能,包括主电源和控制电源。
主电源是车床的主要电源,通常是交流电。
控制电源是用来供给车床的控制系统和电机系统的低压直流电源。
控制系统是车床的核心部分,通过控制电路来实现车床的各种工作方式和运动控制。
控制系统主要包括主控制电路、操作控制电路和保护电路。
主控制电路是车床的主要控制部分,它通过对电机系统的控制来实现车床的各种工作方式。
主控制电路通常由控制开关、控制按钮和接触器组成。
控制开关用于选择车床的工作方式,如正转、反转和停止等。
控制按钮用于手动控制车床的运动,如快速进给和手动进给。
接触器是控制开关和电机之间的连接,通过控制开关的操作来控制电机的运行。
操作控制电路是通过控制按钮来实现对车床运动的控制。
操作控制电路通常包括按钮开关、继电器和接触器等组件。
按钮开关用于选择车床的运动方式,如手动、自动和急停等。
继电器是控制按钮和电机之间的连接,通过按钮的操作来控制电机的运行。
接触器用于控制车床的转向和速度。
保护电路是用来保护车床和操作人员的安全的电路系统。
保护电路主要包括短路保护、过载保护和接地保护等。
短路保护用于检测车床电气线路中的短路情况,并采取相应的保护措施,如断开电路或切断电源。
过载保护用于检测车床电气线路中的过载情况,并采取相应的保护措施,如断开电路或切断电源。
接地保护用于检测车床电气线路中的接地故障,并采取相应的保护措施,如切断电源。
电机系统是车床的动力系统,通过电动机提供驱动力。
电机系统通常由主电机和辅助电机组成。
主电机是车床的主要驱动力,通过转动主轴来实现工件的加工。
辅助电机用于控制车床的各种辅助装置,如进给机构、冷却系统和刀具升降装置等。
简述普通机床ca6140的结构组成和工作原理
CA6140普通机床是一种高效率数控车床,主要由机床床身、
主轴系统、进给系统、控制系统和辅助装置等组成。
1. 机床床身:是机床的基本结构,由铸铁或钢板焊接而成。
床身的级数以及梁和柱的形状可以影响机床的稳定性和进给定位精度。
2. 主轴系统:CA6140机床采用直线旋转机床,装有电机及其
轴承盖,可以控制主轴的转速和转向。
主轴采用高精度球轴承,能维持高精度和高刚性。
3. 进给系统:CA6140采用滚珠丝杠与导轨相结合的进给系统。
由于多段倍增齿轮传动,可以实现对各种加工速率的调节。
4. 控制系统:数控系统由电子计算机组成,可以根据加工要求编制程序,以实现精确的工件加工。
数控系统还可以进行监控和故障诊断,保证机床的稳定性和可靠性。
5. 辅助装置:CA6140机床还装有许多辅助装置,如液压系统、电气系统、冷却液系统、尾座等,以便对工件的加工和处理。
工作原理:CA6140机床的工作原理是从控制系统向元器件发
送指令,通过各种电路将驱动信号传递给各个执行机构,以控制机床的运转。
具体实现效果,需要结合工作要求进行精确定位和精密控制。
常用机床的电气控制1. 介绍机床是用来加工各种金属和非金属材料的设备。
在机床的工作过程中,电气控制起着至关重要的作用。
电气控制系统通常由多个电气元件和电路组成,用于控制机床的各个功能和动作。
本文将介绍常用机床的电气控制的基本原理和常见的电气控制元件。
2. 电气控制原理机床的电气控制原理是通过操纵电气信号来控制机床的各个功能和动作。
常用的电气控制原理包括开关控制原理、传感器控制原理和数控控制原理。
2.1 开关控制原理开关控制原理是通过机械开关或电磁开关来控制机床的各个功能和动作。
开关控制原理简单直接,适用于一些简单的机床。
例如,通过一个按钮开关来控制机床的启动和停止。
2.2 传感器控制原理传感器控制原理是通过感知机床的工作状态和环境变量来控制机床的各个功能和动作。
常用的传感器包括光电传感器、接近开关、温度传感器等。
例如,通过接近开关来感知工件位置,实现机床的自动送料功能。
2.3 数控控制原理数控控制原理是通过计算机数值控制来控制机床的各个功能和动作。
数控控制系统通常由计算机和运动控制卡等硬件组成,通过高速运算实现对机床的精确控制。
数控控制原理适用于复杂的机床,如铣床、钻床和刨床等。
3. 常见电气控制元件常见的电气控制元件包括开关、继电器、接触器、断路器、变压器和控制电缆等。
3.1 开关开关是最常见的电气控制元件之一,用于控制电路的通断。
常见的开关有按钮开关、转换开关和限位开关等。
按钮开关通常用于手动控制机床的启动和停止,转换开关用于切换机床的功能模式,而限位开关用于感知机床的位置和行程。
3.2 继电器继电器是一种电气控制元件,用于在电路中控制较大电流或电压。
继电器通常由电磁铁和触点组成,当电磁铁通电时,触点闭合或断开,从而控制电路的通断。
继电器可以用于控制机床的电机、灯光和报警等。
3.3 接触器接触器与继电器类似,也是一种用于控制较大电流或电压的电气控制元件。
接触器通常由电磁铁和触点组成,但与继电器不同的是,接触器的触点通常是常闭触点和常开触点的组合。