七桥问题与一笔画教学设计
- 格式:doc
- 大小:347.58 KB
- 文档页数:5
七桥问题与一笔画广西玉林市陆川县万丈初中陈勇欢所用教材人教版七年级上册第三章P121-122教学任务分析教学流程安排课前准备教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?二、分析:数学家欧拉知道了七桥问题他用四个点A 、B 、C 、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?A 岛D 岸B 岛C 岸● 点A 、B 表示岛点C 。
D 表示岸 ▎线表示桥通过故事的形式把问题引出来,一方面激发学生的学习兴趣,另一方面也可以让学生感受到他们今天探讨的课题就是当年困扰千百人的问题,这样可以增进学生的求知欲。
接着让学生通过对七座桥的观察,在图上试走等活动,留给学生一个悬念,为后面的探究活动埋下伏笔,同时也把学生的求知欲望推上了一个高潮。
欧拉利用了几何的抽象化和理想化来观察生活,建立了准确的数学模型,七年级数学开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,在欧拉的眼中,在地图上一个城市是一个点。
岛和陆地抽象成点,桥抽象成线,直线是笔直的,生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:●●●②有偶数条边相连的点叫偶点。
如:●●③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些可以一笔画出,请填●●●●●●让学生充分理解这三个概念为下面探究规律做准备。
教师重点关注:①学生能否理解一笔画②能否勇于克服数学活动中的困难,有学好数学的信心。
老师发给学生每人一份探究的图形与表格然后,学生动手、填表,教师参与学生活动,并在投影仪上展示学生的作品对于图①②③④⑤⑥⑨有什么共同的⑺⑻●●ABCCCBOBCDF用你发现的规律,说一说七桥问题的答案?①凡是“一笔画”,一定有一个“起点”,一个“终点”,还有一些“过路点”。
七桥问题与一笔画广西玉林市陆川县万丈初中陈勇欢所用教材人教版七年级上册第三章P121-122教学任务分析教学流程安排课前准备教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?二、分析:数学家欧拉知道了七桥问题他用四个点A 、B 、C 、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?● 点A 、B 表示岛点C 。
D 表示岸 ▎线表示桥通过故事的形式把问题引出来,一方面激发学生的学习兴趣,另一方面也可以让学生感受到他们今天探讨的课题就是当年困扰千百人的问题,这样可以增进学生的求知欲。
接着让学生通过对七座桥的观察,在图上试走等活动,留给学生一个悬念,为后面的探究活动埋下伏笔,同时也把学生的求知欲望推上了一个高潮。
欧拉利用了几何的抽象化和理想化来观察生活,建立了准确的数学模型,七年级数学开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,在欧拉的眼中,在地图上一个城市是一个点。
岛和陆地抽象成点,桥抽象成线,直线是笔直的,生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:●●●②有偶数条边相连的点叫偶点。
如:●●③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些可以一笔画出,请填让学生充分理解这三个概念为下面探究规律做准备。
教师重点关注:①学生能否理解一笔画②能否勇于克服数学活动中的困难,有学好数学的信心。
老师发给学生每人一份探究的图形与表格然后,学生动手、填表,教师参与学生活动,并在投影仪上展示学生的作品对于图①②③④⑤⑥⑨有什么共同的特点?如果它们能一笔画,必须从什么样的点出发?你得到了哪些结论⑼ABCC一定有一个“起点”,一个“终点”,还有一些“过路点”。
第一节七桥问题(一笔画问题)授课时间:教学目标:1、让学生了解一笔画问题的解决方法;2、通过学习,了解图论发展的起源及其应用之广泛;3、让学生体会数学对思考问题的作用,激发学生对数学的兴趣。
教学重点难点:一笔画问题的解决过程、方法教学过程:[引入]我想大家对“签名”这个词一定都不陌生,拿起笔,刷刷几下,一个突显个性的签名就产生了。
现在请大家看这样一个图形,据说穆罕默德他不识字,于是就以这个图形作为他的签名。
现在请你拿出笔试试看,你会模仿他的签名吗?模仿得像不像呢?我想穆罕默德看到了一定能辨出真假,因为他这个签名是一笔画成的,你用几笔画成,连接处可能会有空隙,而且这个感觉根一笔画出来的肯定是不一样。
穆罕默德应该是伊斯兰教的,跟中国的回族有点联系,所以看了这个进口的问题之后,使我很自然地联想到我们国产的一个游戏,请大家看这个图形,有点像“回”字,你能不能从某一点出发,不重复地一笔把它画出来?这就是中国民间古老的一笔画游戏,而这个图形实际上也是来源于生活。
大家知不知道古代量米用的“斗”?上下都是四方的,底小口大,从上往下看就是这样的图形。
我记得我小学时候就玩过这个游戏,但是试了很久也没有成功,大家动笔试试看。
好像有点难度吧。
这类“一笔画”问题中最著名的当属“哥尼斯堡七桥问题”了。
[七桥问题]故事发生在十八世纪的东普鲁士,哥尼斯堡是一座风景秀丽的城市,普莱格尔河从这里流过,它有两条支流,一条称新河,另一条叫旧河,两河在城中心汇合成一条主流,叫做大河。
汇合处有两座小岛,河上有7座桥,岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。
渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只通过一次,最后仍回到起始地点?请大家思考,你能做到吗?请你试一试,如果能,请给出画法,如果不能,请思考问题出在哪里?这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。
七桥问题与一笔画赤城四小 叶考良【教学目标】1、让学生体会用数学知识解决问题得方法。
2、通过其中抽象出点、线得过程,使学生对点、线有进一步得认识。
3、生活中得许多问题,可以用数学方法解决,但首先要通过抽象化与理想化建立数学模型、解决问题,通过“一笔画”得数学问题,解决实际问题。
4、究“一笔画”得规律得活动,锻炼学生克服困难得意志及勇于发表见解得好习惯。
5、“一笔画”问题及其结论得了解,扩大学生知识视野,激发学生学习兴趣。
【重点】,运用“一笔画”得规律,快速正确地解决问题。
【难点】,探究“一笔画”得规律 【教学过程】一、展示问题引入新课下面呢老师要给大家讲个故事: 18世纪时,欧洲有一个风景秀丽得小城哥尼斯堡,那里有七座桥。
(课件出示)如图所示:河中有两个小岛, 一个岛与河得左岸、右岸各有两座桥相连结,另一个岛与河得左岸、右岸各有一座桥相连结,两个岛屿之间也有一座桥相连结。
人们经常在桥上走过,一天又一天,7座桥上走过了无数得行人。
不知从什么时候起,脚下得桥梁触发了人们得灵感,一个有趣得问题在居民中传开了:谁能够一次走遍所有得7座桥,而且每座桥都只通过一次呢?大家都想找出问题得答案,但就是谁也解决不了这个七桥问题。
同学们,您能解决这个问题吗?为什么?您就是怎样想得。
二、分析并构建数学模型:后来著名数学家欧拉就是这样解决得:她把两个岛屿与陆地分别瞧成点A,B,C,D 、所走得七桥路线用线条表示,这样就构成了一个简单图形,于就是,七桥问题就变成了这样一个图形问题:也就就是怎样才能从A 、B 、C 、D 中得某一点出发,一笔画出这个图形。
这节课我们重温欧拉得研究之路,探寻什么样得图形可以一笔画。
一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
同学们快速判断下面哪些图形能够一笔画?像这样各部分连在一起得图形,叫做连通图。
能一笔画得图形必须就是连通图。
A 岛D 岸B 岛C● 点A 、B 表示岛 点C 。
学院专业姓名七桥问题的教学设计一、教材分析“七桥问题”是高中数学选修四4-8图论中的内容,本节旨在使学生通过实际问题,了解图在刻画实际问题关系中的作用,掌握“一笔画”问题的原理,并会运用其解决实际问题。
二、学情分析学生此时已经完成了高中必修模块和选修模块2的学习,其数学思维能力已经得到多方位的培养,具备了理解、学习本部分内容的认知基础,通过揭示图论的基本理论和核心概念,能促进学生思维的发展,培养其用数学解决实际问题的能力,提高其数学学习的兴趣。
三、教学目标1.知识与技能让学生体会用数学知识解决问题的方法,掌握解决“一笔画”问题的基本原理并会应用它解决实际问题2.过程与方法通过把实际问题转化为数学图形问题,培养学生数学建模的思想和数形结合的意识,掌握将空间关系类问题转化为图论问题的一般方法。
3.情感态度与价值观从生活中的实际问题到数学问题,反映图论与现实世界的密切联系,认识数学与人类生活的密切联系和对人类历史发展的作用,提高参加数学学习活动的积极性和好奇心。
四、教学重点1.让学生了解将实际问题转化为数学问题方法;2.让学生掌握“一笔画”问题的原理;3.让学生会运用“一笔画”问题原理解决问题。
五、教学难点1如何将实际问题转化为数学问题2理解“一笔画”原理,运用“一笔画”问题原理解决问题。
六、教学方法探究式教学法、启发式教学法七、教具准备教学演示文稿八、教学过程中小学校园足球运动损伤与预防研究XXXXXXXXX初级中学【摘要】足球运动是一项对抗性强的项目.在教学和运动过程中,学生难免出现运动性损伤,教师应分析造成运动性损伤的原因,采取有效措施,确保学生在足球教学和运动中的安全,以达到教学目的和锻炼身体的效果。
足球运动是损伤发生率较高的运动项目之一,本文介绍了足球运动中常见的损伤原因、类型及预防知识,并就足球运动损伤的危害性及预防的必要性提出建议。
了解损伤的原因及预防的知识对球员的身体健康有着很现实的意义。
2009—2010第一学期南开区六十三中学教师教案叫旧河,两河在城中心汇合成一条主流,叫做大河。
汇合处有两座小岛,河上有7座桥,岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。
渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只通过一次,最后仍回到起始地点。
这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。
因此,一群大学生就写信给著名的瑞士数学家欧拉,向他请教如何解决这个七桥问题。
欧拉从千百人次的失败,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥,并很快证明了这样的猜想是正确的。
欧拉是怎样解决这个问题的呢欧拉发现欧几里得几何并不适用于这个问题,因为桥不涉及“大小”,也不能用“量化计算”来解决。
相反地,这问题属于提出的“位置几何”。
欧拉想到,小岛无非是桥梁的连接地点,两岸陆地也是如此,那么可以把这四处地点用A,B,C,D四个点来表示,同时将七座桥表示成连结其中两点的七条线,就得到这样一张图.于是,欧拉建立了一个数学模型,一个人不重复地走遍所有的七座桥,就相当于从图中某一点出发,不重复地一笔画出图来.这样,“七桥问题”就转化为“一笔画”问题了。
欧拉注意到,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。
图上其它的点是“过路点”——画的时候要经过它。
这些点有什么特征呢我们先来看看“过路点”,作业回字形的图中呢(8个点都是奇点,所以无法一笔完成)其实欧拉的结论只是给出了什么样的图可以一笔画出,具体怎么画还要我们根据不同的情况具体分析。
大家有没有兴趣尝试一下好,那我们就来试试看。
1、最近有个摄影展览,所有作品都布置在画廊里,入口处有个指示图,怎样才能既不走冤枉路又不漏看任一幅作品呢可看作这样一个图形来处理。
}2、甲乙两个邮递员去送信,两人以同样的速度走遍所有的街道,甲从A点出发,乙从B点出发,最后都回到邮局(C点)。
七桥问题与一笔画__全国优质课说课各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢人教版七年级上册第三章P121-122教学任务分析教学目标知识技能1、让学生体会用数学知识解决问题的方法。
2、通过其中抽象出点、线的过程,使学生对点、线有进一步的认识。
数学思想生活中的许多问题,可以用数学方法解决,但首先要通过抽象化和理想化建立数学模型。
解决问题通过“一笔画”的数学问题,解决实际问题。
情感态度1、通过探究“一笔画”的规律的活动,锻炼学生克服困难的意志及勇于发表见解的好习惯。
2、通过“一笔画”问题及其结论的了解,扩大学生知识视野,激发学生学习兴趣。
重点运用“一笔画”的规律,快速正确地解决问题。
难点探究“一笔画”的规律。
教学流程安排活动流程图活动内容和目的活动1多媒体展示问题多媒体展示问题,引发学生的兴趣,从而乐于接触生活中的数学信息。
活动2展示名数学家欧拉对七桥问题的建模欧拉利用几何的抽象化和理想化来观察生活,建立了准确的数学模型。
问题3介绍三个新概念充分理解概念,为下面探究规律做准备。
活动4活动探究得出“一笔画”的规律。
活动5知识的拓宽与深化用“一笔画”规律将七桥问题拓宽与深化。
活动6课堂练习用“一笔画”规律解决生活中的实际问题活动7小结体会将实际问题建模成数学问题,再由数学问题解决实际问题的数学思想。
活动8布置作业把知识巩固、发展、提高课前准备教具学具补充材料电脑、、投影仪铅笔探究的图形。
搜集运用一笔画规律解决的一些实际问题编成练习题。
教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?A岛问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:●●●②有偶数条边相连的点叫偶点。
“一笔画问题——七桥问题的解决”教学设计执教者:高馨教学内容:“一笔画问题——七桥问题的解决”。
教学目标:1.让学生体会用“数学模型方法”解决问题。
2. 通过其中抽象出点、线的过程,使学生对点、线有进一步的认识。
3.通过探究"一笔画"的规律的活动,锻炼学生克服困难的意志及勇于发表见解的好习惯。
教学重点:数学模型方法的渗透,以及在活动中去寻找规律,发现问题,解决问题。
教学难点:让学生自己探究得出"一笔画"的规律。
教学准备:课件,学习活动单3张,红色水彩笔。
教学过程:导语:同学们,平时生活中,我们要用智慧的双眼认真观察周边的事物。
今天,老师要和大家上一节有趣的数学活动探究课。
准备好了吗好,上课!一、故事激趣导入新课:1.小视频(简笔画导入)师:请大家认真观察,(老师边画边说)师:老师画这些图案时都是怎样画成的2.介绍数学史,建立数学模型:18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上着名的七桥问题,你愿意试一试吗好,动笔吧。
结果怎样3.介绍瑞士数学家欧拉。
欧拉把一个实际的生活情景问题转化成合适的“数学模型”。
这种研究方法就是“数学模型方法”。
你们对一笔画问题感兴趣吗想了解吗今天我们就来一起研究“一笔画问题”。
(板书)4.什么叫一笔画什么样的图可以一笔画成(下笔后笔尖不能离开纸B、每条线都只能画一次而不能重复。
)5.认识连通图。
6.要研究一笔画图案有什么规律,我们必须先来了解两个重要概念:奇点和偶点点:有奇数条边相连的点叫奇点。
●● ●②偶点:有偶数条边相连的点叫偶点。
●● ●二、小组合作实验探究1、师:我们来动手画几幅简单美丽的图案,请大家亲自感受一下!2、小组合作探究要求:①小组合作分工完成8个图形的判断。