2019年普通高等学校招生全国统一考试数学卷(山东.文)含详解
- 格式:doc
- 大小:1.21 MB
- 文档页数:14
绝密★启用前2019年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i是虚数单位,若,4z a z z =+⋅=,则a= (A )1或-1 (B(C )(D【答案】A【解析】由4z a z z =+⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) p q ∧ (B )p q ⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C. (5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225ii x==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D.(7)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 12-e 与12λ+e e 的夹角为60,则实数λ的值是 .【解析】)()221212112122333e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()2221233232e e e e e e e -=-=-⋅+=,()22221221e e e e e e e e λλλλ+=+=+⋅+=+2cos601λ==+,解得:λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】2y x =±(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x exe x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。
2019年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知是虚数单位,若与互为共轭复数,则i R b a ,,∈i a -bi +2=+2)(bi a (A ) (B) (C) (D) i 45-i 45+i 43-i43+答案:D2.设集合则},]2,0[,2{},21{∈==<-=x y y B x x A x =B A (A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)答案:C3.函数的定义域为1)(log 1)(22-=x x f (A) (B) (C) (D) 210(,)2(∞+,),2()210(+∞ ,)2[210(∞+,, 答案:C4. 用反证法证明命题“设则方程至少有一个实根”时要做的假设是,,R b a ∈02=++b ax x (A)方程没有实根 (B)方程至多有一个实根02=++b ax x 02=++b ax x (C)方程至多有两个实根 (D)方程恰好有两个实根02=++b ax x 02=++b ax x 答案:A5.已知实数满足,则下列关系式恒成立的是y x ,)10(<<<a a a y x (A) (B) (C) (D) 111122+>+y x )1ln()1ln(22+>+y x y x sin sin >33y x >答案:D6.直线与曲线在第一象限内围成的封闭图形的面积为x y 4=2x y =(A )(B )(C )2(D )42224答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组kPa 区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(A ) (B ) (C ) (D )681218答案:C8.已知函数,.若方程有两个不相等的实根,则实数k 的取值范围是()12+-=x x f ()kx x g =()()x g x f =(A )(B )(C )(D ),(210)(121),(21),(∞+2答案:B9.已知满足的约束条件当目标函数在该约束条件下取得最小值y x,⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 0)b 0,by(a ax z >>+=时,的最小值为5222a b +(A )(B )(C )(D )5452答案:B10.已知,椭圆的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,与的离心率之积为0b 0,a >>1C 1C 2C 23,则的渐近线方程为2C (A )02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =±答案:A二.填空题:本大题共5小题,每小题5分,共25分,答案须填在题中横线上。
绝密★启用前2019年普通高等学校招生全国统一考试(山东卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019山东高考理数真题[含答案已排版]2019年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、复数z 满足(z -3)(2-i ) =5(i 为虚数单位),则z 的共轭复数z 为()(A )2+i (B )2-i (C )5+i (D )5-i2、已知集合A ={0, 1, 2},则集合B ={x -y |x ∈A , y ∈A }中元素的个数是()(A )1 (B )3 (C )5 (D )93、已知函数f (x ) 为奇函数,且当x >0时,f (x ) =x +2-1,则f (-1) =() x9,底面是边长为的正三角4(A )-2 (B )0 (C )1 (D )2 4、已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为()(A )5ππππ (B )(C )(D ) 123465、若函数f (x ) =sin(2x +ϕ) 的图像沿x 轴向左平移则ϕ的一个可能取值为()(A )π个单位,得到一个偶函数的图像,83πππ (B )(C )0 (D )- 444⎧2x -y -2≥0⎧6、在平面直角坐标系x O y 中,M 为不等式组⎧x +2y -1≥0,所表示的区域上一动点,⎧3x +y -8≤0⎧则直线O M 斜率的最小值为(A )2 (B )1 (C )-11 (D )- 327、给定两个命题p 、q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 8、函数y =x cos x +sin x 的图象大致为y = f (x )(A) (B) (C)(D)9、过点(3,1)作圆(x -1) 2+y 2=1作圆的两条切线切点为A ,B ,则直线AB 的方程(A )2x +y -3=0 (B )2x -y -3=0 (C )4x -y -3=0 (D )4x +y -3=010、用0,1,,9十个数字可以组成有重复数字的三位数的个数为(A )243 (B )252 (C )261 (D )279212x C 1:y =x (p >0) C 2:-y 2=12p 311、抛物线的焦点与双曲线的右焦点的连线交C 1于第一象限的点M ,若C 1在点M 处的切线平行于C 2的一条渐近线,则p =33246 (B )8 (C )3 (D )3212xy +-22x , y , z x -3xy +4y -z =0x y z 的最大12、设正实数满足,则当z 取最大值时,值为9(A )0 (B )1 (C )4 (D )3二、填空题:本大题共4小题,每小题4分,共16分13、执行右面的程序框图,若输入的ε值为0.25,则输出的n 的值为______________x -≥1成立的概率为______________. 14、在区间[-3, 3]上随机取一个数x ,使得x +15、已知向量AB 与AC 的夹角120且|AB |=3,|AC |=2,若AP =λAB +AC ,且0,−−→−−→−−→−−→−−→−−→−−→−−→AP ⊥BC ,则实数λ的值为____________.−−→⎧0,016、定义“正对数”: ln x =⎧, 现有四个命题:ln x , x ≥1⎧++b +①若a >0, b >0, l n a =b l n a ;()n a b =l n a +l n b ; ②若a >0 , b >0, l ()+++③若a >0, b >0, l n + ⎧≥l n +a -l n +b ;⎧a ⎧⎧b ⎧n a +b ≤l n a +l n b +l n 2; ④若a >0 , b >0, l ()+++其中真命题有____________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分。
数学试卷2019年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. . 在每小题给出的四个选项中,只在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i Î是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i +(C) 43i-(D) 43i+(2) 设集合2{|20},{|14}A x x x B x x =-<=££,则AB =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3) 函数21()log 1f x x =-的定义域为的定义域为(A) (0,2) (B) (0,2] (C) (2,)+¥ (D) [2,)+¥ (4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是做的假设是 (A) 方程30x ax b ++=没有实根没有实根(B) 方程30x ax b ++=至多有一个实根实根 (C) 方程30x ax b ++=至多有两个实根至多有两个实根(D) 方程30x ax b ++=恰好有两个实根实根(5) 已知实数,x y 满足(01)xya a a <<<, 则下列关系式恒成立的是则下列关系式恒成立的是 (A) 33x y > (B) sin sin x y > (C) 22ln(1)ln(1)x y +>+(D) 221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>¹为常数,其中的图象如右图,则下列结论成立的是立的是(A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< (7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6p ,则实数m = (A) 23 (B) 3 (C) 0 (D) 3- (8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的xEO顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
2019年山东高考试题(文数,word 解析版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!数学〔文科〕本试卷分第I 卷和第II 卷两部分,共4页。
总分值150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
本卷须知1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
第I 卷〔共60分〕一、 选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
〔1〕假设复数z 满足z(2-i)=11+7i(i 为虚数单位),那么z 为A3+5iB3-5iC-3+5iD-3-5i 答案:A考点:复数的运算。
值得注意的是21i =-. 解析:因为z(2-i)=11+7i ,所以1172i z i+=-,分子分母同时乘以2i +, 得22(117)(2)221114722725152535(2)(2)4415i i i i i i i z ii i i +++++-++=====+-+-+〔2〕全集={0,1,2,3,4},集合A={1,2,3,},B={2,4},那么〔CuA 〕B 为A{1,2,4}B{2,3,4}C{0,2,4}D{0,2,3,4} 答案:C考点:集合运算解析:}4,2,0{)(},4,0{==B A C A C U U 。
绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}x 2N x =<,则M N =A.(-1,1)B. (-1,2)C. (0,2)D. (1,2) 【答案】C 【解析】由|1|1x -<得02x <<,故M N={|02}{|2}{|02}x x x x x x =<<⋂<=<<,选C.(2)已知i 是虚数单位,若复数满足1zi i =+,则2z = 【答案】A【解析】由1zi i =+得22()(1)zi i =+,即22z i -=,故22z i =-,选A.(3)已知x,y 满足约束条件x 2y 50x 30x 2⎧≤⎪≥⎨⎪≤⎩-++则z=x+2y 的最大值是 【答案】D【解析】由x 2y 50x 30y 2⎧≤⎪≥⎨⎪≤⎩-++画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线x 2y 50=-+与y 2=的交点(1,2)-时,2z x y =+最大为1223z =-+⨯=,选D.(4)已知34cosx =,则2cos x = (A)- 14 (B) 14 (C) - 18 (D) 18【答案】D(5) 已知命题p :x R ∃∈ , 210x x -+≥;命题q :若22a b <,则a<b.下列命题为真命题的是(A )p Λ q (B)p Λ⌝ q (C) ⌝ p Λ q (D) ⌝ p Λ ⌝ q 【答案】B【解析】由0x =时210x x -+≥成立知p 是真命题,由222212,1(2)<<-可知q 是假命题,故选B.(6)执行右侧的程序框图,当输入的x 值时,输入的y 的值为2,则空白判断框中的条件可能为(A )x>3 (B) x>4 (C)x ≤ 4 (D)x ≤ 5 【答案】B【解析】输入x 为4,要想输出y 为2,则程序经过2log 42y ==,故判断框填4x >,选B. (7)函数sin2cos23+=y x x 最小正周期为A2π B 23π C π D 2π 【答案】C【解析】由题意2sin(2)6y x π=+,其周期22T ππ==,故选C. (8)如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件)。
=A B P A P B)()()A在一次试验中发生的概率是k,,2)n}{}0.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶看作时间t的函数,其图像可能是(中,AB =c ,AC =b .若点满足2BD DC =,则AD =( B .33-c b 3-b cD .33+b 0)(1)+∞, 1)(01),1)(1)-+∞,,0)(01),,1x yb+=通过点)α,则( 1≤1+45,求二面角OA AB OB、、成等差数列,且BF与FA同向.被双曲线所截得的线段的长为4,求双曲线的方程.像可知;由()2AD AB AC AD -=-,322AD AB AC c b =+=+,12AD c b =+; ()()()21210,1a i i a ai i a a i a +=+-=-+->=-;另解:设,,AB AC AA 为空间向量的一组基底,,,AB AC AA 的两两间的夹角为a ,平面ABC 的法向量为1133OA AA AB AC =--,1AB AB AA =+ 226,,3OA AB a OA AB ⋅=== 则AB 与底面ABC 所成角的正弦值为1123OA AB AO AB ⋅=种种法;种三种花有42A11(),AN AC AB EM AC AE =+=-,11()()AN EM AB AC AC AE ⋅=+⋅-=1故EM AN ,所成角的余弦值16AN EM AN EM⋅=为坐标原点,建立如图所示的直角坐标系,则3121321(,,),(,,),,3AN EM AN EM AN EM ==-⋅===, EM AN ,所成角的余弦值16AN EM AN EM⋅=. 中,由正弦定理及a AB 90,90∴∠,即CE CE AD ⊥CG ∠zx233AC CD AD =CG GE =,即二面角C AD -2142315325C C =2112)()555P B =+⨯4 31 53,( 5PC=13 ),(5B P= 212。
2019年普通高等学校招生全国统一考试文科数学参考公式:样本数据12,n x x x 的标准差 锥体体积公式s = =13V s h 其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ== 其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2,,4,|A x x x R B x x Z =≤∈=∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =i = (A)14 (B )12(C )1 (D )2(4)曲线2y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+(C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B(C (D(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为(A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54(B )45(C )65(D )56 (9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->=(A ){}24x x x <->或 (B ){}04 x x x <>或(C ){}06 x x x <>或 (D ){}22 x x x <->或(10)若sin a = -45,a 是第一象限的角,则sin()4a π+=(A )(B(C) (D(11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD的内部,则z=2x-5y 的取值范围是(A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。
2019年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<- D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分) 已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.ABCMPD(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2019年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2019 16.111.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( D ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.选A.4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限. 在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .0解析:本小题主要考查四种命题的真假。
易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中, 真命题 有一个。
选C.5.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A )A .1516B .2716-C .89D .18解析:本小题主要考查分段函数问题。
正确利用分段函数来进行分段求值。
(2)4,f =11115()1.(2)41616f f f ⎛⎫∴==-= ⎪⎝⎭选A. 6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( D ) A .9π B .10π C .11π D .12πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图解析:本小题主要考查三视图与几何体的表面积。
从三视图可以看出该几何体是由一个球和 一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=选D 。
7.不等式252(1)x x +-≥的解集是( D ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,解析:本小题主要考查分式不等式的解法。
易知1x ≠排除B;由0x =符合可排除C;由3x =排除A, 故选D 。
也可用分式不等式的解法,将2移到左边直接求解。
8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( C ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,解析:本小题主要考查解三角形问题。
3cos sin 0A A -=,;3A π∴=2sin cos sin cos sin ,A B B A C ⇒+=2sin cos sin cos sin()sin sin A B B A A B C C +=+==,.2C π=π6B ∴=.选C. 本题在求角B 时,也可用验证法. 9.( B )AB .5 C .3D .85解析:本小题主要考查平均数、方差、标准差的概念及其运算。
100409060103,100x ++++==2222121[()()()]n S x x x x x x n ∴=-+-++-22221[202101301102]100=⨯+⨯+⨯+⨯1608,1005==5S ⇒=选B.10.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( C ) A.5- B.5C .45- D .45解析:本小题主要考查三角函数变换与求值。