序列相关的检验和修正
- 格式:doc
- 大小:422.00 KB
- 文档页数:11
什么是序列相关性如何进行序列相关性的检验与处理序列相关性是指一系列数据中存在的相关性或依赖关系。
它可以帮助我们了解数据的趋势、周期性以及对未来数据的预测。
在统计学中,序列相关性的检验和处理是非常重要的,可以帮助我们提取有用的信息和建立可靠的模型。
本文将介绍序列相关性的定义、如何进行序列相关性的检验以及处理方法。
一、序列相关性的定义序列相关性是指时间序列数据中的观察值之间的相关性或依赖关系。
当一个时间序列的观察值和它之前或之后的观察值之间存在关联时,就可以说这个时间序列是相关的。
序列相关性表明序列中的数据点之间存在某种模式或趋势,这对于分析和预测时间序列数据具有重要意义。
二、序列相关性的检验为了检验时间序列数据是否存在相关性,我们可以使用常用的统计方法,例如自相关函数(ACF)和偏自相关函数(PACF)。
自相关函数是衡量一个时间序列和其滞后版本之间相关性的统计指标。
它可以帮助我们确定序列中的周期性模式。
在自相关函数图中,横轴表示滞后阶数,纵轴表示相关系数。
如果自相关函数在某个滞后阶数上超过了置信区间,那么可以认为有相关性存在。
偏自相关函数是衡量一个时间序列和其滞后版本之间相关性的统计指标,消除了其他滞后版本的影响。
在偏自相关函数图中,横轴表示滞后阶数,纵轴表示相关系数。
如果偏自相关函数在某个滞后阶数上超过了置信区间,那么可以认为有相关性存在。
另外,我们还可以使用单位根检验(ADF检验)来检验序列是否平稳。
平稳序列的相关性更容易进行建模和预测。
如果序列通过了单位根检验,那么就可以认为序列是平稳的。
三、序列相关性的处理如果时间序列数据存在相关性,那么我们可以采取一些方法进行处理,以消除或减小相关性的影响。
首先,可以进行差分操作。
差分是指将时间序列的每个观察值与其滞后版本之间的差异进行计算。
差分后的序列通常更容易建模,因为它们消除了相关性。
如果还存在差分后的序列中的相关性,可以继续进行更高阶的差分操作。
单位根检验的方法主要有以下几种:
1. ADF检验:即Augmented Dickey-Fuller检验,是对Dickey-Fuller检验的扩展,可以处理含有高阶滞后项的时间序列数据。
它通过在回归模型中加入差分滞后项来控制序列相关的干扰。
2. PP检验:即Phillips-Perron检验,与ADF检验类似,但使用非参数方法来修正序列相关的问题,对小样本性质有一定的改进。
3. KPSS检验:即Kwiatkowski-Phillips-Schmidt-Shin检验,是一种基于平稳序列的检验方法,原假设是序列是平稳的,而备择假设是序列存在单位根。
4. ERS检验:即Elliott-Rothenberg-Stock检验,是一种基于误差修正模型的单位根检验方法,适用于存在长期均衡关系的非平稳时间序列。
5. NP检验:即Nelson-Plosser检验,是一种专门用于检验宏观经济时间序列是否存在单位根的方法。
6. DF-GLS检验:即Dickey-Fuller Generalized Least Squares检验,是一种改进的Dickey-Fuller检验,使用广义最小二乘法来估计模型参数,以提高检验的功效。
7. 霍尔斯检验:即Hall测试,也是一种单位根检验方法,主要用于检测分数整合的存在。
8. 其他检验:还有一些其他的单位根检验方法,如Fisher类型的检验、Maddala-Wu检验等,它们在不同的情况下有各自的适用性和优势。
计量经济学软件应用实验报告Array一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。
具体包括:Eviews的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。
二、实验环境WINDOWS 7 操作系统下,基于EVIEWS 6.0平台。
三、实验模型建立与分析案例1:一元线性回归模型的建立与分析为了研究某市城镇每年鲜蛋的需求量,首先考察消费者年人均可支配收入对年人均鲜蛋需求量的影响。
由经济理论知,当人均可支配收入提高时,鲜蛋需求量也相应增加。
但是,鲜蛋需求量除受消费者可支配收入影响外,还要受到其自身价格、人们的消费习惯及其他一些随机因素的影响。
为了表示鲜蛋需求量与消费者可支配收入之间非确定的依赖关系,我们将影响鲜蛋需求量的其他因素归并到随机变量u中,建立这两个变量之间的数学模型。
表1:中给出Y为某市城镇居民人均鲜蛋需求量(公斤),X为年人均可支配收入(元,1980年不变价),通过抽样,得到1988-1998年的样本观测值。
(1)做出散点图,建立人均鲜蛋需求量随人均可支配收入变化的一元线性回归方程,并解释斜率的经济意义;从x与y的散点图可以看出,人均鲜蛋需求量与人均可支配收入之间近似呈线性关系。
所以选取模型Y i=C+ß1X i+u i。
利用eviews软件输出结果报告如下:Dependent Variable: YMethod: Least SquaresDate: 07/13/11 Time: 15:37Sample: 1988 1998Included observations: 11Coefficient Std. Error t-Statistic Prob.C 10.76616 1.396736 7.708087 0.0000X 0.005069 0.001183 4.283328 0.0020R-squared 0.670895 Mean dependent var 16.57273Adjusted R-squared 0.634328 S.D. dependent var 1.845042S.E. of regression 1.115713 Akaike info criterion 3.219829Sum squared resid 11.20333 Schwarz criterion 3.292174Log likelihood -15.70906 Hannan-Quinn criter. 3.174226F-statistic 18.34690 Durbin-Watson stat 1.320391Prob(F-statistic) 0.002040由上表可知人均鲜蛋需求量随人均可支配收入变化的一元线性回归方程为: Y = 10.76616+ 0.005069 *X其中斜率0.005069表示某市镇人均可支配收入每增加一元,人均鲜蛋消费平均增长0.005069公斤. 对模型结果分析,判定系数较大,R2=0.67,拟合较好,X线性关系显著。
Eviews序列相关稳健标准误法序言Eviews是一种广泛使用的统计分析工具,具有强大的序列分析功能。
在进行序列分析时,我们经常要考虑序列的相关性及其稳健性。
本文将重点介绍Eviews中序列相关稳健标准误法的原理和应用。
一、序列相关性的概念及检验方法1.1 序列相关性的概念在时间序列分析中,序列相关性是指序列中各个观测值之间的相关关系。
如果序列中的观测值之间存在一定的相关性,那么我们就需要考虑相关性对模型估计和预测的影响。
1.2 序列相关性的检验方法在Eviews中,我们可以通过计算序列的自相关系数和偏自相关系数来检验序列相关性。
自相关系数是指序列与其自身滞后期的相关系数,而偏自相关系数则是通过排除中间滞后项的影响来计算序列间的相关系数。
二、序列相关稳健标准误法的原理2.1 序列相关稳健标准误法的概念在实际应用中,我们经常遇到序列中存在的异方差性和相关性问题。
传统的OLS估计方法在存在序列相关性和异方差性时会导致估计量的无偏性和有效性受到影响。
为了解决这一问题,引入了序列相关稳健标准误法。
2.2 序列相关稳健标准误法的原理序列相关稳健标准误法通过调整OLS估计量的标准误来适应序列相关性和异方差性的存在。
在Eviews中,我们可以通过设置相关稳健标准误来进行估计,以提高估计量的有效性和精确度。
三、Eviews中序列相关稳健标准误法的应用3.1 Eviews中设置序列相关稳健标准误的步骤在Eviews中,设置序列相关稳健标准误非常简单。
用户只需在进行估计时选择相关稳健标准误选项即可,Eviews会自动对估计量进行调整。
3.2 序列相关稳健标准误法的优势相比于传统的OLS估计方法,序列相关稳健标准误法能够更好地适应序列相关性和异方差性的存在,提高了估计量的精确度和有效性。
在实际应用中,我们更倾向于使用序列相关稳健标准误法来进行序列分析。
结论通过本文的介绍,我们了解了序列相关稳健标准误法在Eviews中的应用。
计量经济学试题计量经济学中的序列相关性与解决方法计量经济学试题: 计量经济学中的序列相关性与解决方法序列相关性是计量经济学中重要的概念之一,它描述了时间序列数据之间的相关程度。
在许多经济学研究中,序列相关性可能会导致问题,如伪回归和自相关误差。
为了解决这些问题,研究人员采用了一些方法来处理序列相关性。
本文将介绍序列相关性的定义、影响和解决方法。
一、序列相关性的定义序列相关性是指一组时间序列数据之间存在的相关关系。
它反映了一个变量的当前值与过去值的相关程度。
序列相关性可以判断变量之间是否存在依赖关系,以及时间趋势的演变和预测。
在计量经济学中,序列相关性通常使用自相关函数(acf)和偏自相关函数(pacf)来度量。
自相关函数衡量了序列与其自身在不同滞后期的相关性,而偏自相关函数则控制了其他滞后期的效应。
二、序列相关性的影响序列相关性对计量经济分析的结果具有重要影响。
当存在序列相关性时,经济学模型的估计结果可能会产生偏误。
这是因为序列相关性违反了线性回归模型的基本假设,导致参数估计失真。
此外,当序列相关性存在时,标准误差和t统计量的计算也会出现问题。
标准误差的计算通常基于误差项的无关性假设,而序列相关性违反了这一假设,导致标准误差被低估。
因此,对参数的显著性检验将失去准确性。
三、解决序列相关性的方法为了解决序列相关性的问题,计量经济学提出了许多方法和技术。
下面介绍几种常用的解决方法。
1. 差分法(Differencing Method)差分法是通过对时间序列数据进行差分,消除序列相关性的方法。
差分法可以消除序列的线性趋势,使数据变得稳定。
这种方法利用变量的差分来消除序列的相关性,使得模型的估计结果更可靠。
2. 自相关修正法(Autoregressive Model)自相关修正法是通过引入滞后变量来建模序列相关性。
自相关修正模型考虑变量的滞后值与当前值之间的关系,以控制序列相关性的影响。
常见的自相关修正模型包括自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。
列举序列相关性的检验方法序列相关性是指一个序列中两个以上元素的关联性。
序列相关性的检验方法主要有独立性检验、协方差分析、操作码分析、最大似然推定、极大似然推定、回归分析、相关系数等。
独立性检验是在分类数据中检验定性变量两两之间是否独立的一种方法,它实质上是针对每对类别进行比较,以确定它们相关性的概率,从而来看传统的概率论和统计学的独立性是否满足的。
例如,在一个试验中,如果测试变量x和y是独立的,则将按照此原则检查服从正态分布的观测值的概率分布,以检验观测的频率是否与理论值一致。
协方差分析是一种利用协方差检验解释变量之间的相关性的方法。
协方差分析过程中,可以推断一个变量是否受另一个变量影响,从而把变量之间的相关性准确衡量出来。
可以采用多个统计指标,如处理值协方差、数组协方差和管理技术方差等。
操作码分析是一种操作码技术,主要用于分析序列在紧密连接的散列表中的结构特征,以寻求解决数据集中的相关问题的有效方法。
操作码分析的主要思想是将散列表中的每一个数据项当成一个操作码,根据数据项间的排列情况分析有关表示的问题。
最大似然估计是一种根据观测数据和一定的概率分布模型确定参数值的统计技术。
这种技术主要是通过极大似然估计法对参数进行估计,从而得到最佳参数和其他统计量。
序列相关性检验中也可以采用最大似然估计来检验序列中不同字段之间是否存在联系。
极大似然推定也是一种基于极大似然值的技术,它的思想是找出一个最适合的(概率模型)参数向量,使其能够最大程度地拟合观测数据。
极大似然推定方法在序列相关性检验中也有着广泛的应用,是检验序列元素间相关性的有力工具。
回归分析方法是根据一组观测值,确定其两个变量之间存在相关性的技术。
回归分析也被广泛用于序列相关性检验。
异方差性和序列相关性对OLS估计结果有什么影响如何进行修正在经济学和统计学中,最小二乘法(OLS)是一种常用的回归分析方法。
然而,OLS方法在某些情况下可能会受到异方差性和序列相关性的影响,从而导致估计结果的偏差和无效性。
本文将讨论异方差性和序列相关性对OLS估计结果的影响,并介绍修正方法。
一、异方差性对OLS估计结果的影响异方差性指的是误差项方差在自变量的不同取值下存在差异。
当存在异方差性时,OLS估计量的标准误会被低估或高估,导致假设检验的结果出现错误。
具体影响主要包括:1. 系数估计的无偏性:异方差性可能导致OLS估计量的偏差,即估计结果的期望值不等于真实参数值。
2. 假设检验的错误:异方差性导致标准误的不准确估计,从而使得假设检验的结果可能出现错误,无法得出正确的统计结论。
3. 置信区间的宽度:异方差性可能使得OLS估计量的置信区间变得更宽,从而降低了估计结果的准确性。
二、序列相关性对OLS估计结果的影响序列相关性指的是误差项间存在相关性,即误差项之间不是独立同分布的。
当存在序列相关性时,OLS估计量的方差会增加,进而导致估计结果的显著性和效率下降。
具体影响主要包括:1. 系数估计的无效性:序列相关性可能导致OLS估计量的无效性,即估计结果的方差很大,不稳定,使得估计结果失去实际经济意义。
2. 假设检验的错误:序列相关性违背OLS的基本假设,使得OLS估计结果在统计意义上不可靠,从而导致假设检验的结果出现错误。
3. 预测精度的下降:序列相关性可能使得OLS估计结果在未来值的预测上失去准确性,对未来的经济决策产生不良影响。
三、修正方法针对异方差性和序列相关性对OLS估计结果的影响,有多种修正方法可供选择,其中较为常用的方法包括:1. 加权最小二乘法(Weighted Least Squares, WLS):通过对残差项引入合适的权重来修正异方差性问题,使得OLS估计量更加准确有效。
2. 广义最小二乘法(Generalized Least Squares, GLS):在存在序列相关性的情况下,通过考虑误差项之间的相关关系,以及对残差项引入权重来进行修正,提高OLS估计结果的有效性和准确性。
回归分析是统计学中常用的一种分析方法,用于研究自变量对因变量的影响程度。
然而,在实际应用中,由于数据的收集和处理方式不同,往往会出现序列相关问题,即数据的时间或空间顺序对分析结果产生影响。
因此,在回归分析中,如何处理序列相关问题成为一个重要的技术问题。
一、序列相关的检验序列相关问题通常是由时间或空间的自相关性引起的。
在进行回归分析之前,首先需要对数据进行序列相关性的检验。
常用的方法包括Durbin-Watson检验、Ljung-Box检验等。
Durbin-Watson检验主要用于检验数据中是否存在一阶自相关性,其统计量的取值范围为0-4。
当统计量接近2时,表明数据不存在一阶自相关。
而Ljung-Box检验则用于检验数据是否存在高阶自相关,通过检验数据的自相关系数是否显著来判断序列相关性的存在。
二、序列相关的处理方法当数据存在序列相关问题时,需要采取相应的处理方法。
常用的方法包括差分法、自回归滞后项法等。
差分法是通过对数据进行一阶或高阶差分,将原始数据转化为平稳序列,从而避免序列相关性对回归分析结果的影响。
自回归滞后项法则是引入自变量的滞后项作为控制变量,通过控制自变量的滞后项来消除序列相关性对回归分析结果的影响。
三、实例分析为了更好地理解序列相关问题的处理技巧,我们以某地区的GDP增长率为例进行实例分析。
假设我们想要研究某地区的GDP增长率与投资水平、人口增长率的关系。
首先,我们需要对数据进行序列相关性检验,通过Durbin-Watson检验和Ljung-Box检验发现数据存在一阶自相关性。
接下来,我们可以采用差分法对数据进行处理,得到平稳序列后再进行回归分析,或者采用自回归滞后项法引入自变量的滞后项进行回归分析。
四、结论回归分析是一种常用的统计分析方法,但在实际应用中往往会面临序列相关性的问题。
对于序列相关问题,我们需要通过序列相关性的检验来判断数据是否存在相关性,然后采取相应的处理方法来消除序列相关性对回归分析结果的影响。
序列相关的检验及修正
例题:中国居民总量消费函数 数据:
t t t X Y μββ++=10
(1)录入数据
打开EViews6,点“File ”→“New ”→“Workfile ”
选择“Dated-regular frequency”,在Frequency 后选择“Annual”,在Start data后输入1978,在End data 后输入2006,点击“ok”。
在命令行输入:DA TA X Y,回车
将数据复制粘贴到Group中的表格中:
(2)估计回归方程
在命令行输入命令:LS Y C X, 回车 或者在主菜单中点“Quick ”→“Estimate Equation ”,在Specification 中输入 Y C X,点“确定”。
得到如下输出:
写出估计结果:
X Y
4375.028.2091ˆ+=
(6、243) (47、059)
2R =0、9880 =2R 0、9875 F=2214、537 D 、W 、=0、277 2、 序列相关的检验 (1) 图示检验法 作残差序列的时序图:
保存残差虚列: GENR E=RESID 作图: PLOT E
从图上可以瞧出,模型的最小二乘残差开始连续几期小于0,接着连续几期都大于0,这种模式的残差意味着模型可能存在正的序列相关性。
做t e ~与1
~-t e 的关系图: SCAT E(-1) E
从上面的散点图可以瞧出,t e ~与1~-t e 之间可以拟合一个线性模型: t e ~=t
t e ερ+-1~ 且回归直线的斜率为正(ρ>0),表明模型存在正的序列相关性。
(2)DW 检验
由OLS 估计的结果可知:D 、W 、=0、277。
查DW 分布的临界值表,k=2,n=29时,L d =1、34,U d =1、48,显然0<0、277<L d ,因此模型存在一阶正的自相关。
(3)回归检验法
拟合模型:t e ~=t
t e ερ+-1~,并运用OLS 估计模型:LS E E(-1) 得到如下结果:
写出回归结果:
1
~949.0ˆ~-=t t e e (8、148)
回归系数的t 统计量为8、148,伴随概率P=0、0000<α=0、05,表明原模型存在一阶序列相关。
拟合模型:t e ~=t t t e e ερρ++--2211~~,并运用OLS 估计模型:LS E E(-1) E(-2)
得到如下结果:
写出回归结果:
2
1~864.0~659.1ˆ~---=t t t e e e (10、895) (-5、567)
回归系数
与的t 统计量分别为10、895、-5、567,相应的伴随概率P=0、0000<α=0、
05,表明原模型存在二阶序列相关。
拟合模型:t e ~=112233t t t t e e e ρρρε---+++%%%,并运用OLS 估计模型:LS E E(-1) E(-2)
E(-3),回车,得到如下结果:
写出回归结果:
123ˆ 1.4950.4740.286t t t t e e e e ---=--%%%%
(7、280) (-1、277) (-1、182)
回归系数的t 统计量为7、280,相应的伴随概率P1=0、0000<α=0、05,表明
显著不
为零,但
与
的t 统计量分别为-1、277、-1、182,相应的伴随概率P2=0、2144,P3=0、2491,
均大于α=0、05,表明原模型不存在三阶序列相关。
综上,原模型有二阶序列相关。
(4)LM 检验
首先采用OLS 估计模型,在弹出的Equation 窗口,点View →Residual Tests →Serial correlation LM Test…,弹出下面的对话框:
点“OK ”。
得到下面的输出:
从上面的输出可知:LM=23、65686,Prob、Chi-Square(2)=0、0000,小于α=0、05,且辅助回归中RESID(-1)与RESID(-2)的系数均显著不为0(对应t统计量的P值均小于0、05),说明模型具有2节序列相关。
在Equation窗口,点View→Residual Tests→Serial correlation LM Test…,在弹出的对话框里将滞后阶数改为3:
点“OK”。
得到下面的输出:
这时,LM=23、96054,Prob、Chi-Square(2)=0、0000,小于 =0、05,但辅助回归中RESID(-2)与RESID(-3)的系数不显著(对应t统计量的P值均大于0、05),说明模型仅存在2阶序列相关,不具有3阶的序列相关。
3、序列相关的修正
(1)广义差分法
已知模型具有2阶序列相关,在命令行输入命令:
LS Y C X AR(1) AR(2) 回车
得到下面的输出:
写出修正后的模型:
=130348、8+0、2796X+1、3902AR(1)-0、3922AR(2)
(0、049) (4、309) (6、526) (-1、681)
=0、9988 =0、9987 F=6536、97 D、W=1、9514
(2)序列相关稳健估计法
在主菜单中点“Quick” “Estimate Equation”,在Specification中输入Y C X,然后点击“Options”,在弹出的对话框里选择“Heteroskedasticity consistent coefficient”——“Newey—West”,点“确定”。
:
得到如下输出
=2091、282+0、4375X
(4、238) (22、294)
=0、988 =0、988 F=2214、54 D、W=0、277
11。