计量经济学--自相关性的检验及修正
- 格式:doc
- 大小:390.00 KB
- 文档页数:5
计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。
自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。
1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。
自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。
因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。
2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。
假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。
自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。
数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。
3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。
一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。
若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。
3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。
高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。
通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。
3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。
异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。
因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。
4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。
回归检验法检验自相关自相关是指时间序列中自身过去值与当前值之间的相关关系。
在时间序列分析中,自相关的存在可能会影响建模和预测的准确性。
为了验证时间序列数据中是否存在自相关,常常使用回归检验法进行检验。
回归检验法是一种常用的统计方法,用于检验时间序列数据中的自相关性。
它可以帮助我们判断时间序列数据是否存在自相关,并进一步确定是否需要进行自相关修正。
具体步骤如下:1. 收集并整理时间序列数据。
首先,我们需要收集所需的时间序列数据,并按照时间顺序进行整理。
确保数据的准确性和完整性是非常重要的,因为数据的质量直接影响到后续的分析和检验结果。
2. 统计学描述。
在进行回归检验之前,我们需要对数据进行统计学描述,包括均值、方差、偏度和峰度等指标。
这些指标可以帮助我们对数据的分布情况和特征进行初步了解。
3. 绘制自相关图。
自相关图是判断数据自相关性的一种常用图形方法。
通过绘制自相关图,我们可以观察不同滞后阶数下的自相关系数,并判断是否存在显著的自相关。
4. 设置假设。
在进行回归检验之前,我们需要设置相应的假设。
通常,我们假设时间序列数据不存在自相关(原假设),然后根据样本数据进行统计检验,以判断是否拒绝原假设。
5. 进行回归检验。
在进行回归检验时,我们可以使用多种方法,如Durbin-Watson检验、Ljung-Box检验和皮尔逊相关系数检验等。
这些检验方法基于不同的统计指标和算法,旨在判断自相关是否显著,并对其进行修正。
6. 解读结果。
根据回归检验的结果,我们可以得出结论,判断时间序列数据中的自相关性程度。
如果结果显示存在自相关,我们可以进一步进行自相关修正,以提高建模和预测的准确性。
回归检验法可以帮助我们判断时间序列数据中是否存在自相关,并进一步确定是否需要进行自相关修正。
通过合理使用回归检验方法,我们可以更好地分析和预测时间序列数据,提高决策的准确性和可靠性。
在使用回归检验法进行自相关检验时,我们需要注意数据的质量和准确性,选择合适的检验方法,并根据结果进行解读和处理。
计量经济学试题计量经济学中的序列相关性与解决方法计量经济学试题: 计量经济学中的序列相关性与解决方法序列相关性是计量经济学中重要的概念之一,它描述了时间序列数据之间的相关程度。
在许多经济学研究中,序列相关性可能会导致问题,如伪回归和自相关误差。
为了解决这些问题,研究人员采用了一些方法来处理序列相关性。
本文将介绍序列相关性的定义、影响和解决方法。
一、序列相关性的定义序列相关性是指一组时间序列数据之间存在的相关关系。
它反映了一个变量的当前值与过去值的相关程度。
序列相关性可以判断变量之间是否存在依赖关系,以及时间趋势的演变和预测。
在计量经济学中,序列相关性通常使用自相关函数(acf)和偏自相关函数(pacf)来度量。
自相关函数衡量了序列与其自身在不同滞后期的相关性,而偏自相关函数则控制了其他滞后期的效应。
二、序列相关性的影响序列相关性对计量经济分析的结果具有重要影响。
当存在序列相关性时,经济学模型的估计结果可能会产生偏误。
这是因为序列相关性违反了线性回归模型的基本假设,导致参数估计失真。
此外,当序列相关性存在时,标准误差和t统计量的计算也会出现问题。
标准误差的计算通常基于误差项的无关性假设,而序列相关性违反了这一假设,导致标准误差被低估。
因此,对参数的显著性检验将失去准确性。
三、解决序列相关性的方法为了解决序列相关性的问题,计量经济学提出了许多方法和技术。
下面介绍几种常用的解决方法。
1. 差分法(Differencing Method)差分法是通过对时间序列数据进行差分,消除序列相关性的方法。
差分法可以消除序列的线性趋势,使数据变得稳定。
这种方法利用变量的差分来消除序列的相关性,使得模型的估计结果更可靠。
2. 自相关修正法(Autoregressive Model)自相关修正法是通过引入滞后变量来建模序列相关性。
自相关修正模型考虑变量的滞后值与当前值之间的关系,以控制序列相关性的影响。
常见的自相关修正模型包括自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。
计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。
它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。
本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。
2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。
例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。
多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。
例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。
接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。
在实际的研究中,我们需要对多元线性回归模型进行评价。
其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。
$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。
3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。
但实际上,各个误差项之间可能会互相影响,产生自相关性。
例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。
我们可以通过自相关函数来研究误差项之间的相关性。
自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。
其中,$l$ 称为阶数。
自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。
自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。
(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。
3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。
【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。
2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。
3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。
4.根据估计出的一阶自相关系数,利用广义差分法估计模型。
5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。
6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。
7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。
8.根据估计出的高阶自相关系数,利用广义差分法估计模型。
9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。
10.对在同样数据基础上得到的不同模型进行比较分析。
以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。
一、数据来源
数据:国家统计局(1981~2010年国内生产总值与固定资产投资)软件版本:EVIEWS7.2
二、回归结果
1、一元线性回归:
三、模型诊断与修正
DW检验:相关系数δ=0.8546,查表得,
1.35
1.49
L
U
d
d
=
=
经检验,DW<1.35,自变量呈一阶正自
相关
四、广义差分法修正后的结果
对E 进行滞后一期的自回归,可得回归方程:E=0.9337E(-1)
对原模型进行广义差分,输出结果为:
**ˆˆ6981.723 1.002749t t y x =+
由于使用广义差分数据,样本容量减少了1个,为29个。
查5%的显著性水平的DW
统计表可知, 1.341.48
L U d d ==,模型中的4-DU>DW>DU ,所以广义差分模型已无序列相关。
根据()1ˆˆ16981.723βρ-=,可得1
ˆ=105305.023β。
因此,原回归模型应为 105305.023 1.002749t t y x =+
采用普莱斯-文斯滕变换后第一个观测值变为211y δ-为1750.7019和211x δ-为344.1377,变换后普通最小二乘结果为**ˆˆ7555.503 1.0611t t y
x =+,根据()1ˆˆ17555.503βρ-=,得1
ˆ=113959.321β,由此,最终模型是 ˆ113959.321 1.0611t t y
x =+。
经济计量分析实验报告一、实验项目自相关性的检验及修正二、实验日期2015.12.13三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,对随机误差项进行异方差的检验和补救及自相关性的检验和修正。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
检验是否存在异方差并补救。
检验是否存在相关性并修正。
五、实验步骤1、建立模型。
以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆)t 4X — 城乡居民储蓄存款年末增加值(亿元)3、对模型进行多重共线性检验。
4、检验异方差是否存在并补救。
5、检验自相关性是否存在并修正。
六、实验结果消除多重共线性及排除异方差性之后的回归模型为:2382963.08388.301ˆX Y +-=检验I 、图示法1、1-t e ,t e 散点图-1,500-1,000-5005001,0001,500-2,000-1,00001,0002,000ET(-1)E T大部分落在第Ⅰ,Ⅲ象限,表明随机误差项存在正自相关。
2、t e 折线图-1,500-1,000-5005001,0001,50086889092949698000204060810RESIDⅡ、解析法1、D-W 检验Dependent Variable: COST Method: Least SquaresDate: 12/13/15 Time: 20:35Sample (adjusted): 1994 2008Included observations: 15 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob. C -301.8388394.3549-0.7653990.4577AGENT0.3829630.03223111.881750.0000R-squared0.915681 Mean dependent var 3875.880Adjusted R-squared 0.909195 S.D. dependent var 2295.093S.E. of regression 691.6017 Akaike info criterion 16.03946Sum squared resid 6218068. Schwarz criterion 16.13387Log likelihood -118.2960 Hannan-Quinn criter.16.03846F-statistic141.1760 Durbin-Watson stat 0.641734Prob(F-statistic)0.000000D-W=0.641734查表知:L d =1.08,U d =1.36。
所以存在一阶正自相关。
2、LM 检验Breusch-Godfrey Serial Correlation LM Test:F-statistic4.492419 Prob. F(2,11)0.0375Obs*R-squared6.743741 Prob. Chi-Square(2)0.0343Test Equation:Dependent Variable: RESID Method: Least SquaresDate: 12/13/15 Time: 20:43Sample: 1994 2008Included observations: 15Presample missing value lagged residuals set to zero.Variable Coefficient Std. Error t-Statistic Prob. C -171.0092361.8256-0.4726290.6457AGENT 0.0213550.0333880.6396130.5355RESID(-1)0.8902450.313795 2.8370260.0162RESID(-2)-0.1256190.426001-0.2948800.7736R-squared0.449583 Mean dependent var -6.37E-13Adjusted R-squared 0.299469 S.D. dependent var 666.4441S.E. of regression 557.7986 Akaike info criterion 15.70905Sum squared resid 3422532. Schwarz criterion 15.89786Log likelihood -113.8179 Hannan-Quinn criter.15.70704F-statistic2.994946 Durbin-Watson stat 2.036592Prob(F-statistic)0.077146n 2R =6.743741,查表得2 (p)=5.99。
p 值=0.0343小于0.05,拒绝原假设,不存在高阶自相关。
修正(迭代法)Dependent Variable: COSTMethod: Least SquaresDate: 12/13/15 Time: 20:55Sample (adjusted): 1995 2008Included observations: 14 after adjustmentsConvergence achieved after 32 iterationsVariable Coefficient Std. Error t-Statistic Prob.C-105.10801522.424-0.0690400.9462AGENT0.3966590.102371 3.8747320.0026AR(1)0.7549890.287218 2.6286300.0235R-squared0.945391 Mean dependent var4079.621Adjusted R-squared0.935462 S.D. dependent var2236.535S.E. of regression568.1771 Akaike info criterion15.71015Sum squared resid3551077. Schwarz criterion15.84709Log likelihood-106.9711 Hannan-Quinn criter.15.69748F-statistic95.21571 Durbin-Watson stat 1.467537Prob(F-statistic)0.000000Inverted AR Roots .75D-W=1.467537 无法查表,所以用LM检验。
Breusch-Godfrey Serial Correlation LM Test:F-statistic 1.019016 Prob. F(1,10)0.3366Obs*R-squared 1.294691 Prob. Chi-Square(1)0.2552Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/13/15 Time: 21:01Sample: 1995 2008Included observations: 14Presample missing value lagged residuals set to zero.Variable Coefficient Std. Error t-Statistic Prob.C11.127301521.1400.0073150.9943AGENT-0.0335630.107550-0.3120670.7614AR(1)-0.3234740.430157-0.7519900.4694RESID(-1)0.4854860.480935 1.0094630.3366R-squared0.092478 Mean dependent var7.45E-06Adjusted R-squared-0.179779 S.D. dependent var522.6469S.E. of regression567.6866 Akaike info criterion15.75597Sum squared resid3222681. Schwarz criterion15.93856Log likelihood-106.2918 Hannan-Quinn criter.15.73907F-statistic0.339672 Durbin-Watson stat 2.149347Prob(F-statistic)0.797241n2R=1.294691,查表得2 (p)=3.84。
P值=0.2552大于0.05,接受原假设,不存在自相关性。
七、结论模型为2396659.01080.105-ˆX Y+=,说明旅行社数量每增加1个,平均说来国内旅游总花费将增加3966.59万元。