传质过程
- 格式:ppt
- 大小:144.00 KB
- 文档页数:31
化工原理传质知识点总结一、基本概念1.1 传质的意义传质是指物质在不同相之间的传递过程。
在化工工程中,传质是指溶质在溶剂中的扩散、对流、传热、反应等传输现象。
1.2 传质的分类传质可以根据溶质与溶剂之间的接触方式分为不同的分类:(1)扩散传质:溶质在溶剂中的自由扩散过程,不需要外力的帮助。
(2)对流传质:通过溶剂的对流运动,加快溶质的扩散速率。
(3)辐射传质:发射源释放的辐射物质在空气中传输的过程。
1.3 传质的单位在化工工程中,我们通常使用质量通量或摩尔通量来描述传质的速率。
质量通量用kg/(m^2·s)或g/(cm^2·min)表示,摩尔通量用mol/(m^2·s)或mol/(cm^2·min)表示。
1.4 传质的驱动力传质的驱动力可以通过浓度差、温度差、压力差等来实现。
在传质过程中,驱动力越大,传质速率越快。
1.5 传质的应用传质在化工工程中有着广泛的应用,例如在化学反应中,传质过程可以影响反应速率和产物浓度。
在洗涤、脱水、吸附等过程中,传质也起到重要的作用。
二、传质过程2.1 扩散传质扩散传质是指溶质在溶剂中的自由扩散过程,不需要外力的帮助。
扩散传质的速率与溶质浓度梯度成正比,与扩散距离成反比,与传质物质的性质、温度等因素有关。
2.2 对流传质对流传质是指通过溶剂的对流运动,加快溶质的扩散速率。
对流传质速率与对流速度和溶质浓度梯度成正比,与传质物质的性质、温度等因素有关。
2.3 质量传递系数质量传递系数是评价传质速率的重要参数,表示单位时间内溶质通过单位面积的传质速率。
它与溶质的性质、溶剂的性质、温度、压力等因素有关。
2.4 传质速率传质速率是指单位时间内溶质通过单位面积的传质量。
它由传质物质的性质、浓度梯度、温度、压力等因素决定。
三、传质原理3.1 扩散传质的原理扩散传质的原理是由于溶质在溶剂中的无规则热运动。
在热运动的影响下,溶质会沿着浓度梯度自行扩散,直到浓度均匀。
化工传递过程基础21. 引言化工传递过程是指在化工工程中,物质、能量、动量等在不同系统或阶段之间的传递、转化和变换过程。
了解和研究化工传递过程的基础原理对于化工工程师至关重要。
本文将进一步讨论化工传递过程的基础知识和关键概念,以增强读者对化工传递过程的理解。
2. 传质基础2.1 传质现象传质现象是指物质在不同相之间的传递过程,包括溶质的扩散、萃取、吸附、蒸馏等。
在化工工程中,传质过程是实现物质分离、浓缩、净化等操作的关键环节。
传质过程的速率和效率直接影响着工程操作的效果和经济性。
2.2 传质模型传质模型是描述传质过程的理论框架,用来预测和优化传质过程的性能。
常见的传质模型包括离散模型和连续模型。
离散模型是指将传质过程离散化分析,使用数学方程描述物质传递的离散步骤。
连续模型则是将传质过程连续化分析,使用连续方程描述物质传递的连续流动过程。
2.3 传质速率传质速率是指单位时间内物质传递的量,通常以质量或摩尔单位表示。
传质速率受到物质浓度差异、传质介质的性质、传质界面的特性等因素的影响。
了解和控制传质速率对于实现高效的传质过程至关重要。
3. 传热基础3.1 传热现象传热现象是指能量在物体之间的传递过程,包括传导、对流和辐射等。
传热过程在化工工程中广泛应用于反应器的温度控制、能量回收等方面。
了解和控制传热过程对于化工工程的安全和效益都有着重要意义。
3.2 传热模型传热模型是描述传热过程的理论框架,用来预测和优化传热过程的性能。
常见的传热模型包括四面体模型、无量纲模型等。
通过建立合适的传热模型,可以更准确地预测传热过程的温度分布、传热速率等关键参数。
3.3 传热传质耦合在化工工程中,传热和传质往往是同时进行的。
传热传质耦合是指传热和传质过程之间相互影响的现象。
传热传质耦合的研究对于提高工程操作的效率和经济性具有重要意义。
4. 传动基础4.1 传动现象传动现象是指力、质量和动量等在物体之间的传递过程,包括动力学传动、液力传动、电力传动等。
锂离子固相传质过程
锂离子固相传质过程是锂离子电池中一个重要的过程,涉及到离子在固体材料中的传递和扩散。
这个过程对于电池的性能和输出能量有显著影响。
以下是锂离子固相传质过程的具体描述:
1.电荷转移:在锂离子电池中,电荷转移主要发生在电极与电解质之间的界
面。
当锂离子从正极穿过电解质向负极移动时,会伴随着电子的转移,这就是所谓的电荷转移。
这个过程对电池的效率和使用寿命具有关键作用。
2.相变:在固体材料中,离子可能会在不同的相之间转移。
例如,在正负电
极和电解质中,锂离子可能会在不同的晶格结构或化学状态之间转移。
这种相变对于锂离子的传递和扩散有重要影响。
3.新相生成:在新电池充电或放电过程中,锂离子可能与固体电极或电解质
发生化学反应,生成新的化合物或相。
这种新相的形成可能会影响锂离子的传递和扩散。
4.带电粒子的输送传递:在锂离子电池中,带电粒子(如锂离子)在正极和
负极之间的输送传递是实现电能存储和释放的关键环节。
这个过程涉及到离子的扩散和迁移,对于电池的输出能量和充放电速度具有重要影响。
总的来说,锂离子固相传质过程是一个复杂的物理化学过程,涉及到电荷转移、相变、新相生成以及带电粒子的输送传递等多个方面。
这个过程对于锂离子电池的性能和可靠性至关重要,是研究电池性能和应用的关键因素之一。
第六章 精馏§1 传质过程概述 6-1由卫生球挥发引出传质传质过程的定义——物质以扩散的方式,从一相转移到另一相的相界面的转移过程,称为物质的传递过程,简称传质过程。
日常生活中的冰糖溶解于水,樟脑丸挥发到空气中,都有相界面上物质的转移过程。
例如某焦化厂里,用水吸收焦炉气中的氨。
OH NH O H NH 423®+。
如图6-1所示。
图6-1 吸收传质示意图再如某酒精厂里,酒精的增浓与提纯。
即利用乙醇与水的沸点不同,或挥发度不同,使乙醇与水分离的过程。
如图6-2所示。
图6-2 精馏传质示意图这两个例子说明,有物质()O H OH H C NH 2523 , , 在相界面的转移过程,都称为传质过程。
6-2 传质过程举例焦化厂的例子,是吸收操作。
——利用组成混合气体的各组分在溶剂中溶解度不同来分离气体混合物的操作,称为吸收操作。
焦炉气中不仅含有3NH ,还有242 , , , H CH CO CO 等气体,利用3NH 易溶于水,以水为吸收剂,使3NH 从焦炉气中分离出来。
吸收主要用来分离气体混合物,所以有的教NH称为溶质,炉气中其他气体称为材称吸收为气体吸收。
如图6-3所示。
水称为溶剂,3(HCl,制备盐酸,也是一种吸收操作。
惰性组分。
用水吸收氯化氢气体)图6-3吸收塔局部示意图酒精厂的例子,是精馏操作。
——利用液体混合物各组分沸点(或挥发度)的不同,将物质多次部分汽化与部分冷凝,从而使液体混合物分离与提纯的过程,称为精馏操作。
精馏主要用来分离液体混合物,所以有的教材称精馏为液体精馏。
传质过程还有,萃取——利用混合物各组分对某溶剂具有不同的溶解度,从而使混合物各组分得到分离与提纯的操作过程。
例如用醋酸乙酯萃取醋酸水溶液中的醋酸。
如图6-4所示。
此例中醋酸乙酯称为萃取剂(A,水称为稀释剂)(B。
萃取操作能够进行的必要条件是:溶质在萃(S,醋酸称为溶质))取剂中有较大的溶解度,萃取剂与稀释剂要有密度差。