当前位置:文档之家› 概率论基础讲义全

概率论基础讲义全

概率论基础讲义全
概率论基础讲义全

概率论基础知识

第一章随机事件及其概率

一随机事件

§1几个概念

1、随机实验:1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。

例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;

E3:观察某电话交换台在某段时间内接到的呼唤次数。

2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件常记为A,B,C……例如,在E1中,A表示“掷出2点”,B表示“掷出偶数点”均为随机事件。

3、必然事件与不可能事件:记为Ω。每次试验都不

记为Φ。

例如,在E1中,“掷出不大于6点”的事件便是必然事件,而“掷出大于6点”的事件便是

不可能事件,以后

4、基本事件:

例如,在E1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。

例如,在E1中“掷出偶数点”便是复合事件。

5、样本空间:从集合观点看,常记为e.

例如,在E1中,用数字1,2,……,6表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6}便是E1中的基本事件。在E2中,用H表示正面,T表示反面,此试验的样本点有(H,H),(H,T),(T,H),(T,T),其基本事件便是{(H,H)},{(H,T)},{(T,H)},{(T,T)}显然,任何事件均为某些样本点构成的集合。

例如,在E1中“掷出偶数点”的事件便可表为{2,4,6}。试验中所有样本点构成的集合称为样本空间。记为Ω。

例如,

在E1中,Ω={1,2,3,4,5,6}

在E2中,Ω={(H,H),(H,T),(T,H),(T,T)}

在E3中,Ω={0,1,2,……}

例1,一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种。

此试验样本空间所有样本点的个数为NΩ=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)

若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为

(组合)

例2.随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。此试验的样本空间所有样本点的个数为

第一种方法用组合+乘法原理;第二种方法用排列

§2事件间的关系与运算

1、包含:“若事件A的发生必导致事件B发生,则称事件B包含事件A,记为A B或B

A。

例如,在E1中,令A表示“掷出2点”的事件,即A={2} B表示“掷出偶数”的事件,即B={2,4,6}则

2、相等:若A B且B A,则称事件A等于事件B,记为A=B

例如,从一付52张的扑克牌中任取4张,令A表示“取得到少

有3张红桃”的事件;B表示“取得至多有一张不是红桃”的事件。

显然A=B

3、和:称事件A与事件B至少有一个发生的事件为A与B的和事件简称为和,记为A

B,或A+B

例如,甲,乙两人向目标射击,令A表示“甲击中目标”的事件,B表示“乙击中目标”的事件,则AUB表示“目标被击中”的事件。

推广:

有限个

无穷可列个

B

4、积:称事件A与事件B同时发生的事件为A与B的积事件,简称为积,记为A

例如,在E3中,即观察某电话交换台在某时刻接到的呼唤次数中,令A={接到偶数次呼

唤},B={接到奇数次呼唤},则A B={接到6的倍数次呼唤}

推广:

任意有限个

无穷可列个

5、差:称事件A发生但事件B不发生的事件为A减B的差事件简称为差,记为A-B。

例如,测量晶体管的β参数值,令A={测得β值不超过50},B=

{测得β值不超过100},则,A-B=φ,B-A={测得β值为50﹤β

≤100}

6、互不相容:若事件A与事件B不能同时发生,即AB=φ,则称A与B是互不相容的。

例如,观察某定义通路口在某时刻的红绿灯:若A={红灯亮},

B={绿灯亮},则A与B便是互不相容的。

7、对立:称事件A不发生的事件为A的对立事件,记为

显然,A∩=φ

例如,从有3个次品,7个正品的10个产品中任取3个,若令

A={取得的3个产品中至少有一个次品},则

={取得的3个产品

均为正品}。

§3事件的运算规律

1、交换律A∪B=B∪A;A∩B=B∩A

2、结合律(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)

3、分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A ∪C)

4、对偶律

此外,还有一些常用性质,如

A∪B A,A∪B B(越求和越大);A∩B A,A∩B B(越求积越小)。

若A B,则A∪B=B, A∩B=A A-B=A-AB=A等等。

例3,从一批产品中每次取一件进行检验,令A i={第i次取得合格品},i=1,2,3,试用事件的运算符号表示下列事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合格品}D={三次中最多有一次取得合格品}

解:A=A1A2A3

表示方法常常不唯一,如事件B又可表为

例4,一名射手连续向某一目标射击三次,令Ai={第i次射击击中目标} , i=1,2,3,试用文字叙述下列事件:

解:

A1A2A3={三次射击都击中目标} A3-A2={第三次击中目标但第二次未击中目标}

例5,下图所示的电路中,以A 表示“信号灯亮”这一事件,以B,C,D 分别表示继电器接点,Ⅰ,Ⅱ,Ⅲ,闭合,试写出事件A,B,C,D 之间的关系。

解,不难看出有如下一些关系:

二 事件的概率

§1概率的定义

所谓事件A 的概率是指事件A 发生可能性程度的数值度量,记为P (A )。规定P(A)≥0,P (Ω)=1。

1、古典概型中概率的定义

例如:掷一匀称的骰子,令A={掷出2点}={2},B={掷出偶数总}={2,4,6}。此试验样本空间为

Ω={1,2,3,4,5,6},于是

,应有1=P (Ω)=6P (A ),即P (A )=

而P (B )=3P (A )=

定义1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为N Ω而事件A 所含的样本数,即有利于事件A 发生的基本事件数为

N A ,则事件A 的概率便定义为:

例1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用H 表示正面,T 表示反面,则该试验的样本空间

Ω={(H,H,H)(H,H,T)(H,T,H)(T,H,H)(H,T,T)(T,H,T)(T,T,H)(T,T,T)}。

可见NΩ=8 令A={恰有一次出现正面},则A={(H,T,T)(T,H,T)(T,T,H)}

可见,令N A=3 故

例2,(取球问题)袋中有5个白球,3个黑球,分别按下列三种取法在袋中取球。(1)有放回地取球:从袋中取三次球,每次取一个,看后放回袋中,再取下一个球;(2)无放回地取球:从袋中取三次球,每次取一个,看后不再放回袋中,再取下一个球;(3)一次取球:从袋中任取3个球。在以上三种取法中均求A={恰好取得2个白球}的概率。

解:(1)有放回取球NΩ=8×8×8=83=512 (袋中八个球,不论什么颜色,取到每个球的概率相等)

(先从三个球里取两个白球,第一次取白球有五种情况,第二次取白球还有五种情况<注意是有放回>,第三次取黑球只有三种情况)

(2)无放回取球故

(3)一次取球

属于取球问题的一个实例:

设有100件产品,其中有5%的次品,今从中随机抽取15件,则其中恰有2件次品的概率便为

(属于一次取球模型)

例3(分球问题)将n个球放入N个盒子中去,试求恰有n个盒子各有一球的概率(n≤N)。

解:令A={恰有n个盒子各有一球},先考虑基本事件的总数

全排列

属于分球问题的一个实例:

全班有40名同学,向他们的生日皆不相同的概率为多少?令A={40个同学生日皆不相

同},则有

(可以认为有365个盒子,40个球)

例4(取数问题)

从0,1,……,9共十个数字中随机的不放回的接连取四个数字,并按其出现的先后排成一列,求下列事件的概率:(1)四个数排成一个偶数;(2)四个数排成一个四位数;(3)四个数排成一个四位偶数;

解:令A={四个数排成一个偶数},B={四个数排成一个四位数},C={四个数排成一个四位偶数}

例5(分组问题)将一幅52张的朴克牌平均地分给四个人,分别求有人手里分得13张黑桃及有人手里有4张A牌的概率各为多少?

解:令A={有人手里有13张黑桃},B={有人手里有4张A牌}

于是

,故

不难证明,古典概型中所定义的概率有以下三条基本性质:

1°P(A)≥0

2°P(Ω)=1

3°若A1,A2,……,A n两两互不相容,则

2、概率的统计定义

频率:在n次重复试验中,设事件A出现了n A次,则称:为事件A的频率。频率具有一定的稳定性。示例见下例表

定义2:在相同条件下,将试验重复n次,如果随着重复试验次数n的增大,事件A的频率f n(A)越来越稳定地在某一常数p附近摆动,则称常数p为事件A的概率,即P(A)=p 不难证明频率有以下基本性质:

1°2°

3°若A1,A2,……,两两互不相容,则

3、概率的公理化定义(数学定义)

定义3:设某试验的样本空间为Ω,对其中每个事件A定义一个实数P(A),如果它满足下列三条公理:

1°P(A)≥0(非负性)2°P(Ω)=1(规范性)

3°若A1,A2,……,A n……两两互不相容,则(可列可加性,简称可加性)

则称P(A)为A的概率

4、几何定义

定义4:假设Ω是Rn(n=1,2,3)中任何一个可度量的区域,从Ω中随机地选择一点,即Ω中任何一点都有同样的机会被选到,则相应随机试验的样本空间就是Ω,假设事件A是Ω中任何一个可度量的子集,则

P(A)==ū(A)/ ū(Ω)

§2概率的性质

性质1:若A B, 则P(B-A)=P(B)-P(A)——差的概率等于概率之差

证:因为:A B

所以:B=A∪(B-A)且A∩(B-A)=φ,由概率可加性

得P(B)=P[A∪(B-A)]=P(A)+P(B-A)

即P(B-A)=P(B)-P(A)

性质2:若A B,则P(A)≤P(B)——概率的单调性

证:由性质1及概率的非负性得0≤P(B-A)=P(B)-P(A),即P(A)≤P(B)

性质3:P(A)≤1 证明:由于AΩ,由性质2及概率的规范性可得P(A)≤1

性质4:对任意事件A,P()=1-P(A)

证明:在性质1中令B=Ω便有P()=P(Ω-A)=P(Ω)-P(A)=1-P(A)

性质5:P(φ)=0 证:在性质4中,令A=Ω,便有P(φ)=P()=1-P(Ω)=1-1=0

性质6 (加法公式)对任意事件A,B,有P(AUB)

=P(A)+P(B)-P(AB)

证:由于A∪B=A∪(B-AB)且A∩(B-AB)=φ(见图)

由概率的可加性及性质1便得

P(A∪B)=P[A∪(B-AB)]=P(A)+P(B-AB)

=P(A)+P(B)-P(AB)

推广: P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P (ABC)

例6 设10个产品中有3个是次品,今从中任取3个,试求取出产品中至少有一个是次品的概率。

解:令C={取出产品中至少有一个是次品},则={取出产品中皆为正品},于是由性质4得

例7,甲,乙两城市在某季节内下雨的概率分别为0.4和0.35,而同时下雨的概率为0.15,问在此季节内甲、乙两城市中至少有一个城市下雨的概率。

解:令A={甲城下雨},B={乙城下雨},按题意所要求的是

P(A∪B)=P(A)+P(B)—P(AB)=0.4+0.35-0.15=0.6

例8.设A,B,C为三个事件,已知P(A)=P(B)=P(C)=0.25,P(AB)=0,P(AC)=0,P(BC)=0.125,求A,B,C至少有一个发生的概率。

于是所求的概率为

三条件概率

§1条件概率的概念及计算

在已知事件B发生条件下,事件A发生的概率称为事件A的条件概率,记为P(A/B)。条件概率P(A/B)与无条件概率P(A)通常是不相等的。

例1:某一工厂有职工500人,男女各一半,男女职工中非熟练工人分别为40人和10人,即该工厂职工人员结构如下:

现从该厂中任选一职工,令A= {选出的职工为非熟练工人},B= {选出的职工为女职工}

显然,;而

定义1设A、B为两事件,如果P(B)>0,则称为在事件B发生的条件

下,事件A同样,如果P(A)>0,则称为在事件A发生条

件下,事件B

例2:一盒子内有10只晶体管,其中4只是坏的,6只是好的,从中无放回地取二次晶管,每次取一只,当发现第一次取得的是好的晶体管时,向第二次取的也是好的晶体管的概率为多少?

解:令A={第一次取的是好的晶体管},B={第二次取的是好的晶体管}

按条件概率的含义立即可得:

按条件概率的定义需先计算:;于是

例3:某种集成电路使用到2000小时还能正常工作的概率为0.94,使用到3000小时还能正常工作的概率为0.87 .有一块集成电路已工作了2000小时,向它还能再工作1000小时的概率为多大?

解:令A={集成电路能正常工作到2000小时},B={集成电路能正常工作到3000小时} 已知::P(A)=0.94, P(B)=0.87 且,既有AB=B于是P(AB)=P(B)=0.87

按题意所要求的概率为:

§2关于条件概率的三个重要公式

1.乘法公式

定理1:,

例4:已知某产品的不合格品率为4%,而合格品中有75%的一级品,今从这批产品中任取一件,求取得的为一级的概率.

解: 令A= {任取一件产品为一级品}, B= {任取一件产品为合格品},显然,即有AB=A 故P(AB)=P(A)。于是, 所要求的概率便为

例5:为了防止意外,在矿内安装两个报警系统a和b,每个报警系统单独使用时,系统a有效的概率为0.92,系统b的有效概率为0.93,而在系统a失灵情况下,系统b有效的概率为0.85,试求:(1)当发生意外时,两个报警系统至少有一个有效的概率;(2)在系统b失灵情况下,系统a有效的概率.

解: 令A={系统a有效} B={系统b 有效}

已知,,

对问题(1) ,所要求的概率为

,其中

(见图)

=

=

于是

对问题(2),所要求的概率为:=

证:由于

所以上面等式右边的诸条件概率均存在,且由乘法公式可得

=

= ……(依此类推)=

例6:10个考签中有4个难签,三个人参加抽签(无放回)甲先,乙次,丙最后,试问(1)甲、乙、丙均抽得难签的概率为多少? (2)甲、乙、丙抽得难签的概率各为多少?

解: 令A,B,C分别表示甲、乙、丙抽得难签的事件,

对问题(1),所求的概率为:

对问题(2), 甲抽得难签的概率为:

乙抽得难签的概率为

丙抽得难签的概率为

其中

于是

2.全概率公式

在每次试验中必发生且仅发生一个,

即则称此事件组为该试验的一个完备事件组

例如,在掷一颗骰子的试验中,以下事件组均为完备事件组:①{1},{2},{3},{4},{5},{6};②{1,2,3},{4,5 },{6};③A,(A为试验中任意一事件)

定理2:设为一完备事件组,且,则对于任意

事件A有

证:由于且对于任意

,于是由概

率的可加性及乘法公式便得:

例7,某届世界女排锦标赛半决赛的对阵如下:

根据以往资料可知,中国胜美国的概率为0.4 ,中国

胜日本的概率为0.9,而日本胜美国的概率为0.5,求

中国得冠军的概率。

解:令H= {日本胜美国},={美国胜日本}, A= {中国得冠军}

由全概率公式便得所求的概率为

概率论基础讲义

概率论基础知识 第一章随机事件及其概率 一随机事件 §1几个概念 1、随机实验:(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。 例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况; E3:观察某电话交换台在某段时间内接到的呼唤次数。 2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B,C…… 例如,在E1中,A表示“掷出2点”,B表示“掷出偶数点”均为随机事件。 3、 例如,在E1中,6点”的事件便 是不可能事件, 4、基本事件: 例如,在E1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。 E1中“掷出偶数点”便是复合事件。 5、样本空间: e. 例如,在E1中,用数字1,2,……,6表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6}便是E1中的基本事件。在E2中,用H表示正面,T表示反面,此试验的样本点

有(H,H),(H,T),(T,H),(T,T),其基本事件便是{(H,H)},{(H,T)},{(T,H)},{(T,T)}显然,任何事件均为某些样本点构成的集合。 例如,在E1中“掷出偶数点”的事件便可表为{2,4,6}。试验中所有样本点构成的集合称为样本空间。记为Ω。 例如, 在E1中,Ω={1,2,3,4,5,6} 在E2中,Ω={(H,H),(H,T),(T,H),(T,T)} 在E3中,Ω={0,1,2,……} 例1,一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种。 此试验样本空间所有样本点的个数为NΩ=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京) 若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为 (组合) 例2.随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。此试验的样本空间所有样本点的个数为

华中师大《概率论基础》练习题库及答案

华中师范大学职业与继续教育学院 《概率论基础》练习题库及答案 填空题 1. 设随机变量ξ的密度函数为p(x), 则 p(x) ≥0; ?∞ ∞ -dx x p )(= ; Eξ= 。 考查第三章 2. 设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为: ;A,C 发生而B 不发生可表示 ;A,B,C 恰有一个发生可表示为: 。 考查第一章 3. 设随机变量)1,0(~N ξ,其概率密度函数为)(0x ?,分布函数为)(0x Φ,则 )0(0?等于 π 21,)0(0Φ等于 。 考查第三章 4. 设随机变量ξ具有分布P{ξ=k}=5 1 ,k=1,2,3,4,5,则Eξ= ,Dξ= 。 考查第五章 5. 已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 。 考查第五章 6. 设),(~2 σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 考查第五章 7. 设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ ; ∑∞ =1 i i p = ; Eξ= 。 考查第一章 8. 设A,B,C 为三个事件,则A,B,C 都发生可表示为: ;A 发生而B,C 不发生可表示为: ;A,B,C 恰有一个发生可表示为: 。

9. )4,5(~N X ,)()(c X P c X P <=>,则=c 。 考查第三章 10. 设随机变量ξ在[1,6]上服从均匀分布,则方程012 =++x x ξ有实根的概率为 。 考查第三章 较难 11. 若随机变量X ,Y 的相关系数为XY r ,U=2X+1,V=5Y+10 则U ,V 的相关系数= 。 考查第三章 12. 若 θ服从[,]22 ππ - 的均匀分布, 2?θ=,则 ?的密度函数 ()g y = 。 考查第五章 13. 设4.0)(=A P ,7.0)(=+B A P ,若A 与B 互不相容,则=)(B P ;若A 与B 相互独立,则=)(B P 。 考查第一章 14. 将数字1,2,3,4,5写在5张卡片上,任意取出三张排列成三位数,这个数是奇数的概率P (A )= 。 考查第一章 15. 若)8.0,10(~B ξ,=ξE ,=ξD ,最可能值=0k 。 考查第二、五章 16. 设随机变量X 的概率密度为0()0 x xe x f x x -?>=? ≤?,则(3)E X = , 3()X E e = 考查第四、五章 17. 任取三线段分别长为x,y,z 且均小于等于a ,则x,y,z 可构成一三角形的概率 考查第一章(较难) 18. 设随机变量X ,Y 的相关系数为1,若Z=X-0.4,则Y 与Z 的相关系数为

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

初中数学概率初步讲义

第13讲概率初步 温故知新 轴对称 (一)轴对称的定义 (1)轴对称:如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。 (2)轴对称图形:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 (3)轴对称与轴对称图形的区别:①成轴对称是对于两个图形而言的,指的是两个图形形状和位置关系,而轴对称图形是指一个具有特殊形状的图形。 (二)轴对称的性质 (1)对应点、线段、角的概念:我们把对称轴折叠后能够重合的点叫做对应点,重合的线段叫做对应线段,重合的角叫做对应角。 (2)轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。 (3)画已知图形的轴对称图形:画轴对称图形,首先应该确定对称轴,然后找出对称点。连接这些对称点就可以得到原图形的轴对称图形。 智慧乐园 大家都有过夹娃娃的经历吗?你觉得什么情况下 夹到娃娃的可能性会更大?与小伙伴进行讨论

知识要点一 。 感受可能性 (一)确定事件与不确定事件 1、必然事件:在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件。 2、不可能事件:有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。 3、确定事件:必然事件与不可能事件统称为确定事件。 4、不确定事件:有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称随机事件。 5、 ?? ?? ?? ? ? 必然事件 确定事件 事件不可能事件不确定事件 ?典例分析 例1、下列事件不是随机事件的是() A.投两枚骰子,面朝上的点数之积为7 B.连续摸了两次彩票,均中大奖 C.投两枚硬币,朝上的面均为正面D.NBA运动员连续投篮两次均未进 例2、袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样 C.这个球可能是白球D.事先能确定摸到什么颜色的球 例3、“射击运动员射击一次,命中靶心”这个事件是() A.确定事件B.必然事件C.不可能事件D.不确定事件 例4、下列事件属于随机事件的有() ①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰; ②经过城市中某有交通信号灯的路口,遇到红灯; ③今年春节会下雪; ④5,4,9的三根木条组成三角形. A.②B.②④C.②③D.①④

概率论基础-李贤平-试题+答案-期末复习

第一章 随机事件及其概率 一、选择题: 1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( ) A .A B A C + B .()A B C + C .ABC D .A B C ++ 2.设B A ? 则 ( ) A .()P A B I =1-P (A ) B .()()()P B A P B A -=- C . P(B|A) = P(B) D .(|)()P A B P A = 3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一 定独立 A .()()()P A B P A P B =I B .P (A|B )=0 C .P (A|B )= P (B ) D .P (A|B )= ()P A 4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( ) A .a-b B .c-b C .a(1-b) D .b-a 5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 互不独立 D .A 与B 互不相容 6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ?,则一定成立的关系式是( ) A .P (A| B )=1 B .P(B|A)=1 C .(|A)1p B = D .(A|)1p B = 7.设A 、B 为任意两个事件,则下列关系式成立的是 ( ) A .()A B B A -=U B .()A B B A -?U C .()A B B A -?U D .()A B B A -=U 8.设事件A 与B 互不相容,则有 ( ) A .P (A B )=p (A )P (B ) B .P (AB )=0 C .A 与B 互不相容 D .A+B 是必然事件

概率论基础复习题及答案

《概率论基础》本科 填空题(含答案) 1. 设随机变量ξ的密度函数为p(x), 则 p(x) ≥0; ?∞ ∞ -dx x p )(= 1 ;Eξ=?∞ ∞ -dx x xp )(。 考查第三章 2. 设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为:C B A ;A,C 发生而B 不发生可表示 C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 3. 设随机变量)1,0(~N ξ,其概率密度函数为)(0x ?,分布函数为)(0x Φ,则)0(0?等于π 21,)0(0Φ等 于 0.5 。 考查第三章 4. 设随机变量ξ具有分布P{ξ=k}=5 1 ,k=1,2,3,4,5,则Eξ= 3 ,Dξ= 2 。 考查第五章 5. 已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 XY r 。 考查第五章 6. 设),(~2 σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 211k - 考查第五章 7. 设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ 0 ;∑∞ =1 i i p = 1 ;Eξ= ∑∞ =1 i i i p x 。 考查第一章 8. 设A,B,C 为三个事件,则A,B,C 都发生可表示为:ABC ;A 发生而B,C 不发生可表示为:C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 9. )4,5(~N X ,)()(c X P c X P <=>,则=c 5 。 考查第三章

概率论基础复习资料

概率论基础复习资料 训练题选: 1、设A ,B ,C 为三个事件,则A 、B 、C 至少有一个发生可表示为? 2、设A ,B ,C 为三个事件,则A 、B 、C 都不发生可表示为? 3、设事件A 的概率为31)(= A P ,事件 B 的概率为21)(=B P ,且4 1)(=AB P ,求.)(B A P 4、设41)(=A P ,31)(=A B P ,2 1)(=B A P ,求)(B A P . 5、某人射击三次,以)3,2,1(=n A n 表示事件“第n 次射击时击中目标”,,试用 )3,2,1(=n A n 表示事件“至多击中目标一次”。 6、甲、乙两个班级进行篮球比赛,设事件A=“甲胜”,则事件A 表示什么事件? 7、某人打靶的命中率为0.8,现独立的射击5次,求5次射击中恰有3次命中 的概率。 8、设某盒子中有24个球,现随机抽取一上是红球的概率是25.0,求盒子中红 球的数量。 9、盒中有3红2白共5个球,从中任取2个球,则取到两个同色球的概率是多 少? 10、设在随机试验中事件A 的概率为6 1)(=A P ,求在6次独立重复试验中,事件A 出现的2次的概率 11、设随机变量设)4,1(~N X ,已知设6915.0)5.0(=Φ,计算)21(≤≤X P 12、某篮球运动员投篮命中率为0.8,求其两次投篮没有全中的概率

13、若A 与B 相互独立,4 3)(=A P ,41)(=AB P ,求)(B P 14、在1,2,3,4,5,6,7,8,9,10共十个不同的号码中随机地不放回抽取 一个号码,求第三次抽取时恰好抽到8号球的概率是多少? 15、从1,2,3,4,5中任取3个数字,计算则三个数字中不含1的概率。 16、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个乒乓球,现随机地从 中取出5个球,求取到的五个乒乓球中最大号码为7的概率,最小号码为7的概 率。 17、已知随机变量X 只能取值-1,0,1,2四个数值,其相应的概率为设 c c c c 162,85,43,21,求常数C 18、设随机变量X 服从正态分布,即X ~),(2οu N ,计算?? ? ??≤-0οu X P 13、设随机变量X 服从区间]1,0[上的均匀分布,即X ~]1,0[U ,计算()1≤X P 20、设随机变量X 服从参数为3的泊松分布,即X ~)3(P ,求)2(≤X P 21、设X 服从[]41, 上的均匀分布,求)53(<

历年考研数学概率论零基础讲义

2016考研数学概率论零基础入门讲 目录 第一讲随机事件与概率 (1) 第二讲一维随机变量及其概率分布 (7) 第三讲随机变量的数字特征 (12)

【注】(1)数二的考生不需要学习这部分内容。 (2)老师没有完全按照讲义的顺序讲课,而是打乱了顺序,重新整合授课体系,但是老师所讲的内容多数是包含在讲义中的,讲义中没有的内容需要同学们自己做笔记. 第一讲随机事件与概率 一、从古典概型讲起 1.随机试验与随机事件 称一个试验为随机试验,如果满足: (1)同条件下可重复 (2)所有试验结果明确可知且不止一个 (3)试验前不知哪个结果会发生 【注】①在一次试验中可能出现,也可能不出现的结果称为随机事件,简称为事件,并用大写字母A, B, C 等表示,为讨论需要,将每次试验一定发生的事件称为必然事件,记为Ω.每次试验一定不发生的事件称为不可能事件,记为φ. ②随机试验每一最简单、最基本的结果称为基本事件或样本点,记为ωi . 2.古典概率 称随机试验(随机现象)的概率模型为古典概型,如果其基本事件空间(样本空间)满足: (1)只有有限个基本事件(样本点); (2)每个基本事件(样本点)发生的可能性都一样. 【注】①等可能:对于可能结果: ω1,ω2 , ,ωn ,我们找不到任何理由认为其中某一结果ωi 更易发生,则只好(客观)认为所有结果在试验中发生的可能性一样. ②如果古典概型的基本事件总数为n ,事件A 包含k 个基本事件,即有利于A 的基本事件k 个.则A 的概率定义为 P( A) =k = 事件A所含基本事件的个数n 由上式计算的概率称为A 的古典概率. 3.计数方法 基本事件总数 1

李贤平 第2版《概率论基础》第五章答案

1 第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

第六章频率与概率练习题及答案全套

\ 一、你还记得什么是频数、什么叫频率、什么叫概率吗试举例说明. ` 二、将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.(1)一次实验中, 硬币两次落地后可 能出现几种情况 (2)做20次实验, 结果正正正反反反; 频数 频率 、 (3)根据上表,制作相应的频数分布直方图. | (4)经观察,哪种情况发生的频率较大.(5)实验结果为“正反”的频率是多大.(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填次数40次】80次100次 60次 “正反” 的频数 … “正反” 的频率 ' (8)计算“正反” 出现的概率. 、 (9)经过以上多 次重复实验,所得结果为“正反”的频率与你计算的“正反”的概率是否相近. 小知识: 在篮球比赛和足球比赛中,人们往往用抛硬币的方法决定由谁先来开球.那么抛硬币后,正面向上和反面向上的几率有多大呢相等吗下面我们来想办法解决这个问题. 首先想到的是实验方法.投掷硬币500次总抛出次数 (次) 正面向上次 数(次) ~ 正面向上频率 (…%)500225 比.即硬币正面向上的频率. 其次我们又想到硬币的正、反面都没有什么特殊性,所以在落下时正面向上和反面向上的可能性相等.所以正面向上与反面向上都有 2 1 的可能性,也就是说正面向上的概率是 ___________. 生活中常见一些概率问题的应用,例如彩 20选5第2003178期 § 6.1.1频率与概率

! 中奖号码 05、12、15、16、17 一等奖6注18678元 二等奖1214注50元 ) 三等奖 19202注5元 本期销 售额 548538元 出球顺序05、15、12、16、17 > 一、掷一枚硬币,落地后,国徽朝上、朝下的 概率各是多少 二、质地均匀的骰子被抛起后自由落在桌面上, 点数为“1”或“3”的概率是多少 : 三、掷两枚硬币,规定落地后,国徽朝上为正, 国徽朝下为“反”,则会出现以下三种情况. “正正” “反反” # “正反” 分别求出每种情况的概率. (1)小刚做法:通过列表可知,每种情况都出 现一次,因此各种情况发生的概率均占 3 1 . 可能出现 的情况 正正正反反反 概率 & 3 1 3 1 3 1 小敏的做法: 第一枚硬币的可能 情况 第二枚硬币的可能 情况 正— 反 正正正反正 反正反反反 发生概率为 4 1 .“正反”的情况发生的概率为 2 1 ,“反反”的情况发生的概率为 4 1 . § 6.1.2 频率与概率

高中概率讲义

3.1 随机事件的概率 3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课 时) 1、教学目标: (1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题. 2、基本概念: (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 (7)似然法与极大似然法:见课本P111 3、例题分析: 例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“平抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“常温下,铁通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”.

从身边实例探究概率的起源与发展

从身边实例探究概率的起源与发展 ——感悟数学之美,体验智慧飞扬 摘要:从生活中常见的“有奖抽签”入手,引出对概率问题的探索。将概率的发展历程分为四个阶段,分别介绍各个阶段的主要成就及代表人物。最后结合探究概率起源与发展的经历,简要概括个人对数学之美的感悟。 关键词:抽签;概率;起源;发展 生活中我们经常看到这样的情景:街头有人席地设摊,招牌上醒目地写着:“有奖抽签销售”,任何人都可以免费从摊主小布口袋中的20个小球(其中有10个红球,10个蓝球)中摸出10个,除摸得5红5蓝这种情况外,其他各种情况均可马上获得奖金(或实物)。奖金设置如下:摸得10红或10蓝者奖50元;摸得9红1蓝或9蓝1红者奖25元;摸得8红2蓝或8蓝2红者奖5元;摸得7红3蓝或7蓝3红者奖1.5元;摸得6红4蓝或6蓝4红奖0.5元。但摸得5红5蓝者必须用6元钱向摊主购买两双袜子。① 很多路人都会被这“优厚的待遇”所冲昏头脑,心想这种抽签不是明摆着给顾客送钱吗?于是一时窃喜,连忙参加这一看上去稳赚不赔的抽签活动。可是冷静下来想一想,这种免费抽签究竟谁获利呢?摊主究竟是真傻呢还是大智若愚呢?要研究这个问题,就会利用到概率知识。那么什么是概率呢?概率是怎样发展起来的呢?根据笔者所搜集的资料,本文主要从这两方面来探究概率的起源与发展。 概率论是一门从数量侧面研究随机现象规律的数学分支。其理论严谨,应用广泛,发展迅速。从历史发展的角度,概率的发展史大致可分为四个阶段,即方法积累阶段、理论概括阶段、系统整理阶段和公理体系阶段。以下我将分别介绍这四个阶段概率论的发展概况,代表人物,主要成就以及四个阶段之间的理论继承与创新关系。 第一阶段:概率论的萌芽——方法积累阶段 说到概率论的起源,就不得不提到历史上著名的“赌徒的难题”。公元1651年,赌徒德·梅尔向数学家帕斯卡请教一个亲身所遇的“分赌金”问题。问题是这样的:一次德·梅尔和赌友掷骰子,各押赌注32个金币,德·梅尔若先掷出三次“6点”,或赌友先掷出三次“4点”,就算赢了对方。赌博进行了一段时间,德·梅尔已掷出了两次“6点”,赌友也掷出了一次“4点”。这时,德·梅尔奉命要立即去晋见国王,赌博只好中断。那么两人应该怎么分这64个金币的赌金呢? 赌友说,德·梅尔要再掷一次“6点”才算赢,而他自己若能掷出两次“4点”也就赢了。这样,自己所得应该是德·梅尔的一半,即得64个金币的三分之一,而德·梅尔得三分之二。德·梅尔争辩说,即使下一次赌友掷出了“4点”,两人也是秋色平分,各自收回32个金币,何况那一次自己还有一半的可能得16个金币呢?所以他主张自己应得全部赌金的四分之三,赌友只能得四分之一②。 德·梅尔的问题居然把帕斯卡给难住了。他为此苦苦想了三年,终于在1654年悟出了一点儿道理。于是他把自己的想法写信告诉他的好友,当时号称数坛“怪杰”的费尔马,两人对此展开热烈的讨论。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被荷兰科学家惠更斯获悉,他独立地进行了研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌金问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中 ①引自《谁获利?》,论文网,2000年 ②引自《概率发展简史》

冀教版六年级数学下册第六单元 回顾与整理(三)统计与概率(教案)

(三)统计与概率 第一课时简单的数据统计过程 教学内容: 冀教版小学数学六年级下册第84?88页。 教学目标: 知识和技能: 1、了解数据调查的一般方法,能选择合适的统计量来描述数据,能选择合适的统计图来表示数据,能根据统计结果作出简单的判断和预测。 2、经历简单的收集、整理、描述和分析数据的过程。 情感、态度和价值观:积极参加统计实践活动,利用统计结果分析问题,建立初步的统计观念,体验统计数据及统计图在研究问题中的价值,培养学习数学的自信心。 重点难点: 重点:对统计表、条形统计图、折线统计图、扇形统计图、平均数进行复习。 难点:对各种统计表、统计图中的信息进行整理、分析。 教具学具: 课件、统计表。 教学设计: 一、揭示课题,导入新课 师:同学们,统计在生活中有着广泛应用,今天我们就来复习统计的相关知识。 师出示统计表。 生仔细阅读调査表。 师:谁能说一说表中的数据可以通过哪些方式收集吗? 生1:可以到村镇去实地调査交通工具。 生2:可以到养殖场调查各种禽类的解化期。 生3:可以査阅资料。 师:同学们知道得真多,你们还知道哪些收集数据的方式和途径? 学生小组讨论,集体交流,根据学生汇报,师小结。 小结:常用的方法有实地调查、实验、测量、上网、查阅资料等。 二、数据的收集与整理 师:同学们,上一周我们布置了一项任务,请大家调查各自家庭一周内丢弃的塑料袋个数,现在谁来说一说你是怎样调查的?

全班进行交流,汇报自己调查的方式、过程。教师作为参与者介绍自己的调査情况。 师:下面每个同学汇报一下自己的调查结果,我们共同完成调查结果的统计。 学生汇报调査结果。 师:好啦,每个人调查的结果都纪录下来了,下面请大家把我们的调查结果按丢弃塑料袋的个数进行整理和归纳。 教师出示统计表,师生根据数据进行填写。 师:现在请同学们观察整理的数据,你想到了哪些问题? 学生可能会提出: (1)全班同学的家庭一周内一共丢弃多少个塑料袋? (2)平均每个家庭一周内丟弃多少个塑料袋? 师:刚才同学们提出了很多问题,老师这里也有几个问题,下面请同学们用计算器来进行解决。 师:全班同学的家庭一周内一共丢弃多少个塑料袋? 学生活动,教师参与其中。 学生汇报结果。 师:同学们,看老师手里拿着一个塑料袋,如果把塑料袋展开,你能估算出一个塑料袋的面积有多大吗?谁来说一说怎样估算? 学生可能会说: (1)可以把塑料袋展开后的形状看作是近似的长方形,然后测量长和宽分别大约是多少,再求面积。 (2)也可以直接把塑料袋看作一个近似的长方形,先估算一个面的面积,再乘2。 师:这些方法都不错,我们先按第(2)种方法估算一下。学生测量,并计算。然后再把塑料袋剪后,测量计算。 师:我们估算出了一个塑料袋的大致面积,下面请同学们算一算,全班同学的家庭一周内丢弃的塑料袋大约有多大面积? 学生算完后交流。 师:还记得我们教室的长和宽吗? 学生如果不记得,估测或告诉学生。 师:现在算一算,全班同学的家庭一周内丢弃塑料袋的面积相当于多少间教室的面积? 学生算完后,订正得数。 师:照这样计算,我们全班同学的家庭一年内丢弃塑料袋的面积相当于多少

初中概率论基础

第一章概率论基础 1、(2002,数四,8分)设是任意二事件,其中的概率不等于0和1,证明是事件与独立的充分必要条件。 2、(2003,数三,4分)将一枚硬币独立地掷两次,引进事件“掷第一次出现正面”,“掷第二次出现正面”,“正、反面各出现一次”,“正面出现两次”,则事件() (A)相互独立。(B)相互独立。 (C)两两独立。(D)两两独立。 3、(2003,数四,4分)对于任意二事件和,则 (A)若,则一定独立; (B)若,则有可能独立; (C)若,则一定独立; (D)若,则一定不独立; 4、(2006,数一,4分)设为两个随机事件,且则必有 (A)(B) (C)(D) 第二章随机变量及其分布 1、(2005,数一,4分)从数1,2,3,4中任取一个数,记为,再从中任取一个数,记为,则。 2、(2003,数三,13分)设随机变量的概率密度为 ,是的分布函数。求随机变量的分布函数。 3、(2006,数一,4分)随机变量与相互独立,且均服从区间[0,3]上的均匀分布,则 。 20、(2007,数一,4分)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为。 4、(2007,数一,4分)某人向同一目标独立重复射击,每次射击命中目标的概率为。则此人第4次射击恰好第2次命中目标的概率为( ) (A)(B) (C)(D)

第三章多维随机变量及其分布 1、(2002,数一,3分)设和是任意两个相互独立的连续型随机变量,它们的概率密度分别为和,分布函数分别为和,则() (A)必为某一随机变量的概率密度。 (B)必为某一随机变量的概率密度。 (C)必为某一随机变量的分布函数。 (D)必为某一随机变量的分布函数。 2、(2003,数一,4分)设二维随机变量的概率密度为 ,则。 3、(2003,数三,13分)设随机变量与独立,其中的概率分布为 ,而的概率密度为,求随机变量的密度。 4、(2003,数四,4分)设随机变量和都服从正态分布,且它们不相关,则 (A)与一定独立; (B)服从二维正态分布; (C)与未必独立; (D)服从一维正态分布。 5、(2004,数一,9分)设为两个随机事件,且令 求:(1)二维随机变量的概率分布;(2)的概率分布。 6、(2004,数四,13分)设随机变量在区间(0,1)上服从均匀分布,在的条件下,随机变量在区间上服从均匀分布,求: (1)随机变量和的联合概率密度; (2)的概率密度; (3)概率。 7、(2005,数一,4分)设二维随机变量的概率分布为 0 1 0 1 0.4 0.1 已知随机事件与相互独立,则 (A),(B), (C),(D)。 8、(2005,数一,9分)设二维随机变量的概率密度为求(1)的边缘概率密度;

概率论与数理统计发展史

概率论与数理统计发展 史 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

概率论与数理统计发展简史 姓名:苗壮班级:1108105指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性,卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性,比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期着作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形. 18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名着《推想的艺术》发表.在这部着作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(AbrahamdeMoiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.

高三总复习讲义概率

高三数学总复习讲义--概率 第一讲:随机事件的概率 随机事件:在一定条件下可能发生也可能不发生的事件。 必然事件:在一定条件必然要发生的事件。 不可能事件:在一定条件下不可能发生的事件。 事件A的概率: 一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作 P(A)。由定义可知,必然事件的概率是1,不可能事件的概率是0。 等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。 在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值: (古典概型) 这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。 题型一:与排列组合综合 例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________; 练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为 ________________;甲、乙分在同一组的概率P=________________。题型二:与两个计数原理综合 例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;

概率论与数理统计 学习心得

- 《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。 学生们在学习《概率论与数理统计》时通常的反映之一是“课文看得懂,习题做不出”。概率论习题的难做是有名的。要做出题目,至少要弄清概念,有些还要掌握一定的技巧。这句话说起来简单,但是真正的做起来就需要花费大量的力气。不少学生在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。这就是平时的学习过程中只知其一,不知其二,不注重对公式的理解和推导造成的。比方说,在我们教材的第一章,有这样一个公式:A-B=bar(AB)=A-AB,这个公式让很多人迷糊,因为这个公式本身是错误的,在教材后面的例题1-15中证明利用了这个公式,很多人就用教材上这个错误的公式套用,结果看不懂。其实这个公式正确的应该是A-B=AbarB=A-AB.这是一个应用非常多的公式,而且考试的时候一般都会考的公式。在开始接触这个公式的时候就应该自己进行推导,发现这个错误,而不是看到这个公式之后,记住,然后运用到题目中去。大家在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。做到知其一,也知其二。 现在概率统计的考试试题难度,学员呼声不一,有的人感觉非常难,而且最让他们难以应对的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。现在就这部分内容给大家分析一下。说这部分是基础,本身就说明这些知识不是概率统计研究的内容,他们只是在研究概率统计的时候不可缺少的一些工具。即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免大家在这些方面丢分。分析到这里,就要指出一些人在学习这门课的“战术失误”。有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重新学一遍,这是不可取的。对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。万不能让基础知识成为概率统计的拦路虎。学习中要知道哪是重点,哪是难点。 如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切——“见多识广”。对于我们自考生而言,学习时间短,想利用“孰能生巧”不太现实,但是“见多识广”确实在短时间内可以做到。这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。同一个知识点,可以从多个角度进行考察。有些学员由于选择辅导书的问题,同类型的题目做了很多,但是题目类型却没有接触多少。在考试的时候感觉一落千丈。那么应该如何掌握题目类型呢?我想历年的真题是我们最好的选择。 平时该如何练习?提出这个问题可能很多人会感到不可思议。有一句话说得好“习惯形成性格”。这句话应用到我们的学习上也成立。这么多年以来,有些人有很好的学习习惯,尽管他的学习基础也不好,学习时间也有限,但是他们能按照自己知道的学习规律坚持学习,能够按照老师说得去思考、前进。我们大多数人都有惰性,一个题目一眼看完不会,就赶紧找答案。看了答案之后,也就那么回事,感觉明白了,就放下了。就这样“掰了很多玉米,最后却只剩下一个玉米”。我们很清楚,最好的方法是摘一个,留一个。哪怕一路你只摘了2个,也比匆匆忙忙摘了一路,却不知道保留的人得到的多。平时做题要先多思考,多总结,做一个会一个,而且对于做过的题目要经常地回顾,这样才能掌握住知识。就我的辅导经验而言,绝大多数人还是在这个问题上出现了问题。

相关主题
文本预览
相关文档 最新文档