概率论的基础知识
- 格式:ppt
- 大小:3.79 MB
- 文档页数:44
概率论的基础1 预备知识在开始介绍概率论之前,我们需要先了解一些预备知识。
1.1 集合运算概率论中经常会涉及到集合运算,因此我们需要先了解集合运算的基本概念。
集合是由一些确定的对象组成的整体。
我们用大写字母表示集合,用小写字母表示集合中的元素。
常见的集合运算有:- 并集:将两个集合的元素合起来,得到包含这两个集合所有元素的新集合。
记作A∪B。
- 交集:只将两个集合中都有的元素取出来,得到一个新的集合。
记作A∩B。
- 补集:集合A的补集是指集合U中所有不在A中的元素的集合。
记作A'或者A^c。
- 差集:从集合A中减去集合B中的元素,得到一个新的集合。
记作A-B。
1.2 条件概率在概率论中,条件概率是指在已知一种事件发生的前提下,另一种事件发生的概率。
记作P(B|A),表示在事件A发生的情况下,事件B发生的概率。
条件概率的计算公式为:$$P(B|A) = \frac{P(A\cap B)}{P(A)}$$其中,P(A∩B)表示事件A和事件B同时发生的概率。
1.3 独立性在概率论中,独立性是指两个事件的发生不会互相影响。
也就是说,当事件A发生与否对事件B发生的概率没有任何影响时,我们称事件A和事件B是独立的。
如果事件A和事件B是独立的,那么有以下公式成立:$$P(A\cap B) = P(A) \cdot P(B)$$反之,如果有以上公式成立,那么我们可以认为事件A和事件B是独立的。
2 概率的定义概率是描述随机事件发生可能性的数值。
在概率论中,我们用P(E)表示事件E发生的概率。
2.1 古典概型如果所有的结果都是等可能的,那么我们可以使用古典概型来计算概率。
例如,掷硬币和掷骰子都是古典概型,因为每一个结果都是等可能的。
在古典概型中,如果一个事件E可以由n个元素构成,且所有的元素等可能,那么事件E发生的概率就是:$$P(E) = \frac{\text{符合事件E的结果个数}}{\text{总结果个数}} = \frac{n_E}{n}$$2.2 条件概率法则如果我们已知事件B发生,在B的基础上怎么计算事件A发生的概率呢?根据条件概率公式,我们有:$$P(A|B) = \frac{P(A\cap B)}{P(B)}$$这个公式被称为条件概率法则。
概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。
样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。
2.概率分布概率分布描述了随机变量可能取值的概率情况。
概率分布分为离散分布和连续分布两种。
常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。
概率密度函数和累积分布函数是描述连续分布的重要工具。
3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。
随机变量分为离散随机变量和连续随机变量。
离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。
4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。
数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。
5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。
大数定律包括弱大数定律和强大数定律两种。
弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。
6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。
中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。
中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。
以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。
随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。
概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。
概率论广泛应用于统计学、金融、生物学等领域。
本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。
一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。
2. 样本空间:随机试验所有可能结果的集合,用S表示。
3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。
4. 概率:事件发生的可能性大小的度量,用P(A)表示。
二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。
计算概率时可以根据样本空间和事件个数进行计算。
2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。
3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。
三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。
a. 伯努利分布:只有两个可能取值的离散概率分布。
b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。
c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。
2. 连续概率分布:表示随机变量在一个区间上的概率分布。
a. 均匀分布:随机变量在一段区间上取值的概率相等。
b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。
四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。
2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。
3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。
4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。
总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。
数学概率论与数理统计的基础知识概率论和数理统计是数学中的重要分支,它们研究了随机事件的发生规律以及通过对数据进行统计分析来了解事物的规律性。
本文将介绍数学概率论与数理统计的基础知识,帮助读者了解这两个领域的重要概念和方法。
一、概率论的基础知识1. 随机试验和样本空间随机试验是在相同条件下具有不确定性的实验,其结果不能事先预知。
样本空间是随机试验所有可能结果的集合。
2. 事件和概率事件是样本空间的子集,表示一些感兴趣的结果。
概率是事件发生的可能性大小的度量,介于0和1之间。
3. 古典概型古典概型是指具有有限样本空间且样本点等可能出现的随机试验。
在古典概型中,事件的概率可以通过样本点的数目来计算。
4. 条件概率条件概率是指事件B在另一个事件A已经发生的条件下发生的概率,表示为P(B|A)。
条件概率的计算可以使用“乘法规则”。
5. 独立事件事件A和B称为独立事件,如果事件A的发生不会对事件B的发生产生影响。
独立事件的概率计算可以使用“乘法规则”。
二、数理统计的基础知识1. 总体和样本总体是指研究对象的全体,而样本是从总体中选取的一部分个体。
统计学中,我们通常通过对样本的统计分析来推断总体的特征。
2. 随机变量和概率分布随机变量是取值具有随机性的变量,可以是离散的或连续的。
概率分布描述了随机变量各个取值的概率。
3. 参数和统计量参数是总体的特征指标,统计量是样本的特征指标。
通过样本统计量的计算,我们可以对总体参数进行估计。
4. 抽样分布和中心极限定理抽样分布是指统计量的分布,它反映了统计量的随机性。
中心极限定理表明,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。
5. 置信区间和假设检验置信区间用于对总体参数进行估计,假设检验用于对总体参数的假设进行推断。
通过置信区间和假设检验,我们可以对统计结论进行推断和验证。
三、应用案例概率论和数理统计在各个领域都有广泛的应用。
例如,金融领域中的风险评估和投资决策,医学领域中的临床试验和流行病学研究,工程领域中的质量控制和可靠性分析等等。
概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。
以下是一些概率论中的必备知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
概率则是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
计算概率的方法有多种。
对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。
例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。
二、古典概型古典概型是一种最简单的概率模型。
在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。
计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。
三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。
例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。
在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例如,已知今天下雨,明天晴天的概率就是一个条件概率。
条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。
概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。
样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。
事件是样本空间的一个子集,表示随机试验的一些结果。
事件的概率描述了该事件发生的可能性有多大。
2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。
3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。
4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。
5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。
6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。
概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。
排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。
2. 事件的独立性在概率论中,独立性是一个重要的概念。
事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。
在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。
3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。
随机变量可分为离散型和连续型两种。
概率论的基础概率论是数学中的一个重要分支,研究随机事件发生的规律性和不确定性。
它在各个领域都有广泛的应用,例如统计学、金融学、物理学和生物学等。
本文将介绍概率论的基础概念和原理,以及它在现实生活中的应用。
一、随机事件和样本空间在概率论中,我们研究的对象是随机事件。
随机事件是在一定条件下,可能发生也可能不发生的事件。
样本空间是所有可能的结果组成的集合,每个结果称为一个样本点。
例如,投掷一个骰子,样本空间就是1到6的整数集合。
二、概率的定义和性质概率是描述随机事件发生可能性大小的数值,通常用P(A)表示事件A发生的概率。
概率具有以下性质:1. 非负性:对于任意事件A,有P(A)≥0。
2. 规范性:对于必然事件S,有P(S)=1。
3. 可列可加性:对于两个互斥事件A和B,有P(A∪B)=P(A)+P(B)。
三、条件概率和独立性条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
条件概率的计算使用了贝叶斯定理和乘法法则。
如果事件A和B的发生是相互独立的,那么P(A|B)=P(A),即事件B的发生与事件A的发生无关。
四、概率分布和期望值概率分布描述了随机变量取值的可能性和相应的概率。
离散型随机变量的概率分布可以用概率质量函数表示,连续型随机变量的概率分布可以用概率密度函数表示。
期望值是随机变量的平均值,它是每个取值乘以对应的概率后的总和。
五、大数定律和中心极限定理大数定律指出,随着试验次数的增加,随机事件发生的频率会趋向于其概率。
中心极限定理指出,独立同分布的随机变量的和的分布在试验次数趋向于无穷时近似服从正态分布。
概率论在现实生活中有许多应用。
例如,在医学诊断中,我们可以根据症状和概率分布来推断患者是否患有某种疾病。
在金融学中,概率论可以用于风险评估和投资决策。
在运输和物流中,我们可以利用概率论来优化路线规划和资源分配。
概率论是一门重要的数学工具,它帮助我们理解和描述随机事件的发生规律和不确定性。
概率论基础:入门知识点概率论是数学中的一个重要分支,研究随机事件发生的规律和概率计算的方法。
它在各个领域都有广泛的应用,如统计学、金融、工程等。
本文将介绍概率论的入门知识点,帮助读者了解概率论的基本概念和计算方法。
一、随机事件和样本空间在概率论中,我们将可能发生的事件称为随机事件。
样本空间是指所有可能的结果组成的集合。
例如,掷一枚硬币的结果可以是正面或反面,那么样本空间就是{正面,反面}。
样本空间通常用Ω表示。
二、事件的概率事件的概率是指事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示不可能发生,1表示一定发生。
概率可以通过实验或理论计算得到。
三、事件的运算1. 事件的和:事件A和事件B的和是指事件A或事件B发生的情况。
用符号表示为A∪B。
2. 事件的积:事件A和事件B的积是指事件A和事件B同时发生的情况。
用符号表示为A∩B。
3. 事件的差:事件A和事件B的差是指事件A发生而事件B不发生的情况。
用符号表示为A-B。
四、概率的计算方法1. 古典概型:当样本空间中的每个结果发生的可能性相等时,可以使用古典概型计算概率。
例如,掷一枚均匀的骰子,每个面的概率都是1/6。
2. 频率概率:通过实验的频率来估计概率。
例如,掷一枚硬币100次,正面朝上的频率为60次,那么正面朝上的概率为0.6。
3. 几何概率:通过几何方法计算概率。
例如,从一个圆盘上随机选择一个点,落在某个区域的概率等于该区域的面积与圆盘的面积之比。
4. 条件概率:指在已知某个事件发生的条件下,另一个事件发生的概率。
用符号表示为P(A|B),读作“在B发生的条件下A发生的概率”。
五、概率的性质1. 非负性:概率的取值范围是0到1之间。
2. 规范性:样本空间的概率为1,即P(Ω)=1。
3. 加法性:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
4. 减法性:对于事件A和事件B,有P(A-B)=P(A)-P(A∩B)。
5. 乘法性:对于独立事件A和B,有P(A∩B)=P(A)×P(B)。
概率论知识概率论知识概率论是数学的一个分支,主要研究随机事件的规律性和统计规律。
它是一种量化分析随机现象的工具,被广泛应用于自然科学、社会科学、工程技术等领域。
一、基本概念1. 随机事件:指在一定条件下可能发生或不发生的事情,如掷骰子出现1点或2点等。
2. 样本空间:指所有可能发生的随机事件组成的集合,如掷骰子样本空间为{1, 2, 3, 4, 5, 6}。
3. 事件:指样本空间中一个或多个元素组成的集合,如掷骰子出现偶数为事件A={2, 4, 6}。
4. 概率:指某个事件发生的可能性大小,通常用P(A)表示。
概率的取值范围在0到1之间,且所有事件概率之和为1。
二、基本公式1. 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A∩B表示A和B同时发生的事件。
2. 条件概率公式:P(A|B)=P(A∩B)/P(B),其中A|B表示在B发生的条件下A发生的概率。
3. 乘法公式:P(A∩B)=P(B)×P(A|B),其中A∩B表示A和B同时发生的事件。
4. 全概率公式:P(A)=Σi=1nP(A|Bi)×P(Bi),其中Bi为样本空间的一个划分,且所有的Bi不相交且并起来等于样本空间。
5. 贝叶斯公式:P(Bi|A)=P(A|Bi)×P(Bi)/Σj=1nP(A|Bj)×P(Bj),其中Bi 为样本空间的一个划分,且所有的Bi不相交且并起来等于样本空间。
三、概率分布1. 离散型随机变量:指取有限个或可数个值的随机变量,如掷骰子点数就是一个离散型随机变量。
其概率分布可以用概率质量函数(PMF)表示,即p(x)=P(X=x),其中X是随机变量,x是它可能取到的值。
2. 连续型随机变量:指取无限多个可能值的随机变量,如身高、体重等。
其概率分布可以用概率密度函数(PDF)表示,即f(x),满足f(x)≥0且∫f(x)dx=1。
3. 期望:指随机变量的平均值,通常用E(X)表示。
概率论基础知识梳理概率论基础知识梳理引言:概率论是一门重要的数学分支,它用于理解和预测随机事件的发生概率。
在日常生活中,我们经常面临各种各样的不确定性,例如天气变化、股市涨跌和彩票中奖等。
了解概率论的基础知识将帮助我们更好地分析和决策,从而在面对不确定性时做出明智的选择。
一、概率的基本概念和性质1.概率的定义:概率是描述一个事件发生的可能性大小的数值。
用P(A)表示事件A 发生的概率,0 ≤ P(A) ≤ 1。
2.概率的性质:- 事件的概率不会小于0,也不会大于1。
- 必然事件的概率为1,即P(S) = 1,其中S表示样本空间。
- 不可能事件的概率为0,即P(∅) = 0,其中∅表示空集。
- 对于任意两个互斥事件A和B,它们的联合概率为P(A ∪ B) = P(A) + P(B)。
二、条件概率和独立性1.条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。
用P(A|B)表示事件A在给定事件B的条件下发生的概率。
P(A|B) = P(A∩B) / P(B)。
2.乘法定理:乘法定理用于计算两个事件的联合概率,它表达为P(A∩B) = P(A|B) * P(B)。
3.独立事件:如果两个事件A和B满足P(A|B) = P(A),或者等价地,P(B|A) =P(B),则称事件A和事件B相互独立。
三、随机变量和概率分布1.随机变量:随机变量是对随机现象结果的数值化描述。
可以分为离散随机变量和连续随机变量。
离散随机变量只能取有限个或可数个值,例如抛硬币的结果(正面或反面)。
连续随机变量可以取任意实数值,例如测量某物体的长度。
2.概率分布:概率分布用于描述随机变量各个取值的概率。
离散随机变量用概率质量函数(PMF)表示,连续随机变量用概率密度函数(PDF)表示。
常见的离散概率分布有伯努利分布、二项分布和泊松分布;常见的连续概率分布有均匀分布、正态分布和指数分布等。
四、期望和方差1.期望:期望是对随机变量取值的加权平均值,用E(X)表示,其中X为随机变量。
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论知识点概率论是数学的一个分支,研究的是随机事件的发生规律和概率性质。
在现实生活中,概率论的应用广泛,涵盖了统计学、经济学、计算机科学等各个领域。
本文将介绍概率论的一些基本概念和常见应用。
一、基本概念1. 随机事件:随机事件是指在一次试验中可能发生的事件,具有不确定性和不可预测性。
例如,抛一枚硬币的正反面结果就是一个随机事件。
2. 样本空间:样本空间是指一次随机试验中所有可能结果的集合。
以掷一枚骰子为例,样本空间就是{1, 2, 3, 4, 5, 6}。
3. 事件:事件是样本空间的一个子集,表示一些可能的结果的集合。
例如,掷一枚骰子得到的结果是偶数的事件就是{2, 4, 6}。
4. 概率:概率是描述事件发生可能性大小的数值,范围在0到1之间。
概率越大,事件发生的可能性越高。
例如,正常情况下抛一枚硬币出现正面和反面的概率都是1/2。
二、常见应用1. 条件概率:条件概率是指在一定条件下,某一事件发生的概率。
以抽取一张扑克牌为例,已知抽到一张红心牌的条件下,再次抽到红心牌的概率就是条件概率。
条件概率的计算公式为P(A|B) = P(A∩B) /P(B),其中A和B为事件。
2. 独立事件:独立事件是指两个事件之间互不影响,一个事件的发生与另一个事件的发生无关。
例如,抛一枚硬币与掷一颗骰子的结果无关。
若事件A和B是独立事件,那么P(A∩B) = P(A) × P(B)。
3. 期望值:期望值是对某个随机变量的平均数的度量。
在离散型随机变量的情况下,期望值的计算公式为E(X) = Σ(x×P(X=x)),其中x为可能的取值,P(X=x)为该取值的概率。
4. 正态分布:正态分布是概率论中最重要的分布之一,也称为高斯分布。
在统计学中,很多现象都符合正态分布,例如人的身高、智商等。
正态分布的概率密度函数为f(x) = 1 / (σ√(2π)) × exp(-(x-μ)² / (2σ²)),其中μ为均值,σ为标准差。