3.2.2解一元一次方程(一)导学案(移项)
- 格式:doc
- 大小:119.50 KB
- 文档页数:2
教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
一元一次方程的解法移项
一元一次方程(也称为一次方程)是指方程中只含有一个未知数,并
且该未知数的最高次数为1的方程。
解一元一次方程的常见方法之一
是移项。
移项是通过改变方程中的项的位置,将含有未知数的项移到一边,并
将不含未知数的项移到另一边,从而得到一个更简化的形式。
以下是解一元一次方程的移项步骤:
1. 首先,将方程中的所有常数项(即不含未知数的项)移到方程的另
一边。
例如,如果方程为2x - 5 = 1,则将-5移到等号的另一边,得
到2x = 1 + 5,即2x = 6。
2. 接下来,将方程中的系数项(即含有未知数的项)移到方程的另一边。
在该步骤中,要根据项的正负情况进行不同的处理。
如果未知数
项的系数为正数,则将该项移到等号的另一边应将符号取反。
如果未
知数项的系数为负数,则将该项移到等号的另一边时符号不变。
由于
系数项移动到等号的另一边时,影响其符号的是移动前的正负情况。
例如,将2x = 6中的2x移动到等号的另一边,由于2x的系数为正数,所以2x移动后需要变为-2x,得到-2x = 6。
3. 最后,根据需要计算未知数的值,将方程进行求解。
可以通过除以
未知数的系数来解得未知数的值。
在这个例子中,通过除以-2,得到x = 6 ÷ -2,即x = -3。
综上所述,移项是解一元一次方程的常见方法,通过改变方程中项的位置,将含有未知数的项移到一边,从而得到最终的解。
用移项的方法解一元一次方程导学案一.学习目标1.理解移项的意义,掌握移项的方法.(重点)2.学会运用移项解形如“ax+b=cx+d”的一元一次方程.(重点)二.预习反馈1.等式的性质1: 等式两边,结果仍相等。
如果a=b,那么。
2.等式的性质2: 等式两边,结果仍相等。
如果a=b,那么;如果a=b(c≠0),那么。
3.解下列方程(1)4x-15=9-4 (2)5x=2x-21三.合作探究探究一怎样才能将方程3x+20=4x-25转化为x=a的形式呢?(1)如何消去方程3x+20=4x-25中等号右边的4x ?(2)如何消去方程3x+20=4x-25中等号左边的20 ?(3)方程3x+20=4x-25 经过消去了4x和20是不是得到3x-4x=-25-20?如果是,那么通过两者的对比发现什么?1. 叫做移项2.注意事项:(1)等号的一边移到另一边.(2)移项一定要.探究二下面是五位同学做的方程变形,是移项的打√,不是的打×且说明理由A.由-3x=24得x=-8 ( )B.由3x+6-2x=8 得3x+2x-6=8 ( )C.由4x+5=0 得-4x=5 ( )D.由2x+1=0得2x=-1 ( )E.由3x +2=4x-8得3x-4x =2-8 ( )四.精讲释疑例1 解方程:3x+7=32-2x五.课堂检测1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92.下列方程的变形,属于移项的是( )A. 9x +5=0, 9x =-5B. -2x =-3,x =C. 7-2x =5,-2x +7=5D. 4(x -2)=1, 4x -8=13.(广东中考)方程2x -1=3x +2的解为( )A.x =1 B.x=-1 C.x=3D.x=-34. 已知 2m -3=3n +1,则 2m -3n = .5.(2018·四川安岳县中考)当x =_____时,式子 2x -1 的值比式子 5x +6 的值小1.6、解下列方程:(1) 5x -7=2x -10 (2) -0.3x +3=9+1.2x六.1.本节小结2.课后作业23。
3.2 解一元一次方程(一)——合并同类项与移项情景导入归纳导入类比导入悬念激趣问题1:上节课我们学习了利用等式的基本性质解方程,哪位同学能叙述一下等式的基本性质呢?问题2:上周在我校举办了全市的数学优质课评选,共有50名教师听课,已知男教师比女教师的4倍少5人,请问听课的教师中有多少名男教师,多少名女教师?(要求:只列方程)[说明与建议] 说明:此环节为本节课新知的学习做好铺垫,体会等式的基本性质在解方程的过程中的作用.同时让学生体会到数学来源于生活,激发学生探究新知的兴趣.建议:学生叙述等式的基本性质要准确,问题2可引导学生发散思维,一题多解.通过上节课的学习,同学们知道:可以利用等式的基本性质解方程,比如:5x -2=8.方程两边同时加上2,得5x -2+2=8+2. 也就是5x =10.方程两边同时除以5,得x =2.此种解法过程比较繁琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的基本性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发学生的学习兴趣.建议:此方程可由学生独立完成,回顾上节课解题过程,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第89页例3 解下列方程:(1)3x +7=32-2x ;(2)x -3=32+1.【模型建立】利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.【变式变形】1.下列变形符合移项法则的是(C )A .由5+3x =2,得3x =2+5B .由-10x -5=-2x ,得-10x -2x =5C .由7x +9=4x -1,得7x -4x =-1-9D .由5x +2=9,得5x =9+22.一元一次方程t -3=12t 化为t =a 的形式为__t =6__.3.当k =__-12__时,方程5x -k =3x +8的解是x =-2.4.如果5a 3b -m 与a 3b 6m -7是同类项,那么m 的值为( D ) A .-1 B .2 C .-2 D .15.解方程:(1)-9x -4x +8x =-3-7; (2)3x -4=8-x ; (3)-3m +1=9-m ; (4)0.6x -4.1=3.9-1.4x.[答案:(1)x =2 (2)x =3 (3)m =-4 (4)x =4][命题角度1] 用合并同类项解一元一次方程用合并同类项法解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5(1)题.[命题角度2] 用合并同类项与移项解一元一次方程利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.如素材二变式变形第5(2)(3)(4)题.[命题角度3] 利用一元一次方程解决和差倍分问题解这类题的关键是根据题意找出题目中的和差倍分的等量关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中等量关系可能不止一个,有时会有多个,要根据具体情况恰当地选择等量关系.解完方程后要检验,避免出现不符合实际的答案.例 如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的13,丙村出工人数是乙村出工人数的2倍,求乙村出工人数.解:设乙村出工人数为x ,则甲村出工人数为13x ,丙村出工人数为2x.根据题意,得x +13x +2x =60.合并同类项,得103x =60.系数化为1,得x =18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决盈亏问题 盈亏问题的等量关系:(1)“盈”是分配中的多余情况,“亏”是分配中的缺少情况; (2)一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“亏”,亏多少?这两个条件都可以用来列式子,然后利用相等关系列方程.例 某小组计划做一批“中国结”,如果每人做5个,那么比计划多做了9个;如果每人做4个,那么比计划少做了15个.小组成员共有多少名?解:设小组成员共有x 名,由题意,得5x -9=4x +15. 移项,得5x -4x =15+9. 合并同类项,得x =24. 答:小组成员共有24名.[命题角度5] 利用一元一次方程解决比例分配问题甲∶乙∶丙=a∶b∶c,设其中一份为x ,由已知部分量在总量中的比例,可得表示各部分份量的式子,相等关系:各部分量之和=总量.例 已知a∶b∶c=2∶3∶4,a +b +c =27,求a -2b -2c 的值. 解:因为a∶b∶c=2∶3∶4,所以设a =2m ,b =3m ,c =4m. 代入a +b +c =27,得2m +3m +4m =27, 即9m =27,所以m =3. 所以a =6,b =9,c =12.所以a -2b -2c =6-2×9-2×12=-36. [命题角度6] 利用一元一次方程解决日历问题 日历中的相等关系:(1)日历中同一行中相邻的两数相差1,同一列中相邻的两数相差7.(2)用字母表示相邻三个数时,有多种表示方法,一般设中间一个数为a ,利用相反数的性质,能使计算过程简便.例 [利川校级一模] 图3-2-2是2014年6月的日历表,在日历表上可以用一个方框圈出3×3个位置相邻的数(如11,12,13,18,19,20,25,26,27),若圈出的9个数的和为99,则方框中心的数为( A )图3-2-2A .11B .12C .16D .18P88练习1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550.合并同类项得5.5x =550. 系数化为1.得x =100.答:前年的产值是100元. P90练习1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3;(3)2.5y +10y -6y =15-21.5;(4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16;(2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14.答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?[答案] 长18 m,宽12 m.综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,第二块实验田的用水量为0.25x t,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得: -3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m 的值是( )A .m=-1B .m=1C .m=-2D .m=2 4. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,请你能帮小悦列出方程为__________________(不需要求解). 5. 用合并同类项解方程: (1)4x –7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7.参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程 1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整. 解:移项得:5x-7x =___ 合并同类项得:___=10 系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17. 参考答案: 1. C ; 2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程 1.解下列方程(1)12884x x +=-;(2)233234x x +=-.2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题二 列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁 ( )A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元? 专题三 列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变.答案:1. 解:(1)12884x x +=-, 移项,得:12848x x -=--, 合并同类项,得:412x =-, 系数化为1,得:x =-3.(2)233234x x +=-,移项,得:232334x x -=--,合并同类项,得:1512x -=-, 系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m , 3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235;(2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -.所以2121()3434x --=1134x -,解得:158-=x .4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3, 因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则: 9x ×2+6x ×18+2x (18﹣1)=1280, 解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有x 个,那么省外境内投资合作项目 (512-x )个,由题意得: 348512=-+x x ,解得133=x ,512-x =215; (2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个. (2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元), 租60座的客车的租金应为:300×(5-1)=1200(元), 所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x ±1,x ±7,x ±8,x ±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得: (x-7)+x+(x+7)=21.解得x=7, x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况. 答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得 x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23. 答:这四天分别是2号,9号,16号,23号.解一元一次方程的“八项注意”革命歌曲<<三大纪律,八项注意>>想必同学们都知道吧,尤其是”八项注意”可以说是耳熟能详了.那么在学习解一元一次方程时,为了避免同学们在解方程时发生错误,特提出以下八个注意点:第一,注意解方程的格式.解方程的每一步都必须是方程,因此同学们在初学时出现的“连等式”或“解原式=”这些解题格式均是错误的。
《3.2 解一元一次方程(2)─合并同类项与移项》导学案【学习目标】1.理解移项的含义及注意事项;学会利用移项解一元一次方程。
2.通过移项、合并同类项,解决在实际中遇到的方程问题;3 激情投入,体会数学的应用价值。
【学习重点】:运用方程解决实际问题,会用移项法则解方程;【学习难点】:理解“移项法则”的依据,以及寻找问题中的等量关系;【使用说明与学法指导】1、先认真阅读学习目标;2、再认真阅读88—90页内容,并用红笔标注重点;3、阅读教材后认真完成导学案.预习案【使用说明学法指导】1.诵读教材的内容,进行知识梳理;熟记基础知识,2.完成教材助读设置的问题,然后结合课本基础知识的例题,完成与预习自测。
3.建议15分钟完成预习案,将预习中不能解决的问题标出来,并填写到后面的我的疑惑处。
旧知回顾1. 等式的性质1的内容是什么?2. 解方程3x=x+1时,可变形为3x-x=x+1-x,变形的依据是什么?教材助读移项的理论依据是什么?预习自测一、知识链接解方程:(1)3x-2x=7;(2)14x+12x=3;2.方方的妈妈会定期给她一定数额的零用钱。
如果她每天用4元,则到下次发零用钱时全部用完;如果每天用3元,则到下次发零用钱时剩余5元。
你知道她妈妈多少天给她发一次零用钱吗?【我的疑惑】________________________________________________________探究案学始于疑——我思考我收获1 在解方程中移项起到什么作用?2 用移项的方法解一元一次方程的步骤是什么?学习建议请同学们用3分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。
质疑探究——质疑解惑,合作探究(一)基础知识探究探究点移项(重点)问题1:解方程2x=x+3时,可变形为2x-x=3,这一步的依据是什么?问题2:什么是移项?移项时,应注意什么?(二)自主探究1. 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;这批书的总数是一个定值(不变量),表示它的两个式子应相等;根据这一相等关系,列方程: __________________;注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),•也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20 -4x-20 =4x-25 -4x-20即 3x-4x=-25-20将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.像上面那样,把等式一边的某项变号后移到另一边,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,•也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.3x+20=4x-25↓移项: 3x-4x=-25-20合并同类项: -x=-45系数化为1:x=45由此可知这个班共有45个学生.2. 例3 解方程 3x+7=32-2x; x-3=3/2x+1.例4 某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t。
《解一元一次方程一移项》教学设计洛峪镇喜集九年制赵如意二、合作交流,解读探究:(一)、移项1、思考:方程3x +20 = 4x -25 的两边都有含x的项(3x与4x) 和不含字母的常数项(20与-25),怎样才能使它向x= a(常数)的形式转化呢2、观察:(1) 、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?(2) 、改变的项有什么变化?3、归纳:把等式一边的某项改变符号后移到另一边,叫移项。
4、应用新知:1 )、慧眼找错:(1 )、6 + x = 8 ,移项,得x = 8+ 6(2 )、3x = 8- 2x ,移项,得3x +2x = -8(3 )、5x - 2 = 3x + 7 ,移项,得5x + 3x = 7 + 22 )、抢答:将含有未知数的项放在方程的一边,常数项放在方程的另一边,对方程进行移项变形。
(1 )、2x -3 = 6(2 )、5x = 3x -1(3)、2.4y +2 = -2y(4 )、8 - 5x = x + 23)判断改错:下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1 )、从7+ x = 13.得到x=13 +7(2 )、从5x=4x +8,得到5x-4x=8(3 )、从3x +5= -2x -8 ,得到3x 教师引导学生观察,学生讨论、交流后,教师说明:像这样把等式一边的某项改变符号后移到另一边,叫移项。
学生分小组讨论。
分析:解方程的目的是什么?如何向目的前进?利用等式的基本性质可以实现向目的的转化:为了使方程的右边没有含x 的项,等号的两边同减4x ;为了使左边没有常数项,等号两边同减20。
利用等式的基本性质1 ,得3x +20 -20 -4x=4x-25 -20 -4x 3x -4x = -25 -20学生分组讨论这里渗透转化、化归的思想方法。
通过学生的思考、观察和教师的讲解得出什么是移项,便于学生理解。
教学中应注意提醒学生注意:方程中的项是连同它前面的符号的。
人教版数学七年级上册3.2《解一元一次方程一》教案一. 教材分析《数学七年级上册》是人教版初中数学教材,3.2《解一元一次方程一》是该册书中关于一元一次方程的解法的基本内容。
本节课的主要内容是让学生掌握一元一次方程的解法,并能灵活运用。
在教材中,一元一次方程的解法是作为数学知识的一个重要部分进行介绍的,它不仅在数学学科中有着广泛的应用,而且在日常生活和工作中也有着重要的作用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于方程的概念和简单的方程求解已经有了一定的了解。
但是,对于一元一次方程的解法,他们可能还存在着一些困惑和误解。
因此,在教学过程中,需要引导学生通过实际问题来理解一元一次方程的解法,并通过练习来巩固和提高。
三. 教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能够独立解一元一次方程。
2.过程与方法目标:通过实际问题的解决,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验到数学与生活的紧密联系,增强学生对数学的兴趣和自信心。
四. 教学重难点1.教学重点:一元一次方程的解法。
2.教学难点:对于一些特殊的一元一次方程,如含有分数、括号等,如何正确地进行运算和变形。
五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的学习兴趣,引导学生主动参与学习。
2.案例教学法:通过典型的一元一次方程的案例,让学生理解和掌握解法。
3.练习法:通过大量的练习,让学生巩固和提高解一元一次方程的能力。
六. 教学准备1.教具准备:黑板、粉笔、投影仪等。
2.教学素材:一元一次方程的实际问题、解题案例等。
七. 教学过程1.导入(5分钟)利用生活实例引入一元一次方程的概念,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(15分钟)通过投影仪展示一元一次方程的案例,引导学生思考如何解这样的方程。
在呈现过程中,注意引导学生关注方程的特点和解题的关键步骤。
3.2 解一元一次方程〔一〕——合并同类项与移项第2课时用移项的方法解一元一次方程教学目标:1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项方法,学会解“ax+b=cx+d〞类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.教学重点:建立方程解决实际问题,会解“ax+b=cx+d〞类型的一元一次方程.教学难点:分析实际问题中的相等关系,列出方程.教学过程:一、提出问题出示课本P88问题2:把一些图书分给某班学生阅读,如果每人分3本,那么剩余20本;如果每人分4本,那么还缺25本.这个班有多少学生?二、分析问题引导学生回忆列方程解决实际问题的根本思路.学生讨论、分析:1.设未知数:设这个班有x名学生.2.找相等关系:这批书的总本数是一个定值,表示它的两个等式相等.3.列方程:3x+20=4x-25 (1)设问1:怎样解这个方程?它与上节课遇到的方程有何不同?学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).设问2:怎样才能使它向x=a的形式转化呢?学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.3x-4x=-25-20 (2)设问3:以上变形依据是什么?归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项.设问4:以上解方程中“移项〞起了什么作用?学生讨论、答复,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于“x=a〞的形式.三、课堂练习1.学生练习课本P90练习第1题.2.解以下方程:(1)3x+5=4x+1;(2)9-3y=5y+5;(3)3b+4=5b-6 ;(4)7-6x=-2x+3.四、综合应用,稳固提高1.讨论学习课本P90例4.2.将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)3.课本P90练习第2题.五、课时小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.现在你知道前面提到的古老的代数书中的“对消〞与“复原〞是什么意思吗?3.今天讨论的问题中的相等关系又有何共同特点?第2课时有理数的加法运算律一、新课导入1.课题导入:〔1〕想一想,小学里我们学过的加法运算律有哪些?〔2〕这些运算律在有理数的加法中是否还适用呢?我们先来进行以下两道计算,再答复这个问题.30+(-20),(-20)+30.上面两个算式中交换了加数的位置,两次所得的和相同吗?加法运算律在有理数运算中还适用吗?这就是今天要学习的内容——有理数加法运算律.2.三维目标:〔1〕知识与技能①能运用加法运算律简化加法运算.②理解加法运算律在加法运算中的作用,适当进行推理训练.〔2〕过程与方法①培养学生的观察能力和思维能力.②经历有理数的运算律的应用,领悟解决问题应选择适当的方法.〔3〕情感态度在数学学习中获得成功的体验.3.学习重、难点:重点:有理数加法运算律及运用.难点:运算律的灵活运用.二、分层学习1.自学指导:〔1〕自学内容:探究有理数加法的交换律和结合律.〔2〕自学时间:5分钟.〔3〕自学要求:运用计算、类比来验证归纳加法的运算律在有理数加法中的运用.〔4〕探究提纲:①刚刚通过计算知道30+(-20)和(-20)+30相等,同学们再算一算以下各式:a.〔-8〕+〔-9〕=-17;〔-9〕+〔-8〕=-17.b.4 +〔-8〕=-4;〔-8〕+4=-4.根据计算结果你可发现:〔-8〕+〔-9〕=〔-9〕+〔-8〕,4 +〔-8〕=〔-8〕+4(填“>〞“<〞或“=〞)由此可得a+b=b+a,这种运算律称为加法交换律.即两个数相加,交换加数的位置,和不变.②计算:a.[8+(-5)]+(-4),8+[(-5)+(-4)];b.[(-12)+20]+(-8),(-12)+[20+(-8)].比较a、b两题计算结果,你能得出什么结论?〔仿照1〕,分别用文字和含字母的等式写出你的结论.a.[8+(-5)]+(-4)=-1,8+[(-5)+(-4)]=-1.b.[(-12)+20]+(-8)=0,(-12)+[20+(-8)]=0.根据a、b两题计算结果,可发现[8+(-5)]+(-4)=8+[(-5)+(-4)],[(-12)+20]+(-8)=(-12)+[20+(-8)],由此可得,〔a+b〕+c=a+〔b+c〕,这种运算律称为加法结合律.即三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.2.自学:同学们结合探究提纲进行探究学习.3.助学:〔1〕师助生:①明了学情:了解学生的探究过程及探究结论,关注他们认识过程中的疑点问题.②差异指导:a.指导那些对有理数加法法那么还不熟的学生;b.指导表达有困难的学生归纳出相应的结论.〔2〕生助生:生生互动讨论交流解决自学中的疑问.4.强化:〔1〕加法的交换律.(文字、字母表述)加法的结合律.(文字、字母表述)〔2〕在有理数加法运算中,运用加法交换律和结合律可使运算更加简便.1.自学指导:〔1〕自学内容:教材第19页例2到第20页“练习〞之前的内容.〔2〕自学时间:5分钟.〔3〕自学要求:仔细阅读例2的解答过程,弄清每一步的目的和依据分别是什么.认真阅读例3的解答过程,通过例3两种解法的比照,体会有理数加法运算律的作用.〔4〕自学参考提纲:①例2中是怎样使计算简化的?根据是什么?例2中,把正数和负数分别相加,从而使计算简化.这样做的依据是加法的交换律和结合律.②仿例2计算:a.23+(-17)+6+(-22);b.(-2)+3+1+(-3)+2+(-4)a.23+(-17)+6+(-22)=23+6+[(-17)+(-22)]=29+(-39)=-10b.(-2)+3+1+(-3)+2+(-4)=3+1+2+[(-2)+(-3)+(-4)]=6+(-9)=-3③想一想,要解决例3中的问题,你有几种计算方法?再把自己的想法与同伴交流一下.解法一的解题思路是怎样的?这种思路大家以前就会吗?方法一:直接用加法算出10袋小麦的总质量,再减去10袋小麦的标准质量得出超出或缺乏的局部.方法二:先算出每袋小麦超出或缺乏的局部,再求和算出10袋总计超出或缺乏的局部.④例3中10袋小麦重量数与哪个数字比较接近?解法二中运用了哪些运算律?与解法一比较,哪种方法较好?好在哪里?10袋小麦重量数与90比较接近.解法二中运用了加法的交换律和结合律.解法二较好,使运算更简便.⑤某学习小组五位同学某次数学测试成绩〔分〕为83、76、94、88、74,该班全体同学测试的平均分为80分,问这五位同学的平均分超出全班平均分是多少分?用两种方法解答.解法一:先计算这5个人的平均分是多少分:〔83+76+94+88+74〕÷5=83,再计算超过平均分多少分:83-80=3.解法二:每个人的分数超过平均分的记为正数,低于平均分的记为负数,那么5个人对应的数分别为:+3,-4,+14,+8,-6.[〔+3〕+〔-4〕+〔+14〕+〔+8〕+(-6)]÷5=3.答:这五位同学的平均分超出全班平均分3分.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:了解学生对这两个例题的思路是否理解.②差异指导:对学困生启发指导.〔2〕生助生:学生通过讨论交流解决自学中的疑难问题.4.强化:〔1〕a.使用运算律使计算简便的常用方法:正数与正数相结合,负数与负数相结合;互为相反数的相结合.b.例3中解法1的方法:实际总量-按标准算总量;解法2的方法:先算每袋超〔或少〕标准量多少?再求总超〔或少〕标准总量多少?〔2〕加法运算律在有理数运算中的作用及使用方法.〔3〕练习:计算:①1+(-12)+13+(-16);②314+(-235)+534+(-825)答案:①23;②-2.三、评价1.学生的自我评价〔围绕三维目标〕:自我总结本节课学习的收获与困惑.2.教师对学生的评价:〔1〕表现性评价:对学生学习中的行为表现进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时教学内容,学生在小学时已接触过并且带有技巧性,是学生比较喜欢的知识,教学时可依据这些特点,由教师设计现实情境,引导学生带着新奇去自主发现与交流,从而获取知识和技巧.对学生在自主探索形成的认识中缺乏的地方,教师可在指导学生解决实际问题时,针对性的补充与拓展,训练时还可采用抢答等形式,由学生自己做出评判.一、根底稳固〔70分〕1.〔30分〕-12+14+(-25)+(+310)运用运算律计算恰当的是〔A〕A.[(-12+14)]+[(-25)+(+310)]B. [14+(-25)]+[(-12)+(+310)]C. (-12)+ [14+(-25)]+(+310)2.〔40分〕计算.〔1〕5+(-6)+3+9+(-4)+(-7);〔2〕(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;〔3〕(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7);〔4〕12+(-23)+45+(-12)+(-13).解:〔1〕原式=5+3+9+[(-6)+(-4)+(-7)]=17+(-17)=0;(2)原式=[(-0.8)+0.8]+1.2+3.5+[(-0.7)+(-2.1)]=0+4.7+(-2.8)=1.9;(3)原式=[(-6.8)+(-3.2)]+425+635+[(-5.7)+(+5.7)]=(-10)+11+0=1;〔4〕原式=12+(-12)+(-23)+(-13)+45=0+(-1)+45=-15.二、综合应用〔20分〕3.〔10分〕食品店一周中各天的盈亏情况如下(盈余为正):132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周中总的盈亏情况如何?解:132+〔-12.5〕+〔-10.5〕+127+〔-87〕+136.5+98=383.5(元),即一周盈利383.5元.4.〔10分〕有8筐白菜,以每筐25kg为标准,超过的千克数记作正数,缺乏的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?解:1.5+〔-3〕+2+〔-0.5〕+1+〔-2〕+〔-2〕+〔-2.5〕+25×8=194.5〔千克〕.答:这8筐白菜一共194.5千克.三、拓展延伸〔10分〕5.〔10分〕〔1〕计算以下各式的值.①(-2)+(-2);②(-2)+(-2)+(-2);③(-2)+(-2)+(-2)+(-2);④(-2)+(-2)+(-2)+(-2)+(-2).〔2〕猜想以下各式的值:(-2)×2;(-2)×3;(-2)×4;(-2)×5.你能进一步猜出一个负数乘一个正数的法那么吗?解:〔1〕①-4;②-6;③-8;④-10.(2)(-2)×2=-4,(-2)×3=-6,(-2)×4=-8,(-2)×5=-10负数乘正数的法那么:符号取负号,再把两数的绝对值相乘.。
3.2.2解一元一次方程(一)
----移项
学习目标:
1、通过观察,独立归纳出移项法则;
2、利用移项法则解形如“ax+b=cx+d”类型的一元一次方程;
3、通过分析实际问题中的数量关系,体会建模思想在一元一次方程中的作用
重点难点:运用移项法则解一元一次方程。
学习过程:
问题1:把一些图书分给某班同学阅读,如果每人3本,则剩余20本;若每人4本,则还缺少25本,这个班的学生有多少人?
分析:设这个班有x名学生,这批书共有本,
这批书总数还可表示成本
等量关系:
列得方程:
如何解这个方程呢?
1、使方程右边不含x的项,方程两边同时减,得:
2、使方程左边不含常数项,方程两边同时减,得:
观察方程:把某项从等式一边移到另一边时有什么变化?
上面方程的变形,相当于把原方程左边的变为
移到右边,把右边的变为移到左边.
归纳:把等式一边的某项变号后移到另一边,叫做移项。
思考:解方程中“移项”起了什么作用?
通过移项,含与分别放在方程的左右两边,使方程更接近于x=a的形式.
问题1的解答过程:
解:设这个班有x名学生,依题意得
3x+20=4x-25
移项,得
合并同类项,得
系数化为1,得
答:这个班的学生有人.
d cx b ax +=+巩固练习:
1、解下列方程
2、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg.采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?
小结:
1、今天学习解形如方程有哪些步骤?
2、列方程解应用题分哪些步骤?
作业:课本P91页
习题3.2第 3(3)(4)、4、6题
课后反思: (1)6745;x x -=-13(2)624x x -=(3)5278;x x -=+35(4)13;22
x x -=+。