第八章 约束问题的最优性条件
- 格式:pdf
- 大小:405.08 KB
- 文档页数:32
在约束条件下的最优化问题是指在一定的限制条件下,寻找使目标函数达到最大或最小值的最优解。
这类问题可以通过数学建模和优化算法来解决。
常见的约束条件包括等式约束和不等式约束。
等式约束要求某些变量之间的关系满足特定的等式关系,而不等式约束则要求某些变量之间的关系满足特定的不等式关系。
数学上,约束条件可以表示为:
1. 等式约束:g(x) = 0,其中g(x)是一个关于变量x的函数。
2. 不等式约束:h(x) ≤0,其中h(x)是一个关于变量x的函数。
最优化问题的目标函数可以是线性的、非线性的,甚至是在某些特殊情况下可能是非凸的。
根据问题的具体形式,可以选择适合的优化算法进行求解,如线性规划、非线性规划、整数规划等。
常见的优化算法包括:
1. 梯度下降法:用于求解无约束或有约束的凸优化问题,在连续可导的情况下通过迭代调整参数来逐步接近最优解。
2. KKT条件法:用于求解有约束的凸优化问题,通过构建拉格朗日函数和KKT条件来确定最优解。
3. 内点法:用于求解线性规划和凸优化问题,通过在可行域内寻找目标函数的最优解。
4. 遗传算法:用于求解复杂的非线性优化问题,通过模拟自然进化过程中的选择、交叉和变异操作来搜索最优解。
5. 模拟退火算法:用于求解非线性优化问题,通过模拟固体退火的过程来逐步降低温度并接近最优解。
在实际应用中,约束条件下的最优化问题广泛应用于工程、经济、运筹学、物流等领域。
通过合理地建立数学模型,并选择合适的优化算法,可以有效地解决这类问题,并得到最优解或接近最优解的结果。
最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。
不等式约束条件的最优化问题概述在数学和经济学等领域中,最优化问题是一个常见的研究课题。
在解决最优化问题时,我们通常会面临各种约束条件,其中一种常见的约束条件是不等式约束条件。
本文将深入探讨不等式约束条件的最优化问题,包括其定义、求解方法以及应用领域等。
定义不等式约束条件的最优化问题是指在一组不等式条件下,寻找使目标函数取得最大值或最小值的变量取值。
不等式约束条件可以是单个不等式,也可以是多个不等式的组合。
一般来说,最优化问题可以分为线性最优化问题和非线性最优化问题,而不等式约束条件可以存在于两种类型的最优化问题中。
线性不等式约束条件的最优化问题求解方法线性不等式约束条件的最优化问题可以通过线性规划方法求解。
线性规划是一种数学优化方法,用于求解线性约束条件下的最优化问题。
在线性规划中,目标函数和约束条件都是线性的,可以用线性代数的方法进行求解。
线性不等式约束条件的最优化问题可以通过单纯形法、内点法等方法进行求解。
单纯形法是一种基于顶点的搜索算法,通过不断移动顶点以搜索最优解。
内点法是另一种常用的求解线性规划问题的方法,它通过将问题转化为一个等价的无约束问题来求解。
应用领域线性不等式约束条件的最优化问题在实际应用中具有广泛的应用。
例如,在生产计划中,我们常常需要在一组资源有限的条件下,最大化产出或最小化成本。
在供应链管理中,我们需要在供应商、生产能力、运输成本等多个因素的约束下,优化供应链的效率和利润。
线性不等式约束条件的最优化问题也在金融投资、交通规划等领域中得到广泛应用。
非线性不等式约束条件的最优化问题求解方法非线性不等式约束条件的最优化问题相对复杂,求解方法也更加多样化。
常见的求解方法包括梯度下降法、牛顿法、拟牛顿法等。
这些方法通常需要对目标函数进行求导或近似求导,以找到函数的极值点。
应用领域非线性不等式约束条件的最优化问题在实际应用中也非常常见。
例如,在机器学习和人工智能领域中,我们常常需要通过调整模型参数来最小化损失函数,以提高模型的准确性。
第八章 约束最优化方法无约束优化方法是优化方法中最基本最核心的部分。
但是,在工程实际中,优化问题大都是属于有约束的优化问题,即其设计变量的取值要受到一定的限制,用于求解约束优化问题最优解的方法称为约束最优化方法。
由于约束最优化问题的复杂性,无论是在理论方面的研究,还是实际中的应用都有很大的难度。
目前关于一般的约束最优化问题还没有一种普遍有效的算法。
本书重点介绍几种常用的算法,力求使读者对这类问题的求解思路有一个了解。
8.1 约束优化方法概述一、约束优化问题的类型根据约束条件类型的不同可以分为三种,其数学模型分别如下: 1)等式约束优化问题 考虑问题l1,2,...,j x h t s x f j ==0)(..)(min其中,l 1,2,...,j x h x f j =),(),(为R R n→上的函数。
记为)(fh 问题。
2)不等式约束优化问题 考虑问题m1,2,...,i x g t s x f i =≤0)(..)(min其中,m 1,2,...,i x g x f i =),(),(为R R n→上的函数。
记为)(fg 问题。
3)一般约束优化问题()()()⎩⎨⎧===≤l ,1,2,j x h m ,1,2,i x g t s x f j i L L 00..min其中,l 1,2,...,j m i x h x g x f j i ==;,2,1),(),(),(L 为R R n→上的函数。
记为)(fgh 问题。
二、约束优化方法的分类约束优化方法按求解原理的不同可以分为直接法和间接法两类。
1)直接法只能求解不等式约束优化问题的最优解。
其根本做法是在约束条件所限制的可行域内直接求解目标函数的最优解。
如:约束坐标轮换法、复合形法等。
其基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。
可行性:迭代点必须在约束条件所限制的可行域内,即满足m i x g i ,...,2,1,0)(=≤适用性:当前迭代点的目标函数值较前一点的目标函数值是下降的,即满足)()()()1(k k x F x F <+2)间接法该方法可以求解不等式约束优化问题、等式约束优化问题和一般约束优化问题。
第八章 约束优化最优性条件§8.1 约束优化问题一、 问题基本形式min ()f x1()0 1,,.. ()0 ,,i ei e c x i m s t c x i m m+==⎧⎨≥=⎩ (8.1)特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。
记 {}1()0 (1,,);()0 ,,i e ieX x c x i m c x i m m +===≥= ,称之为可行域(约束域)。
{}1,,e E m = ,{}1,,e I m m += ,{}()()0 i I x i c x i I ==∈称()E I x 是在x X ∈处的积极约束的指标集。
积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。
应该指出的是,如果x *是(1)的局部最优解,且有某个0i I ∈,使得0()0i c x *>则将此约束去掉,x *仍是余下问题的局部最优解。
事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ∀>,存在x δ,使得x xδδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。
注意到当δ充分小时,由0()i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x *是局部极小点矛盾。
因此如果有某种方式,可以知道在最优解x *处的积极约束指标集()()A x E I x **= ,则问题可转化为等式的约束问题:min ()f x.. ()0i s t c x = ()i A x *∈ (8.2)一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x *。
§8.2 一阶最优性条件一、几种可行方向定义8.1 设x X *∈,n d R ∈是一非零向量。