最优化方法 第三章(约束最优性条件)
- 格式:pdf
- 大小:1.12 MB
- 文档页数:29
最优化问题的约束条件处理方法在最优化问题中,约束条件是限制优化目标的条件。
对于一个最优化问题而言,约束条件的处理是至关重要的,因为它直接影响到问题的可行解集合以及最终的优化结果。
本文将介绍几种常见的约束条件处理方法,以帮助读者更好地理解和应用最优化算法。
一、等式约束条件处理方法等式约束条件是指形如f(x) = 0的约束条件,其中f(x)是一个函数。
处理等式约束条件的常用方法是拉格朗日乘子法。
该方法通过引入拉格朗日乘子,将等式约束条件转化为目标函数的一部分,从而将原问题转化为无约束问题。
具体而言,我们可以构造拉格朗日函数:L(x,λ) = f(x) + λ·g(x)其中,g(x)表示等式约束条件f(x) = 0。
通过对拉格朗日函数求导,我们可以得到原问题的最优解。
需要注意的是,拉格朗日乘子法只能处理等式约束条件,对于不等式约束条件需要使用其他方法。
二、不等式约束条件处理方法不等式约束条件是指形如g(x) ≥ 0或g(x) ≤ 0的约束条件,其中g(x)是一个函数。
处理不等式约束条件的常用方法是罚函数法和投影法。
1. 罚函数法罚函数法通过将约束条件转化为目标函数的一部分,从而将原问题转化为无约束问题。
具体而言,我们可以构造罚函数:P(x) = f(x) + ρ·h(x)其中,h(x)表示不等式约束条件g(x) ≥ 0或g(x) ≤ 0。
通过调整罚函数中的惩罚系数ρ,可以使得罚函数逼近原问题的最优解。
罚函数法的优点是简单易实现,但需要注意选择合适的惩罚系数,以避免陷入局部最优解。
2. 投影法投影法是一种迭代算法,通过不断投影到可行域上来求解约束最优化问题。
具体而言,我们首先将原问题的可行域进行投影,得到一个近似可行解,然后利用该近似可行解来更新目标函数的取值,再次进行投影,直到收敛为止。
投影法的优点是能够处理各种类型的不等式约束条件,并且收敛性良好。
三、混合约束条件处理方法混合约束条件是指同时包含等式约束条件和不等式约束条件的问题。
最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。
4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。
9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。
二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。
基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。
§2.7 约束问题的最优性条件所谓最优性条件就是最优化问题的目标函数与约束函数在最优点处满足的充要条件.这种条件对于最优化算法的终止判定和最优化理论推证都是至关重要的.最优性必要条件是指在最优点处满足哪些条件;充分条件是指满足哪些条件的点是最优点.本节仅讲述最基本的结论.一、约束最优解对约束优化问题的求解,其目的是在由约束条件所规定的可行域D 内,寻求一个目标函数值最小的点*X 及其函数值)(*X f .这样的解))(,(**X f X 称为约束最优解.约束最优点除了可能落在可行域D 内的情况外,更常常是在约束边界上或等式约束曲面上,因此它的定义及它的一阶必要条件与无约束优化问题不同.(一)约束优化问题的类型约束优化问题根据约束条件类型的不同分为三种,其数学模型如下:(1)不等式约束优化问题(IP 型)min (),..()012i f X s t g X i l ≥=,,,,. (2.16)(2)等式约束优化问题(EP 型)min ()..()012j f X s t h X j m ==,,,,,.(3)一般约束优化问题(GP 型) min ()()012..()012i j f X g X i l s t h X j m ≥=⎧⎪⎨==⎪⎩,,,,,,,,,,.(二)约束优化问题的局部解与全局解按一般约束优化问题,其可行域为 }210)(210)(|{m j X h l i X g X D j i ,,,,;,,,, ===≥=.若对某可行点*X 存在0>ε,当*X 与它邻域的点X 之距离ε<-||||*X X 时,总有)()(*X f X f <则称*X 为该约束优化问题的一个局部最优解.下面以一个简单例子说明.设有⎩⎨⎧=---=≥+=+-=.,,09)2()(02)(..)1()(min 222122221x x X h x X g t s x x X f该问题的几何图形如图2.8所示.从图上的目标函数等值线和不等式约束与等式约束的函数曲线可写出它的两个局部最优解T T X X ]05[]01[*2*1,,,=-=.这是因为在*1X 点邻域的任一满足约束的点X ,都有)()(*1X f X f >;同理,*2X 亦然.1图2.8 对某些约束优化问题,局部解可能有多个.在所有的局部最优解中,目标函数值最小的那个解称为全局最优解.在上例中,由于16)(4)(*2*1==X f X f ,,所以全局最优解为))((*1*1X f X ,. 由此可知,约束优化问题全局解一定是局部解,而局部解不一定是全局解.这与无约束优化问题是相同的.二、约束优化问题局部解的一阶必要条件对于约束,现在进一步阐明起作用约束与不起作用约束的概念.一般的约束优化问题,其约束包含不等式约束l i X g i ,,,, 210)(=≥和等式约束m j X h j ,,,, 210)(==.在可行点k X 处,如果有0)(=k i X g ,则该约束)(X g i 称可行点k X 的起作用约束;而如果有0)(>k i X g ,则该约束)(X g i 称可行点k X 的不起作用约束.对于等式约束0)(=X h j ,显然在任意可行点处的等式约束都是起作用约束. 在某个可行点k X 处,起作用约束在k X 的邻域内起到限制可行域范围的作用,而不起作用约束在k X 处的邻域内就不产生影响.因此,应把注意力集中在起作用约束上.(一)IP 型约束问题的一阶必要条件图2.9所示为具有三个不等式约束的二维最优化问题.图2.9图2.9(a )是最优点*X 在可行域内部的一种情况.在此种情形下,*X 点的全部约束函数值)(*X g i 均大于零)321(,,=i ,所以这组约束条件对其最优点*X 都不起作用.换句话说,如果除掉全部约束,其最优点也仍是同一个*X 点.因此这种约束优化问题与无约束优化问题是等价的.图2.9(b )所示的约束最优点*X 在)(1X g 的边界曲线与目标函数等值线的切点处.此时,0)(0)(0)(*3*2*1>>=X g X g X g ,,,所以)(1X g 是起作用约束,而其余的两个是不起作用约束.既然约束最优点*X 是目标函数等值线与)(1X g 边界的切点,则在*X 点处目标函数的梯度)(*X f ∇与约束函数梯度矢量)(*1X g ∇必共线,而且方向一致.若取非负乘子0*1≥λ,则在*X 处存在如下关系0)()(*1*1*=∇-∇X g X f λ.另一种情况如图2.9(c )所示.当前迭代点k X 在两约束交点上,该点目标函数的梯度矢量)(k X f ∇夹于两约束函数的梯度矢量)()(21k k X g X g ∇∇,之间.显然,在k X 点邻近的可行域内部不存在目标函数值比)(k X f 更小的可行点.因此,点k X 就是约束最优点,记作*X .由图可知,此时k X 点目标函数的梯度)(k X f ∇可表达为约束函数梯度)(1k X g ∇和)(2k X g ∇的线性组合.若用*X 代替k X 即有)()()(*2*2*1*1*X g X g X f ∇+∇=∇λλ成立,且式中的乘子*1λ和*2λ必为非负.总结以上各种情况,最优解的一阶必要条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=∇-∇∑=.,,,,210)(00)()(**21**1*i X g X g X f i i i i λλ 对于(2.16)IP 型约束问题的一阶必要条件讨论如下: 设最优点*X 位于j 个约束边界的汇交处,则这j 个约束条件组成一个起作用的约束集.按上面的分析,对于*X 点必有下式成立⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=∇-∇∑=.,,,,,,j i X g X g X f i i j i i i 210)(00)()(**1***λλ (2.17)但是在实际求解过程中,并不能预先知道最优点*X 位于哪一个或哪几个约束边界的汇交处.为此,把l 个约束全部考虑进去,并取不起作用约束的相应乘子为零,则最优解的一阶必要条件应把式(2.17)修改为⎪⎪⎪⎩⎪⎪⎪⎨⎧==≥≥=∇-∇∑=.,,,,,,,l i X g X g X g X f i i iil i i i 210)(0)(00)()(****1***λλλ (2.18)式(2.18)为IP 型问题约束最优解的一阶必要条件,它与式(2.17)等价.因为在*X 下,对于起作用约束,必有l i X g i ,,,, 210)(*==使式(2.18)中的第四式成立;对于不起作用约束,虽然0)(*>X g i 而必有0*=i λ,可见式(2.18)与式(2.17)等价.(二)EP 型约束问题的一阶必要条件图2.10所示为具有一个等式约束条件的二维化问题,其数学模型为.,0)(..)(min =X h t s X f在该问题中,等式约束曲线0)(=X h 是它的可行域,而且目标函数等值线C X f =)(与约束曲线0)(=X h 的切点*X 是该约束问题的最优解.图2.10在*X 点处,目标函数的梯度)(*X f ∇与约束函数的梯度)(*X h ∇共线.因此,在最优点*X 处一定存在一个乘子*u ,使得 0)()(***=∇-∇X h u X f成立.对于一般的n 维等式约束优化问题,其数学模型为min ()..()012j f X s t h X j m ==,,,,,.则*X 为其解的一阶必要条件为***1*()()0()012m j j j j f X u h X h X j m =⎧∇-∇=⎪⎨⎪==⎩∑,,,,,.(三)GP 型约束问题解的一阶必要条件由上述不等式约束优化与等式约束优化问题的一阶必要条件,可以推出一般约束优化问题的条件.设n 维一般约束优化问题的数学模型为⎩⎨⎧===≥,,,,,,,,,,,m j X h l i X g t s X f j i 210)(210)(..)(min (2.19)则*X 为其解的一阶必要条件应为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====≥≥=∇-∇-∇∑∑==.,,,,,,,,,,,,m j X h l i X g X g X h u X g X f j i i i i l i m j j j i i 210)(210)(0)(00)()()(*****11*****λλλ (2.20) 函数∑∑==--=l i m j j j i i X h u X g X f u X L 11)()()()(λλ,,称为关于问题(2.19)的广义拉格朗日函数,式中T l ][21λλλλ,,, =,T m u u u u ][21,,, =为拉格朗日乘子.由于引入拉格朗日函数,条件(2.20)中的第一式可写为0)(***=∇u X L X ,,λ.(四)Kuhn —T ucker 条件(简称K —T 条件)在优化实用计算中,常常需要判断某可行迭代点k X 是否可作为约束最优点*X 输出而结束迭代,或者对此输出的可行结果进行检查,观察它是否已满足约束最优解的必要条件,这种判断或检验通常借助于T K -条件进行的.对于IP 型问题,T K -条件可叙述如下:如果*X 是一个局部极小点 ,且各梯度矢量)(*X g i ∇组成线性无关的矢量系,那么必存在一组非负乘子*i λ,使得⎪⎩⎪⎨⎧===∇-∇∑=l i X g X g X f ii l i i i ,,,,,210)(0)()(**1***λλ 成立.必须指出,在一般情形下,T K -条件是判别约束极小点的一阶必要条件,但并非充分条件.只是对于凸规划问题,即对于目标函数)(X f 为凸函数,可行域为凸集的最优化问题,T K -条件才是约束最优化问题的充分条件.而且,在这种情况下的局部最优解也必为全局最优解.应用T K -条件检验某迭代点k X 是否为约束最优点的具体作法可按下述步骤进行:(1)检验k X 是否为可行点.为此需要计算k X 处的诸约束函数值)(k i X g ,若是可行点,则l i X g k i ,,,, 210)(=≥. (2)选出可行点k X 处的起作用约束.前面已求得l 个)(k i X g 值,其中等于零或相当接近零的约束就是起作用约束.把这些起作用约束重新编排成序列I i X g i ,,,, 21)(=.(3)计算k X 点目标函数的梯度)(k X f ∇和I 个起作用约束函数的梯度)(k i X g ∇.(4)按T K -条件,k X 点应满足∑==≥=∇-∇Ii i k i i k I i X g X f 1)21(00)()(,,,, λλ. (2.21)将式(2.21)中的各梯度矢量用其分量表示,则可得到i λ为变量的线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∂∂-∂∂-∂∂-∂∂=∂∂-∂∂-∂∂-∂∂=∂∂-∂∂-∂∂-∂∂.,,0)()()()(0)()()()(0)()()()(22112222211211221111n k I I n k n k n k k I I k k k k I I k k k x X g x X g x X g x X f x X g x X g x X g x X f x X g x X g x X g x X f λλλλλλλλλ 由于矢量系I i X g k i ,,,, 21)(=∇是线性无关的,所以该方程组存在唯一解.通过解此线性方程组,求得一组乘子I λλλ,,,21,若所有乘子均为非负,即I i i ,,,, 210=≥λ,则k X 即为约束最优解.否则,k X 点就不是约束最优点.例2.9 设约束优化问题⎪⎩⎪⎨⎧≥=≥=≥--=+-=.,,,0)(0)(01)(..)2()(min 132222112221x X g x X g x x X g t s x x X f 它的当前迭代点为T k X ]01[,=,试用T K -条件判别它是否为约束最优点. 解:(1)计算k X 点的诸约束函数值,,,1)(0)(011)(2221===-=k k k X g X g X gk X 是可行点.(2)k X 点起作用约束是222211)(1)(x X g x x X g =--=,.(3)求k X 点梯度.,,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∇⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=∇⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇1010)(1212)(022)2(2)()0,1(2)0,1(11)0,1(21k k k X g x X g x x X f(4)求拉格朗日乘子 按T K -条件应有 .,01012020)()()(212211=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡-=∇-∇-∇λλλλk k k X g X g X f写成线性方程组 ⎩⎨⎧=-=+-.,0022211λλλ 解得010121>=>=λλ,.乘子均为非负,故T k X ]0,1[=满足约束最优解的一阶必要条件.如图2.11所示,k X 点确为该约束优化问题的局部最优解,由于可行域是凸集,所以点k X 也是该问题的全局最优解.图2.11GP 型的约束最优化问题的T K -条件类似于IP 型约束最优化问题的T K -条件: 如果*X 是一个局部极小点 ,且各梯度矢量)(*X g i ∇和)(*X h j ∇组成线性无关的矢量系,那么必存在两组乘子*i λ和*j u ,使得。
天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg )(arg m in m axx f x f nnRx Rx -=∈∈ √2 {}{}.:)(min :)(max nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。
√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{},2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成的集合是凸集。
1 (LP)的解集是凸的. √2 对于标准型的(LP),设{}k x 由单纯形算法产生,则对{} ,2,1,0∈k ,有.1+>k T k T x c x c ×3 若*x 为(LP)的最优解,*y 为(DP)的可行解,则.**y b x c T T ≥ √4 设0x 是线性规划(LP)对应的基),,(1m P P B =的基可行解,与基变量m x x ,,1 对应的规范式中,若存在0<k σ,则线性规划(LP)没有最优解。
天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg)(arg min maxx f x f n nR x Rx -=∈∈ √2 {}{}.:)(m in :)(m ax nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯ 3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x Nε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。
√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成的集合是凸集。