自动控制原理A的Matlab实现
- 格式:ppt
- 大小:441.50 KB
- 文档页数:66
实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。
三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。
四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。
会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。
(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。
1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。
幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:电气工程及其自动化四班姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2014) 一、仿真实验内容及要求 1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。
2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; ∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。
2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5; ∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。
3)第五章 线性系统的频域分析法∙ 利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正∙ 利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;∙ 利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
《自动控制原理》Matlab求解控制系统时域响应实验一、实验目的(1)学习控制系统在阶跃信号、脉冲信号、速度函数、加速度函数等不同输入信号下的响应(2)通过计算机的仿真图形观测二阶控制系统的时域响应曲线。
(3)改变ξ和ωn,观测参数变化时对典型环节时域响应的影响。
二、实验仪器Matlab7.0,计算机三、实验原理1、求解连续系统时域响应的MATLAB函数Impulse函数计算/绘制连续系统的单位脉冲响应句法:step函数lsim函数计算/绘制连续系统在0~t时间内的对任意输入u的响应。
上述函数句法中带输出变量引用时,得到系统的时域响应数据而不直接显示响应曲线,此时需通过绘图命令plot查看响应曲线。
四、实验内容及步骤(分析:无阻尼固有频率一定,阻尼比越小,系统超调量越大,振荡越厉害)五、实验原始数据记录与数据处理当ζ=0.7,ωn取2、4、6、8、10、12时的单位阶跃响应曲线。
六、实验结果与分析讨论无阻尼固有频率一定,阻尼比越小,系统超调量越大,振荡越厉害。
阻尼比一定,无阻尼固有频率越大,系统能更快达到稳定值,响应的快速性越好七、结论控制系统在阶跃信号、脉冲信号、速度函数、加速度函数等不同输入信号下的响应不同,无阻尼固有频率一定,阻尼比越小,系统超调量越大,振荡越厉害。
阻尼比一定,无阻尼固有频率越大,系统能更快达到稳定值,响应的快速性越好。
八、实验心得体会(可略)通过这次实验我学到了很多,首先是对单位脉冲响应,单位加速度响应,单位速度响应,单位阶跃响应有了一定的认知,对matlab软件有了更深的认识,会使用的功能越来越多了,希望在今后的学习生涯中能学到更多的知识。
自动控制原理MATLAB仿真实验指导书李明编写广东工业大学自动化学院自动控制系二〇一四年九月实验项目名称:实验一线性系统的时域响应实验项目性质:MATLAB仿真实验所属课程名称:自动控制原理实验计划学时:2学时一、实验目的1.熟悉控制系统MATLAB仿真的实验环境。
2.掌握使用MATLAB进行系统时域分析的方法,研究一阶系统和二阶系统的时域响应特性。
二、实验环境装有MATLAB6.5或以上版本的PC机一台。
三、实验内容和要求1.了解和掌握MATLAB中传递函数表达式及输出时域函数表达式。
2.利用MATALB观察和分析一阶系统的阶跃响应曲线,了解一阶系统的参数:时间常数对一阶系统动态特性的影响。
3.掌握典型二阶系统模拟电路的构成方法;研究二阶系统运动规律。
研究其重要参数:阻尼比对系统动态特性的影响,分析与超调量%、过渡过程时t的关系。
间s四、实验方法1.MATLAB中建立传递函数模型的相关函数(1)有理分式降幂排列形式: tf()(2)零极点增益模型: zpk()(3)传递函数的连接方式: series(), parallel(), feedback()2.MATLAB中分析系统稳定性的相关函数(1)利用pzmap()绘制连续系统的零极点图;(2)利用roots()求分母多项式的根来确定系统的极点3.MATLAB中分析线性系统的时域响应的相关函数(1)生成特定的激励信号的函数gensig( )(2) LTI 模型任意输入的响应函数lsim( ) (3) LTI 模型的单位冲激响应函数impulse( ) (4) LTI 模型的阶跃响应函数step( )五、 实验步骤1. 线性系统的稳定性分析(1) 若线性系统的闭环传递函数为225()425G s ss,试绘制其零极点分布图,并据此判断系统的稳定性。
(2) 若线性系统的闭环传递函数为229(0.21)()( 1.29)s s G s s s s ,求出该闭环传递函 数的所有极点,并据此判断系统的稳定性。
控制系统的MATLAB 仿真1 MATLAB 简介MATLAB 是Mathworks 公司开发的一种集数值计算、符号计算和图形可视化三大基本功能于一体的功能强大、操作简单的优秀工程计算应用软件。
MATLAB 不仅可以处理代数问题和数值分析问题,而且还具有强大的图形处理及仿真模拟等功能。
从而能够很好的帮助工程师及科学家解决实际的技术问题。
MATLAB 的含义是矩阵实验室(Matrix Laboratory ),最初主要用于方便矩阵的存取,其基本元素是无需定义维数的矩阵。
经过十几年的扩充和完善,现已发展成为包含大量实用工具箱(Toolbox )的综合应用软件,不仅成为线性代数课程的标准工具,而且适合具有不同专业研究方向及工程应用需求的用户使用。
MATLAB 最重要的特点是易于扩展。
它允许用户自行建立完成指定功能的扩展MATLAB 函数(称为M 文件),从而构成适合于其它领域的工具箱,大大扩展了MATLAB 的应用范围。
目前,MATLAB 已成为国际控制界最流行的软件,控制界很多学者将自己擅长的CAD 方法用MATLAB 加以实现,出现了大量的MATLAB 配套工具箱,如控制系统工具箱(control systems toolbox ),系统识别工具箱(system identification toolbox ),鲁棒控制工具箱(robust control toolbox ),信号处理工具箱(signal processing toolbox )以及仿真环境SIMULINK 等。
(1) MATLAB 的安装本节将讨论操作系统为Microsoft Windows 环境下安装MATLAB6的过程。
将MATLAB6的安装盘放入光驱,系统将自动运行auto-run.bat 文件,进行安装;也可以执行安装盘内的setup.exe 文件启动MATLAB 的安装程序。
启动安装程序后,屏幕将显示安装MATLAB 的初始界面,根据Windows 安装程序的常识,不断单击[Next],输入正确的安装信息,具体操作过程如下:输入正确的用户注册信息码;选择接收软件公司的协议;输入用户名和公司名;选择MATLAB 组件(Toolbox );选择软件安装路径和目录;单击[Next]按钮进入正式的安装界面。
实验一Matlab仿真软件的应用一、目的与任务Matlab是电子信息工程专业课程体系中基础的实验课程。
主要目标是训练学生最基本的实验技能,通过实验,加强学生的感性认识,从而巩固和加深课堂教学内容,提高学生实际工作技能,培养科学作风,学习MATLAB下的SIMULINK仿真软件,培养学生对动态系统进行建模的分析、解决问题的能力。
二、本课程实验内容及具体要求1、系统设计过程1.根据对系统提出的技术要求,确定控制系统的总体方案,即确定系统的构成并选用和计算系统各组成部件的主要特性(如执行机构、测量部件等) 。
2.在系统方案及各组成部件已知的条件下,通过理论分析或实验方法,建立系统不变部分的数学模型,并依条件进行必要简化.3. 进行系统的静态设计,主要是确定系统的静态放大系数并进行合理分配.4.在静态设计的基础上,进行动态设计,一般应从检查系统的稳定性开始,进而选择系统的校正方案及参数.5. 进行数学仿真研究,并进一步修改和调整校正网络参数或形式,在数学仿真研究时,除了研究线性模型时的系统特性外,还应考虑系统中可能有的非线性特性,研究它们对系统性能的影响. 数学仿真可利用MATLAB软件实现。
6. 确定校正网络的工程实现方法.超前校正装置具有相位超前和幅值扩张的特性,能提供微分控制功能,主要改善系统的动态性能,滞后校正装置具有相位滞后和幅值压缩的特性, 能提供积分控制功能, 主要改善系统的稳态性能,也可用于改善系统的平稳性,但响应的速度受到影响. 滞后--超前校正兼具有滞后校正和超前校正的特性,可全面改善系统的性能.对于校正元件:由于运算放大器性能高(高输入阻抗,输出阻抗低, 高增益等),参数调整方便,价格便宜,故串联校正几乎全部采用有源校正装置.2、MATLAB简介MATLAB 语言是当今国际上科学界(尤其是自动控制领域) 最具影响力、也是最有活力的软件。
它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。
自动控制原理matlab
自动控制原理是一门重要的工程学科,旨在实现通过系统反馈控制来达成特定目标的控制系统。
Matlab是一个专业的数学计算软件,广泛应用于各种领域。
自动控制原理与Matlab的结合,可以方便地进行系统建模、控制系统设计、仿真与实现等工作。
在自动控制原理的应用中,系统建模是一个重要的工作。
建模的主要目的是描述系统行为和性质,并在此基础上进行控制器设计。
在建模过程中,需要使用数学模型来描述系统的动态行为,如传递函数、状态空间模型等。
Matlab作为一款强大的数学计算软件,提供了大量的工具来支持系统建模,如控制系统工具箱、系统识别工具箱等。
在控制器设计过程中,经典的控制方法主要包括PID控制、根轨迹设计、频率响应设计等。
这些方法需要根据系统特性进行参数调整,以达到预期的控制效果。
在Matlab中,可以通过调用控制系统工具箱中的函数来方便进行控制器设计和参数调整。
此外,Matlab还提供了仿真工具,可以对系统进行仿真,从而验证控制器的性能和稳定性。
在实现阶段,Matlab还提供了一些特定硬件的接口,如Arduino、Raspberry Pi等,可以实现控制器的实际控制。
通过硬件接口与Matlab的结合,可以实现系统在物理环境中的实时控制,并进行实验
验证。
综上所述,自动控制原理与Matlab的结合,可以方便地进行系统建模、控制器设计、仿真与实现等工作。
在工程实际应用中,这种结合能够大大提高工作效率和控制系统稳定性。
因此,自动控制原理matlab是工程学科中不可缺少的重要组合之一。
《自动控制原理》Matlab求解控制系统数学模型实验一、实验目的(1)熟练运用matlab软件,求解控制系统数学模型(2)掌握传递函数在matlab中的表达方法(3)掌握matlab求解拉氏变换和反变换(4)掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器装配Matlab7.0的计算机三、实验原理传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den)其中,sys为系统传递函数。
如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。
MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。
四、实验内容及步骤2、用MATLAB展求拉氏变换和反变换在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 1263、连续系统稳定性分析的MATLAB函数roots函数:求多项式的根句法: r=roots(p)其中,r为由多项式根组成的列向量。
➢pole函数:计算系统的极点句法: p=pole(sys)其中,p为由极点组成的列向量zero函数:计算系统的零点句法: r=zero(sys) 或 [z, k]=zero(sys)其中,r为由多项式根组成的列向量。
k为零极点增益模型之增益pzmap函数:绘制零极点分布图句法: pzmap(sys) 或 [p,z] = pzmap(sys)五、实验原始数据记录与数据处理在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 126六、实验结果与分析讨论七、结论掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型.八、实验心得体会(可略)通过该试验我们熟悉 MATLAB 实验环境,掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型:完成实验的范例题和自我实践,并记录结果;编写M文件程序,完成简单连接的模型等效传递函数,并求出相应的零极点。
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。