主要内容有序对与笛卡儿积的定义与性质二元关系、从A到B
- 格式:ppt
- 大小:932.50 KB
- 文档页数:76
1二元关系1. 有序对与笛卡尔积定义1.1 两个对象x , y 组成的满足如下性质的二元组(x , y ):(x , y )=(u,v ) 当且仅当x=u , y=v其中x 称为第一元素,y 称为第二元素。
定义1.2 集合A 和B 的笛卡尔积定义为{(,)|,}A B x y x A y B ⨯=∈∈特别地,若A 或者B 是空集,则A ×B 是空集。
例:注意:笛卡尔积不满足结合律和交换律。
2. 二元关系定义2.1 若A 和B 是集合, 则A ×B 的任何子集R 称为从A 到B 的二元关系,简称关系。
若(,)x y R ∈,则称有序对(x , y )满足关系R ,一般记为xRy .定义域dom(R )=值域ran(R )=集合C 在R 下的像:R [C]=例2.2 设集合R ={(a,1),(a,2), (b,2),(b,3)},则该集合可视为从{a,b}到{1,2,3}的二元关系,其定义域和值域为dom(R )={a,b}ran(R )={1,2,3}定义2.3(关系矩阵)M R 是由真值组成的0-1矩阵。
例2.4关系图:G R 是一个二部图(bipartite )。
定义2.4 若R 是从集合A 到A 的二元关系,即R A A ⊆⨯,则称R 是A 上的二元关系。
定义2.5 集合A 上的三种特殊关系:(1) 空关系:∅ 其矩阵是0方阵。
(2) 全关系:E A =A ×A 其矩阵是全1方阵。
(3) 恒等关系:{(,)|}A I x x x A =∈,其矩阵是单位矩阵。
23. 二元关系的几种运算我们考虑对于二元关系的如下运算,即并、逆、复合、方幂和限制。
定理3.1 设R ,Q 是从A 到B 的二元关系,则R Q R Q M M M =+U注意:其中的加法是真值加法,即逻辑或,即0+0=0, 1+1=1,1+0=1,0+1=1证明: 证毕定义3.2(二元关系的逆)设R 是从A 到B 的二元关系。
第七章二元关系§1 有序对与笛卡尔积定义两个元素x与y按一定顺序排列构成的二元组称为一个有序对(或序偶),记为〈x,y〉,称x 为第一元素,y为第二元素。
性质 (1) ,,x y x y y x≠⇒〈〉≠〈〉(2) ,,x y u v x u y v〈〉=〈〉⇔=∧=例25 2,45,242xx x yx y+=⎧〈+〉=〈+〉⇒⎨=+⎩3,2x y⇒==−定义:设A、B为两个集合,称{},x y x A y B〈〉∈∧∈为集合A与B的笛卡尔积,记为A×B。
性质:(1) ,A A×=×=∅∅∅∅(2)笛卡尔积不满足交换律与结合律(3)笛卡尔积对并、交满足分配律×=××∪∪A B C A B A C()()()×=××∪∪B C A B A C A()()()×=××∩∩A B C A B A C()()()×=××∩∩B C A B A C A()()()(4)A C B D A B C D⊆∧⊆⇒×⊆×例A={1,2},求P(A)×A。
§2 二元关系定义设R是集合,若R=∅或A≠∅且A中元素均为有序对,则称R为一个二元关系。
若〈x,y〉∈R,则称x与y有关系R,记为xRy。
定义:设A与B是两个集合,由A×B的子集定义的二元关系称为A到B的二元关系;当A=B 时,称之为A上的二元关系。
例 设A ={0,1},则R 1={〈0,0〉,〈1,1〉},R 2=∅, R 3=A ×A 都是A 上的二元关系。
例 设A 是n 元集,则A ×A 有n 2个元素,于是A ×A 有22n 个子集,由此得A 上有22n 个二元关系。
例 设A 是任一集合① 称∅是A 上的空关系 ② 称A ×A 是A 上的全域关系③ 称{},A I x x x A =〈〉∈是A 上的恒等关系。
集合的笛卡尔积与二元关系一、集合的笛卡尔积1.定义:集合的笛卡尔积,又称集合的直积,是两个集合的所有有序对的集合。
如果集合A 和集合B是非空集,则集合A与集合B的笛卡尔积记为A×B,定义如下:A×B={(a,b)|a∈A,b∈B}其中,(a,b)是有序对,a是第一个元素,b是第二个元素。
2.性质:笛卡尔积具有以下性质:•交换律:A×B=B×A•结合律:对于集合A、B、C,有(A×B)×C=A×(B×C)•分配律:对于集合A、B、C,有A×(B∪C)=(A×B)∪(A×C)•笛卡尔积的基数:对于非空集A和B,有|A×B|=|A||B|二、二元关系1.定义:二元关系是两个集合之间的关系。
如果集合A和集合B是非空集,则集合A与集合B上的二元关系是集合A×B的子集。
2.性质:二元关系具有以下性质:•反身性:对于集合A中的每个元素a,有(a,a)∈R•对称性:对于集合A中的每个元素a和b,如果有(a,b)∈R,则(b,a)∈R •传递性:对于集合A中的每个元素a、b和c,如果有(a,b)∈R和(b,c)∈R,则(a,c)∈R3.二元关系的表示:二元关系可以用多种方式表示,包括:•箭头图:使用箭头来表示二元关系中的元素。
箭头从第一个元素指向第二个元素,表示这两个元素之间存在关系。
•矩阵表示:使用矩阵来表示二元关系中的元素。
矩阵的每一行和每一列分别对应集合A和集合B的元素,矩阵中的元素表示这两个元素之间是否存在关系。
•函数表示:使用函数来表示二元关系中的元素。
函数从集合A映射到集合B,函数的输出值表示集合A中的元素与集合B中的元素之间的关系。
三、集合的笛卡尔积与二元关系1.笛卡尔积与二元关系的关系:笛卡尔积与二元关系之间存在着密切的关系。
二元关系是笛卡尔积的子集,笛卡尔积是二元关系的超集。
《离散数学》教学大纲(Discrete Mathematics)适用专业:电子信息类课程类别:学科基础课课程学时:48课程学分:3.0先修课程:高等数学、线性代数等一、课程简介离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是计算机科学与技术的支撑学科。
它在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能与机器人、数据库、网络、计算机图形学、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握离散结构的描述工具和处理方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
二、教学目的与任务离散数学是一门培养学生缜密思维、严格推理,具有综合归纳分析能力的课程。
通过本课程的学习,使学生有一定的严格逻辑推理与抽象思维能力,掌握离散量的处理及运算技能,能够将离散数学应用到解决计算机技术中的实际问题中。
不仅能为学生奠定计算机科学的专业基础,并且能为将后续课程的学习及将来开发软、硬件技术及研究、应用提供有力的工具。
三、课程内容第1章命题逻辑的基本概念1.1命题与联结词1.2命题公式及其赋值第2章命题逻辑等值演算2.1等值式2.2析取范式与合取范式* 2.3联结词的完备集* 2.4可满足性问题与消解法第3章命题逻辑的推理理论3.1推理的形式结构3.2自然推理系统P3.3消解证明法第4章一阶逻辑基本概念4.1一阶逻辑命题符号化4.2一阶逻辑公式及其解释第5章一阶逻辑等值演算与推理5.1一阶逻辑等值式与置换规则5.2一阶逻辑前束范式* 5.3一阶逻辑的推理理论第6章集合代数6.1集合的基本概念6.2集合的运算6.3有穷集的计数6.4集合恒等式第7章二元关系7.1有序对与笛卡儿积7.2二元关系7.3关系的运算7.4关系的性质7.5关系的闭包7.6等价关系与划分7.7偏序关系第8章函数8.1函数的定义与性质8.2函数的复合与反函数* 8.3双射函数与集合的基数* 8.4一个电话系统的描述实例第14章图的基本概念14.1图14.2通路与回路14.3图的连通性14.4图的矩阵表示* 14.5图的运算第15章欧拉图与哈密顿图15.1欧拉图15.2哈密顿图15.3最短路问题、中国邮递员问题与货郎担问题第16章树16.1无向树及其性质16.2生成树16.3根树及其应用三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明该课程教学方式主要有:课堂教学、交互学习、课后作业。