圆内接四边形的性质与判定定理(选修4-1)
- 格式:pptx
- 大小:151.08 KB
- 文档页数:11
高中数学圆内接四边形的性质与判定定理教案选修4-1 几何证明是培养学生逻辑推理能力的最好载体,迄今为止还没有其他课程能够代替几何的这种地位,几何证明过程包含着大量的直观、想象、探究和发现的因素,这对培养学生的创新意识也非常有利.本讲主要证明一些反映圆与直线关系的重要定理,提高学生几何直观能力和综合运用几何方法解决问题的能力.研究近几年的新课标高考试卷,不难发现,高考对本部分内容的考查大多集中在与圆相关的性质定理和相似三角形等知识上,难度不大,一根据新课程改革考纲的要求,这一讲我们计划安排4 课时复习,具体安排如下:第一节:圆周角定理一课时.这节课的重点是帮助学生复习圆周角定理,会用圆周角定理,并会借助圆周角定理证明角相等,三角形相似等问题.第二节:圆内接四边形的性质与判定定理一课时.这节课的重点是帮助学生复习圆内接四边形的性质与判定定理,会灵活运用定理、证明四点共圆问题及解决角相等的问题.第三节:圆的切线的性质及判定定理、弦切角的性质一课时.这节课主要帮助学生通过复习圆的切线的性质及判定定理、弦切角的性质,熟练掌握判定切线的方法.已知圆的切线时,第一要考虑过切点和圆心连线成直角,第二应考虑弦切角定理,第三涉及线段成比例或线段的积时要考虑切割线定理.第四节:与圆有关的比例线段一课时.这节课主要帮助学生复习相交弦定理、切割线定理、割线定理、切线长定理,会结合三角形及其相似等知识来证明线段相等或等比例线段问题.复习时,我们主要是通过知识梳理→开心自测→金题精讲→知能演练→课堂小结→能力锤炼等几个环节进行的.由于湖北高考数学试题选考几何证明专题,从近几年新课标高考试题中不难看出,以圆为载体的证明题或计算题出现的频率较高,所以我们认为:对直线与圆的位置关系复习是重中之重,而圆内接四边形的性质与判定定理是该讲的核内知识,它起到了承前启后的作用,它之前有圆周角定理,它之后还有圆的切线的性质及判定定理、弦切角的性质、相交弦定理、切割线定理、切线长定理等.另外,认真落实教材所讲的知识,重视教材中的例题和习题,深研教材,发掘教材中的内涵是提高几何专题复习效率的一种有效途径.第二节《圆内接四边形的性质与判定定理》说课稿一、说教材(一)教材分析圆内接四边形的性质与判定定理是选修4-1第二讲的核心内容,也是新课标高考试题中的常见考点.以圆为载体的相关问题是新高考命题的潜规则,这是因为:1.根据四点共圆这个条件,可以构造出直角三角形,容易设置高考题.2.四点共圆时,可充分利用外角等于它的内对角、对角互补、相交弦、切割线、割线定理等证明等式.所以应高度重视对这一节教材中的三个定理和一个推论的复习,关键是要让学生懂得定理的应用.(二)教学目标知识目标1.了解圆内接多边形和多边形外接圆的概念;掌握圆内接四边形的概念及其性质定理;2.掌握圆内接四边形判定定理及其推论;熟练运用圆内接四边形的性质与判定定理进行计算和证明.能力目标1.通过对圆内接四边形的概念及其性质定理的复习,培养学生应用定理解决问题的能力;2.通过复习圆内接四边形判定定理及其推论,促使学生会用定理判定四点共圆;3.通过定理的应用,培养学生逻辑推理能力.情感目标1.开心自测引入复习,激发学生观察、分析、探求的学习激情,强化学生参与意识及主体作用.2.通过证明方法的探求,培养学生勤于思考的习惯,并促进学生辩证思维的能力和严谨的治学精神和态度,渗透教学内容中普遍存在的相互联系、相互转化的观点.(三)教学重难点1.重点圆内接四边形的性质与判定定理.2.难点定理的灵活应用.二、说教法在课堂教学过程中,要充分调动学生学习的主动性.通过学生自己动手操作、探索,获得对知识的深刻理解,这符合中学生好动厌静的心理特点,能更好地吸引学生的注意力.要把课堂还给学生,多注意倾听,理顺学生思维过程,引导学生合作探究.借助学生的嘴来说,借助学生的脑来想.自己要注意选用示范性强、有一定梯度的2—3道例题进行重点分析、讲评,要善于把自己对于问题的理解转化为学生的理解,而不是直接强加给学生.要培养学生自己“找路”的能力,在学生迷路时及时给予点拨,让学生在主动参与学习的过程中真正的理解.针对本节课的复习目标,主要以下面几个环节进行:知识梳理→开心自测→金题精讲→知能演练→课堂小结→能力锤炼.三、说学法因为这节课的内容学生在初中已经接触过,内容也比较熟悉,但是定理如何灵活地在解题中运用还有一些欠缺,遇到题目时往往无从下手,所以在复习过程中要善于引导学生运用目标分析意识来解决问题.这节课以解决问题为主线展开,主要采用“探究式学习法”,引导学生发挥主观能动性,主动探索新知.四、说教学过程知识梳理圆内接四边形的性质定理:定理1 圆内接四边形的对角互补.定理2 圆内接四边形的外角等于它的内角的对角圆内接四边形的判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论: 如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.设计意图:通过梳理知识,使学生明确本节所复习的内容,熟练掌握本节的三个定理和一个推论.开心自测1.如图1,⊙O的内接四边形BCED,延长ED,CB交于点A,若BD⊥AE,AB=4,BC=2,AD=3,则DE=_______;CE=__________.2.如图2,AD、BE是△ABC的两条高,求证:∠CED=∠ABC.1.选题立意:设计开心自测题,主要体现课堂中的自主学习,目的是激发学生的学习兴趣.其中第1题的立意是:考查圆内接四边形性质定理及割线定理的灵活运用.第2题的立意是:考查灵活运用圆内接四边形性质定理证明角相等问题.2.处理过程:让学生独立完成这两道自测题,并分成两组,每一组推荐一名同学说出解题思路和答案.金题精讲例1 (2011·课标全国卷)如图3,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于方程x2-14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.1.选题立意:本题考查三角形相似、四点共圆的基本知识与方法,考查推理论证能力及运算求解能力.2.处理过程:第(1)小题是证明四点共圆问题,那么要证四点共圆,我们有那些方法呢?通过提问让学生在大脑中搜索相关知识,寻找最佳解题方案.这样问题可以转化为证明Rt△ADE与Rt△ABC相似,从而利用本节的推论来证明四点共圆.第(2)小题是计算问题,关键是引导学生如何确定圆心的位置.根据圆的性质可知,圆心即为该圆弦的中垂线的交点,问题就转化为在矩形AFHG中求圆的半径了.3.老师点评:证明四点共圆主要是利用圆内接四边形的判定定理或其推论.解题时,关键是寻找四边形的对角互补或其一外角与它的内角的对角相等.金题精讲例2(2011·辽宁卷)如图4,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明A,B,G,F四点共圆.1.选题立意:本题考查平面几何的证明问题,主要涉及两条直线平行以及四点共圆的判定.2.处理过程:第(1)小题如何利用已知条件来证明CD∥AB?让学生去“找路”,证平行问题主要是运用平行线的判定定理.本题中A、B、C、D四点共圆这个条件的正确运用是证明该问题的关键.第(2)小题是证明四点共圆问题,引导学生作出辅助线,连接AF、BG得四边形ABGF,如何运用四点共圆的判定定理呢?此时,把问题交给学生去探究.要证∠AFD+∠ABC=180°,即证∠FAB=∠GBA.3.老师点评:灵活运用圆内接四边形性质与判定定理是解题的关键.例3 (2009年·宁夏)如图5,已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)证明:B,D,H,E四点共圆;(2)证明:CE平分∠DEF.1.选题立意:本题考查四点共圆的判定方法及利用四点共圆的性质证明角相等问题.2.处理过程:第(1)小题只要证明四边形BDHE的内对角互补即可,但该小题的的难点恰在于如何证明内对角互补.这时可以分组讨论,充分调动学生的学习积极性,只要学生能想的就让学生想,学生能说的让学生说,学生能做的让学生做.第(2)小题实际上是证明角相等问题,请一个学生用分析法来寻求证明思路.当学生“找路”有困难时,及时正确引导,同时注意引导方式.3.老师点评:解答平面几何问题时不仅要用到几何定理,而且还要用到各种不同的推理形式,推理策略,有时还要使用“添加辅助线”之类的技巧性较高的方法.在几何学习中,除了运用逻辑推理外,还要应用观察、比较、类比、直觉、猜想、归纳、概括等合情推理.知能演练如图6,已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC⌒上的点(不与A,C重合),延长BD到E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+ 3 ,求△ABC外接圆的面积.设计意图:检验所学习的知识,从而熟练掌握本节的重点,形成相应的数学能力.能力锤炼:1. 如图7,在Rt △ABC 中,∠BCA=90°,以BC 为直径的⊙O 交AB 于E 点,D 为AC 的中点,连结BD 交⊙O 于F 点.求证:BC BE = CFEF .2. 如图8,AB 为⊙O 的弦,CD 切⊙O 于P,AC ⊥CD 于C,BD ⊥DC 于D,PQ ⊥AB 于Q,求证:PQ 2=AC ·BD.3. 如图9,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B,C 两点,圆心O 在∠PAC 的内部,点M 是BC 的中点. (1)证明:A,P,O,M 四点共圆; (2)求∠OAM+∠APM 的大小.4.如图10,已知四边形ABCD 内接于圆,延长AB 和DC 相交于E,EG 平分∠E,且与BC 、AD 分别相交于F 、G.求证:∠CFG=∠DGF.5.如图11,已知PA 、PB 是圆O 的切线,A 、B 分别是切点,C 为圆O 上不与A 、B 重合的另一点,课堂小结 1.本节课我们复习了圆内接四边形的性质与判定定理.2.通过开心自测、金题精讲和知能演练,使我们初步掌握了如何灵活运用圆内接四边形的性质与判定定理解决问题.3.这节课我们运用了数形结合、转化与化归等数学思想方法.设计意图:课堂小结使学生深切体会到本节课的主要内容和思想方法,从而实现对圆内接四边形的性质与判定定理认识的再次深化.能力锤炼能力锤炼题见表下面.设计意图:课后检测,巩固本节知识点,深化相应的数学能力.若∠ACB=120°,求∠APB的大小.。
21_圆内接四边形的性质及判定定理第一讲选修4-1)1.圆内接四边形的性质(1)圆的内接四边形对角互补.如图:四边形ABCD内接于⊙O,则有:∠A+∠C=180°,∠B+∠D=180°.(2)圆内接四边形的外角等于它的内角的对角.如图:∠CBE是圆内接四边形ABCD的一外角,则有:∠CBE=∠D.2.圆内接四边形的判定(1)判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.(2)推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.[小问题·大思维]1.所有的三角形都有外接圆吗?所有的四边形是否都有外接圆?提示:所有的三角形都有外接圆,但四边形并不一定有外接圆.2.如果一个平行四边形有外接圆,它是矩形吗?提示:因为平行四边形的对角相等,圆内接四边形的对角和为180°,所以该平行四边形一定是矩形.3.判断下列各命题是否正确.(1)任意三角形都有一个外接圆,但可能不只一个;(2)矩形有唯一的外接圆;(3)菱形有外接圆;(4)正多边形有外接圆.解:(1)错误,任意三角形有唯一的外接圆;(2)正确,因为矩形对角线的交点到各顶点的距离相等;(3)错误,只有当菱形是正方形时才有外接圆;(4)正确,因为正多边形的中心到各顶点的距离相等.[例1]如图所示,已知四边形ABCD内接于圆,延长AB和DC相交于E,EG平分∠BEC,且与BC、AD分别相交于F、G.求证:∠CFG=∠DGF.[思路点拨]已知四边形ABCD内接于圆,自然想到圆内接四边形的性质定理,即∠BCE=∠BAD,又EG平分∠BEC,故△CFE∽△AGE.[证明]因为四边形ABCD是圆内接四边形,所以∠ECF=∠EAG.又因为EG平分∠BEC,即∠CEF=∠AEG,所以△EFC∽△EGA.所以∠EFC=∠EGA.而∠DGF=180°-∠EGA,∠CFG=180°-∠EFC,所以∠CFG=∠DGF.圆内接四边形的性质即对角互补,一个外角等于其内角的对角,可用来作为三角形相似的条件,从而证明一些比例式的成立或证明某些等量关系.[例2]如图,在△ABC中,E,D,F分别为AB,BC,AC的中点,且AP⊥BC于P.求证:E、D、P、F四点共圆.[思路点拨]可先连接PF,构造四边形EDPF的外角∠FPC,证明∠FPC=∠C,再证明∠FPC=∠FED即可.[证明]如图,连接PF,∵AP⊥BC,F为AC的中点,1∴PF=AC.21∵FC=AC,2∴PF=FC.∴∠FPC=∠C.∵E、F、D分别为AB,AC,BC 的中点.∴EF∥CD,ED∥FC.∴四边形EDCF为平行四边形,∴∠FED=∠C.∴∠FPC=∠FED.∴E、D、P、F四点共圆.证明四点共圆的方法常有:①如果四点与一定点等距离,那么这四点共圆;②如果四边形的一组对角互补,那么这个四边形的四个顶点共圆;③如果四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆;④如果两个三角形有公共边,公共边所对的角相等且在公共边的同侧,那么这两个三角形的四个顶点共圆.[例3]如图,已知⊙O1与⊙O2相交于A、B两点,P是⊙O1上一点,PA、PB的延长线分别交⊙O2于点D、C,⊙O1的直径PE的延长线交CD于点M.求证:PM⊥CD.[思路点拨]⊙O1与⊙O2相交,考虑连接两交点A、B 得公共弦AB;PE是⊙O1的直径,考虑连接AE或BE得90°的圆周角;要证PM⊥CD,再考虑证角相等.[证明]如图,分别连接AB,AE,∵A、B、C、D四点共圆,∴∠ABP=∠D.∵A、E、B、P四点共圆,∴∠ABP=∠AEP.∴∠AEP=∠D.∴A、E、M、D四点共圆.∴∠PMC=∠DAE.∵PE是⊙O1的直径,∴EA⊥PA.∴∠PMC=∠DAE=90°.∴PM⊥CD.此类问题综合性强,知识点丰富,解决的办法大多是先判断四点共圆,然后利用圆内接四边形的性质证明或求得某些结论成立.1.圆内接四边形ABCD中,已知∠A、∠B、∠C的度数比为4∶3∶5,求四边形各角的度数.2.已知:如图,四边形ABCD内接于圆,延长AD,BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=3cm,AD=2cm,求DE的长.1.圆内接四边形ABCD中,已知∠A、∠B、∠C的度数比为4∶3∶5,求四边形各角的度数.解:设∠A、∠B、∠C的度数分别为4某、3某、5某,则由∠A+∠C=180°,可得4某+5某=180°.∴某=20°.∴∠A=4某20°=80°,∠B=3某20°=60°,∠C=5某20°=100°,∠D=180°-∠B=120°.2.已知:如图,四边形ABCD内接于圆,延长AD,BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=3cm,AD=2cm,求DE的长.解:(1)证明:∵∠ABC=∠2,∠2=∠1=∠3,∠4=∠3,∴∠ABC=∠4.∴AB=AC.(2)∵∠3=∠4 =∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB.ABAD∴=.AEAB∵AB=AC=3,AD=2,AB29∴AE==.AD295∴DE=-2=(cm).225.如图,P点是等边△ABC外接圆的BC上一点,CP的延长线和AB的延长线交于点D,连接BP.求证:(1)∠D=∠CBP;(2)AC2=CP·CD.6.在锐角三角形ABC中,AD是BC边上的高,DE⊥AB,DF⊥AC,E、F是垂足.求证:E、B、C、F四点共圆.。
二圆内接四边形的性质与判定定理1.了解圆内接四边形的概念.课标解读2.掌握圆内接四边形的性质、判定定理及其推论,并能解决有关问题.图2-2-11.圆内接四边形的性质定理(1)定理1:圆的内接四边形的对角互补.如图2-2-1:四边形ABCD内接于⊙O,则有:∠A+∠C=180°,∠B+∠D=180°.图2-2-2(2)定理2:圆内接四边形的外角等于它的内角的对角.如图2-2-2:∠CBE是圆内接四边形ABCD的一外角,则有:∠CBE=∠D.2.圆内接四边形的判定定理及其推论(1)判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.(2)推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.1.“内接于圆的平行四边形、菱形、梯形分别是矩形、正方形、等腰梯形”这种说法正确吗?【提示】 正确.根据圆内接四边形的对角互补可证. 2.圆内接四边形的性质定理和它的判定定理及推论有何关系?【提示】 性质定理1和判定定理互为逆定理,性质定理2和判定定理的推论互为逆定理.圆内接四边形的性质图2-2-3如图2-2-3,在Rt △ABC 中,∠ACB =90°,在AB 上截取PA =AC ,以PC 为直径的圆分别交AB 、BC 、AC 于D 、E 、F .求证:PA PB =DADP. 【思路探究】 先利用PC 是圆的直径,得到PF ∥BC ,再利用圆内接四边形的性质,得到DF ∥PC ,最后利用平行线分线段成比例证明结论.【自主解答】 连接DF 、PF . ∵PC 是直径, ∴PF ⊥AC . ∵BC ⊥AC , ∴PF ∥BC ,∴PA PB =FAFC.∵四边形PCFD 内接于⊙O ,∴∠ADF=∠ACP,∵AP=AC,∴∠APC=∠ACP.∴∠ADF=∠APC.∴DF∥PC,∴DADP=FAFC,∴PAPB=DADP.1.在本题的证明过程中,都是利用角相等证明了两直线平行,然后利用直线平行,得到比例式相等.2.圆内接四边形的性质即对角互补,一个外角等于其内对角,可用来作为三角形相似或两直线平行的条件,从而证明一些比例式成立或证明某些等量关系.如图2-2-4所示,已知四边形ABCD内接于⊙O,延长AB和DC相交于点E,EG平分∠AED,且与BC、AD分别交于F、G.图2-2-4求证:∠CFG=∠DGF.【证明】∵四边形ABCD内接于⊙O,∴∠EBF=∠ADE.又EF是∠AED的平分线,则∠BEF=∠DEG,∴△EBF∽△EDG.∴∠EFB=∠DGF.又∵∠EFB=∠CFG,∴∠CFG=∠DGF.圆内接四边形的判定图2-2-5如图2-2-5所示,在△ABC中,AD=DB,DF⊥AB交AC于F,AE=EC,EG⊥AC 交AB于G,求证:(1)D、E、F、G四点共圆;(2)G、B、C、F四点共圆.【思路探究】(1)要证D、E、F、G四点共圆,只需找到过这四点的外接圆的圆心,证明圆心到四点的距离相等,可取GF的中点H,证点H即为圆心.(2)要证G、B、C、F四点共圆,只需证∠B=∠AFG(或∠C=∠AGF),由D、E为中点,可知DE∥BC,∠B=∠ADE,故只需证∠ADE=∠AFG,由D、E、F、G四点共圆可得.【自主解答】(1)如图,连接GF,取GF的中点H.∵DF⊥AB,EG⊥AC,∴△DGF,△EGF 都是直角三角形.又∵点H是GF的中点,∴点H到D、E、F、G的距离相等,∴点H是过D、E、F、G的外接圆的圆心,∴D、E、F、G四点共圆.(2)连接DE.由(1)知D、G、F、E四点共圆.由四点共圆的性质定理的推论,得∠ADE=∠AFG.∵AD=DB,AE=EC,∴D是AB的中点,E是AC的中点,∴DE∥BC,∴∠ADE=∠B,∴∠AFG=∠B,∴G、B、C、F四点共圆.1.解答本题(1)是利用到定点的距离等于定长的点在同一圆上来证明的,本题(2)利用了圆内接四边形判定定理的推论来证明的.2.判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆;(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆;(3)如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆;(4)与线段两端点连线夹角相等(或互补)的点连同该线段两端点在内共圆.图2-2-6如图2-2-6,在△ABC中,E,D,F分别为AB,BC,AC的中点,且AP⊥BC于P,求证:E,D,P,F四点共圆.【证明】∵AP⊥BC,F为AC的中点,∴PF是Rt△APC斜边上的中线,∴PF=FC,∴∠FPC=∠C,∵E、F、D分别为AB、AC、BC的中点,∴EF∥CD,ED∥FC,∴四边形EDCF为平行四边形,∴∠FED=∠C,∴∠FPC=∠FED,∴E、D、P、F四点共圆.圆内接四边形的综合应用如图2-2-7,已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至E.图2-2-7(1)求证:AD的延长线DF平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+3,求△ABC外接圆的面积.【思路探究】(1)利用同弧所对的圆周角相等及圆内接四边形的性质定理求解.(2)外接圆的圆心在BC边的高上,设出外接圆的半径为r,用r表示BC边上的高.【自主解答】(1)证明:如图,∵A、B、C、D四点共圆,∴∠CDF=∠ABC.又AB=AC,∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,又由对顶角相等得∠EDF=∠ADB,故∠EDF=∠CDF,即AD的延长线DF平分∠CDE.(2)设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°.∴∠OCH=60°.设圆半径为r,则r+32r=2+3,得r=2,外接圆的面积为4π.1.解答本题(2)时关键是找出外接圆的圆心位置,然后用外接圆的半径表示出BC边上的高.2.此类问题综合性较强,考查知识点较为丰富,往往涉及圆内接四边形的判定与性质的证明和应用,最终得到某些结论的成立.如图2-2-8所示,AB、CD都是圆的弦,且AB∥CD,F为圆上一点,延长FD、AB使它们交于点E.求证:AE·AC=AF·DE.图2-2-8【证明】如图,连接BD,∵AB∥CD,∴BD=AC.∵A、B、D、F四点共圆,∴∠EBD=∠F.又∵∠DEB=∠FEA,∴△EBD∽△EFA.∴DEAE=BDAF.∴DEAE=ACAF,即AE·AC=AF·DE.(教材第30页习题2.2第3题)如图2-2-9,已知四边形ABCD内接于圆,延长AB和DC相交于E,EG平分∠E,且与BC、AD分别相交于F、G,求证:∠CFG=∠DGF.图2-2-9(2013·广州调研)四边形ABCD内接于⊙O,BC是直径,AB=40°,则∠D=__________.【命题意图】本题主要考查圆内接四边形的性质定理及圆周角定理的应用.【解析】如图连接AC.∵AB=40°.BC是⊙O的直径,∴∠ACB=20°,∠BAC=90°∴∠B=180°-∠BAC-∠ACB=70°∴∠D=180°-∠B=110°.【答案】110°1.四边形ABCD内接于圆O,延长AB到E,∠ADC=32°,则∠CBE等于( )A.32°B.58°C.122° D.148°【解析】根据圆内接四边形的外角等于它的内角的对角知,∠CBE=32°.【答案】 A2.下列说法正确的有( )①圆的内接四边形的任何一个外角等于它的内角的对角;②圆内接四边形的对角相等;③圆内接四边形不能是梯形;④在圆的内部的四边形叫圆内接四边形.A.0个 B.1个C.2个 D.3个【解析】①是圆内接四边形的性质定理2,正确.由于圆内接四边形的对角互补,不一定相等,②不正确.圆内接四边形可以是梯形,③不正确;顶点在同一个圆上的四边形叫圆内接四边形.④不正确.【答案】 B3.如图2-2-10,两圆相交于A,B,过A的直线交两圆于点C,D,过B的直线交两圆于点E,F,连CE,DF,若∠C=115°,则∠D=________.图2-2-10【解析】如图,连接AB,∵∠C=115°,∴∠ABE=65°,∴∠D=∠ABE=65°.【答案】65°4.四边形ABCD内接于圆O,∠A∶∠B∶∠C=2∶3∶7,则∠D=________.【解析】∵圆内接四边形的对角互补,∴∠A+∠C=180°.又∵∠A∶∠B∶∠C=2∶3∶7,∴∠A=40°,∠B=60°,∠C=140°.又∠B+∠D=180°,∴∠D=180°-60°=120°.【答案】120°一、选择题1.如图2-2-11,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于( )图2-2-11A.120°B.136°C.144°D.150°【解析】设∠BCD=3x,∠ECD=2x,∴5x=180°,∴x=36°,即∠BCD=108°,∠ECD=72°.∴∠BAD=72°,∴∠BOD=2∠BAD=144°.【答案】 C2.如图2-2-12,在⊙O中,弦AB的长等于半径,∠DAE=80°,则∠ACD的度数为( )图2-2-12A .30° B.45° C .50° D.60° 【解析】 连接OA ,OB ,∵∠BCD =∠DAE =80°,∠AOB =60°, ∴∠BCA =12∠AOB =30°,∴∠ACD =∠BCD -∠BCA =80°-30°=50°. 【答案】 C图2-2-133.如图2-2-13所示,圆内接四边形ABCD 的一组对边AD 、BC 的延长线相交于点P ,对角线AC 和BD 相交于点Q ,则图中共有相似三角形的对数为( )A .4B .3C .2D .1【解析】 利用圆周角和圆内接四边形的性质定理,可得△PCD ∽△PAB ,△QCD ∽△QBA ,△AQD ∽△BQC ,△PAC ∽△PBD .因此共4对.【答案】 A图2-2-144.如图2-2-14,AB 是⊙O 的弦,过A 、O 两点的圆交BA 的延长线于C ,交⊙O 于D ,若CD =5 cm ,则CB 等于( )A .25 cmB .15 cmC .5 cm D.52cm【解析】 连接OA ,OB ,OD ,∵OA =OB =OD ,∴∠OAB =∠OBA ,∠ODB =∠OBD . ∵C ,D ,O ,A 四点共圆, ∴∠OAB =∠CDO ,∠CDO =∠OBA , ∴∠CDO +∠ODB =∠OBA +∠OBD , 即∠CDB =∠CBD ,∴CD =CB , ∵CD =5 cm ,∴CB =5 cm. 【答案】 C 二、填空题图2-2-155.如图2-2-15,以AB =4为直径的圆与△ABC 的两边分别交于E ,F 两点,∠ACB =60°,则EF =________.【解析】 如图,连接AE . ∵AB 为圆的直径, ∴∠AEB =∠AEC =90°. ∵∠ACB =60°,∴∠CAE =30°, ∴CE =12AC .∵∠C =∠C ,∠CFE =∠B , ∴△CFE ∽△CBA .∴EF AB =CE AC,∵AB =4,CE =12AC ,∴EF =2.【答案】 2图2-2-166.如图2-2-16,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P ,若PBPA=12,PC PD =13,则BCAD的值为________. 【解析】 由于∠PBC =∠PDA ,∠P =∠P , 则△PAD ∽△PCB ,∴PC PA =PB PD =BCAD.又PB PA =12,PC PD =13,∴PB PA ×PC PD =12×13. ∴PC PA ×PB PD =16,∴BC AD ×BC AD =16. ∴BC AD =66. 【答案】66三、解答题7.如图2-2-17,四边形ABCD 内接于⊙O ,过点A 作AE ∥BD 交CB 的延长线于点E .图2-2-17求证:AB ·AD =BE ·CD . 【证明】 如图,连接AC . ∵AE ∥BD ,∴∠1=∠2. ∵∠2=∠3,∴∠1=∠3.∵∠4是圆内接四边形ABCD 的一个外角, ∴∠4=∠ADC . ∴△ABE ∽△CDA , ∴AB CD =BE AD, ∴AB ·AD =BE ·CD .8.如图2-2-18,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.图2-2-18【解】 (1)证明:连接DE ,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ·AC ,即AD AC =AE AB.又∠DAE =∠CAB ,从而△ADE ∽△ACB . 因此∠ADE =∠ACB . 所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12. 故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于∠A=90°,故GH ∥AB ,HF ∥AC .从而HF =AG =5,DF =12×(12-2)=5.故C,B,D,E四点所在圆的半径为5 2.9.如图2-2-19,已知P为正方形ABCD的对角线BD上一点,通过P作正方形的边的垂线,垂足分别为E、F、G、H.你能判断出E、F、G、H是否在同一个圆上吗?试说明你的猜想.图2-2-19【解】猜想:E、F、G、H四个点在以O为圆心的圆上.证明如下:如图,连接OE、OF、OG、OH.在△OBE、△OBF、△OCG、△OAH中,OB=OC=OA.∵PEBF为正方形,∴BE=BF=CG=AH,∠OBE=∠OBF=∠OCG=∠OAH=45°.∴△OBE≌△OBF≌△OCG≌△OAH.∴OE=OF=OG=OH.由圆的定义可知:E、F、G、H在以O为圆心的圆上.10.如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.(1)求证:四点A,I,H,E共圆;(2)若∠C=50°,求∠IEH的度数.【解】(1)证明:由圆I与边AC相切于点E,得IE⊥AE,结合IH⊥AH,得∠AEI=∠AHI=90°.所以,四点A ,I ,H ,E 共圆.(2)由(1)知四点A ,I ,H ,E 共圆,得,∠IEH =∠HAI ; 在△HIA 中,∠HIA =∠ABI +∠BAI =12∠B +12∠A =12(∠B +∠A )=12(180°-∠C )=90°-12∠C . 结合IH ⊥AH ,得∠HAI =90°-∠HIA =12∠C ;所以∠IEH =12∠C .由∠C =50°得∠IEH =25°.。
【全程温习方略】2021-2021学年高中数学 第二讲二 圆内接四边形的性质与判定定理课时作业(含解析)新人教A 版选修4-11.只有一对边平行的圆内接四边形必然是( )A .正方形B .菱形C .等腰梯形D .矩形解析:选C.只有一对边平行的四边形为梯形且又为圆内接四边形.故四边形必然是等腰梯形.2.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,那么∠BAD 和∠BCD 的度数别离为( )A .50°,130°B .30°,130°C .100°,130°D .100°,50°解析:选A.由圆周角定理,得∠BAD =12∠BOD =50°.依照圆内接四边形的性质定理,得∠BAD +∠BCD =180°, ∴∠BCD =130°,应选A.3.如图,四边形ABCD 内接于⊙O ,∠DCE =50°,那么∠BOD =( )A .75°B .90°C .100°D .120°答案:C4.如图,四边形ABCD 为圆内接四边形,AC 为BD 的垂直平分线,∠ACB =60°,AB =a ,那么CD 等于( )a aa a解析:选A.∵AC为BD的垂直平分线,∴AB=AD=a,AC⊥BD,∵∠ACB=60°,∴∠ADB=60°,∴AB=AD=BD,∴∠ACD=∠ABD=60°,∴∠CDB=30°,∴∠ADC=90°,∴CD=tan30°·AD=3 3 a.5.如图,四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,以下命题错误的选项是( )A.△ABE≌△DCEB.∠BDA=45°C.S四边形ABCD=D.图中全等的三角形共有2对解析:选D.在△ABE和△CDE中,∠CAB=∠CDB,∠AEB=∠DEC,AB=CD,∴△ABE≌△DCE,故A正确;据此,也可得AE=DE,BE=CE=3,∴AE=DE=4.∵在△ABE中,AE2+BE2=AB2,∴AC⊥BD.∵AE=DE,∴∠BDA=45°,故B正确;S四边形ABCD=2S△ABE+S△BEC+S△ADE=2×12×3×4+12×32+12×42=,故C 正确; 在该图形中,有3对全等三角形,故D 错误.6.过点P(-1,0),作⊙C :(x -1)2+(y -2)2=1的两切线,设两切点为A 、B ,圆心为C ,那么过A 、B 、C 的圆的方程为________.解析:∵PA ⊥AC ,PB ⊥BC ,∴P 、A 、B 、C 四点共圆,且PC 是其直径,故此圆的方程为x2+(y -1)2=2,即为过A 、B 、C 的圆方程.答案:x2+(y -1)2=2.7.如图,AB =10 cm ,BC =8 cm ,CD 平分∠ACB ,那么AC =________,BD =________. 解析:∠ACB =90°,∠ADB =90°.在Rt △ABC 中,AB =10,BC =8,∴AC =AB2-BC2=6.又∵CD 平分∠ACB ,即∠ACD =∠BCD ,∴AD =BD ,∴BD = AB22=5 2.答案:6 5 2 8.正方形ABCD 的中心为O ,面积为50 cm2,P 为正方形内一点,且∠OPB =45°,PA ∶PB =3∶4,那么PB =________.解析:如图,连接OA ,OB ,那么∠OAB =45°,∠AOB =90°,∴∠OAB =∠OPB =45°.∴A ,B ,O ,P 四点共圆.∴∠APB=∠AOB=90°,即△APB为直角三角形.∴AP2+PB2=AB2=50.又∵PA ∶PB =3∶4, ∴2516PB2=50,即PB =4 2 (cm).答案:4 2 cm 9.已知圆内接四边形ABCD 的边长别离是AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.解:由于四点共圆,∴∠B +∠D =180°.∴cos ∠B =-cos ∠D.依照余弦定理,得AC2=22+62-2×2×6cos∠B =22+62+2×2×6cos∠D , AC2=42+42-2×4×4cos∠D ,∴cos ∠D =-17,si n ∠D =sin ∠B =4 37. ∴四边形ABCD 的面积=12×AB×BC×sin∠B +12×AD×DC×sin∠D =8 3.10.如图,锐角三角形ABC 的内心为I ,过点A 作直线BI 的垂线,垂足为H ,点E 为内切圆I 与边CA 的切点.(1)求证:A ,I ,H ,E 四点共圆;(2)假设∠C =50°,求∠IEH 的度数.解:(1)证明:由圆I 与边AC 相切于点E ,得IE ⊥AE ,结合IH ⊥AH ,得∠AEI =∠AHI =90°.因此,四点A ,I ,H ,E 共圆.(2)由(1)知四点A ,I ,H ,E 共圆,那么∠IEH =∠HAI.在△HIA 中,∠HIA =∠ABI +∠BAI =12∠ABC +12∠BAC=12(∠ABC +∠BAC)=12(180°-∠C)=90°-12∠C. 结合IH ⊥AH ,得∠HAI =90°-∠HIA =12∠C , 因此∠IEH =12∠C. 由∠C =50°,得∠IEH =25°.11.如图,已知AD 是△A BC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB 、FC.(1)求证:FB =FC ;(2)求证:FB2=FA·FD;(3)假设AB 是△ABC 外接圆的直径,∠EAC =120°,BC =6 cm ,求AD 的长.解:(1)证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC.∵四边形AFBC 内接于圆,∴∠DAC =∠FBC.∵∠EAD =∠FAB =∠FCB ,∴∠FBC =∠FCB.∴FB =FC.(2)证明:∵∠FAB =∠FCB =∠FBC ,∠AFB =∠BFD ,∴△FBA ∽△FDB.∴FBFD =FA FB,∴FB2=FA·FD. (3)∵AB 是圆的直径,∴∠ACB =90°.∵∠EAC =120°,∴∠DAC =12∠EAC =60°,∠BAC =60°. ∠D =30°.∵BC=6,∴AC=2 3 (cm).∴AD=2AC=4 3 (cm).。
人教版高中选修4-1二圆内接四边形的性质与判定定理课程设计1. 课程背景二圆内接四边形是高中数学中的一个重要概念,它具有特殊的性质和判定定理。
本课程旨在通过探究二圆内接四边形的性质和判定定理,加深学生对几何学中基本概念和定理的理解和认识,提高学生的数学素养和解决问题的能力。
2. 教学目标本课程的教学目标是:1.了解二圆内接四边形的定义和性质,掌握其特殊性质。
2.掌握二圆内接四边形的判定定理,能够准确应用于实际问题中。
3.培养学生的空间想象和数学推理能力,加强其解决几何问题的能力。
3. 教学内容本课程的教学内容主要包括以下几个方面:3.1 二圆内接四边形的定义和性质3.1.1 定义二圆内接四边形是指一个四边形恰好可以内切于两个不相交的圆上,并且这两个圆恰好内含于这个四边形的两对对边之间。
3.1.2 性质1.二圆内接四边形的对角线互相垂直。
2.二圆内接四边形的对角线相等。
3.二圆内接四边形的任意两对对边之和相等。
4.二圆内接四边形的对边互相平行。
3.2 二圆内接四边形的判定定理3.2.1 判定定理 1给定一个四边形,若其对角线互相垂直,则该四边形是二圆内接四边形。
3.2.2 判定定理 2给定一个四边形,若其对角线相等,则该四边形是二圆内接四边形。
3.3 二圆内接四边形的应用通过数学实例,让学生掌握二圆内接四边形在实际问题中的应用,如:1.圆心角、圆周角、弦长、切线、割线、正多边形等。
2.平面内任意四个不共线的点能组成二圆内接四边形的判定等。
4. 教学方式本课程采用多种教学方式,包括:1.讲授法:通过讲解原理和推导公式,让学生理解和掌握二圆内接四边形的定义、性质和判定定理。
2.演示法:通过实际演示和实验操作,帮助学生了解二圆内接四边形的特殊性质。
3.案例分析法:通过分析实际问题的解决过程,加深学生对二圆内接四边形的理解,提高其解决几何问题的能力。
4.互动式教学:通过小组合作和讨论,促进学生之间的交流和合作,加深对课程内容的理解。
第二讲直线与圆的地点关系2.2圆内接四边形的性质与判断定理A 级基础稳固一、选择题1.圆内接平行四边形必定是()A.正方形B.菱形C.等腰梯形D.矩形分析:因为圆内接四边形对角互补,平行四边形的对角相等,所以圆内接平行四边形的各角均为直角,故为矩形.答案: D2.已知 AB,CD 是⊙ O 的两条直径,则四边形 ADBC 必定是 () A.矩形B.菱形C.正方形D.等腰梯形分析: AB,CD 均为⊙O 的直径,故四边形 ADBC 的四个角均为直角,且对角线 AB= CD,因此四边形 ADBC 为矩形.答案: A3.四边形 ABCD 内接于圆,∠ A∶∠ B∶∠ C=7∶6∶3,则∠ D 等于()A.36°B.72°C.144°D.54°分析:由圆内接四边形的性质定理,∠A+∠C=180° .又由∠A∶∠ C=7∶3,设∠A=7x,∠C=3x,则 10x=180°,即 x=18°,因此∠B=6x=108°.故∠D=180°-∠B=72°.答案: B4.如下图,四边形ABCD 是⊙ O 的内接四边形, E 为 AB 的延长线上一点,∠ CBE=40°,则∠ AOC 等于 ()A.20°B.40°C.80°D.100°分析:因为四边形ABCD 是圆内接四边形,且∠ CBE= 40°,由圆内接四边形性质知∠D=∠CBE=40°,又由圆周角定理知∠AOC=2∠D= 80° .答案: C5.如下图,若AB 是⊙ O 的直径, CD 是⊙ O 的弦,∠ ABD =55°,则∠ BCD 的度数为 ()A.35°B.45°C.55°D.75°分析:如下图,连结AD,则△ABD 是直角三角形,∠ ADB =90°,则∠DAB=90°-∠ABD=35°,依据同弧所对的圆周角相等,∠BCD=∠DAB=35°.答案: A二、填空题6.如下图,四边形ABCD 是圆 O 的内接四边形,延伸AB 与BCDC 订交于点 P.若 PB=1,PD=3,则AD的值为 ____.分析:因为四边形 ABCD 是圆内接四边形,因此∠BCP=∠A.又∠P=∠P,因此△BCP∽△ DAP.BC PB 1因此AD=PD=3.1答案:37.如下图,⊙ O1与⊙ O2订交于 A,B 两点, AC 是⊙ O1的直径,延伸 CA,CB,分别交⊙ O2于 D,E,则∠ CDE=______.分析:连结 AB,因为 AC 是⊙O1的直径,因此∠ABC=90°.又因为∠ABC=∠ADE,因此∠ADE=90°,即∠CDE=90°.答案: 90°8.如下图,点 A,B,C,D 在同一个圆上, AB,DC 订交于点 P,AD,BC 订交于点 Q,假如∠ A=50°,∠ P=30°,那么∠ Q=________.分析:因为∠A=50°,∠P=30°,因此∠QDC=∠A+∠P=80° .又∠QCD=∠A=50°,因此∠Q=180°- 80°- 50°= 50°.答案: 50°三、解答题9.如下图,四边形 ABCD 是⊙ O 的内接四边形, AB 的延伸线与DC 的延伸线交于点 E,且 CB=CE.(1)证明:∠ D=∠ E;(2)设 AD 不是⊙ O 的直径, AD 的中点为 M ,且 MB =MC ,证明:△ADE 为等边三角形.证明: (1)由题设知 A,B,C,D 四点共圆,因此∠ D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设 BC 的中点为 N,连结 MN ,则由 MB=MC 知 MN ⊥BC,故O在直线 MN 上.又 AD 不是⊙O 的直径, M 为 AD 的中点,故 OM ⊥AD,即 MN⊥ AD.因此 AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,因此△ADE 为等边三角形.10.如下图, CD 为△ABC 外接圆的切线, AB 的延伸线交直线 CD于点 D,E,F 分别为弦 AB 与弦 AC 上的点,且 BC·AC=DC·AF,B,E,F,C 四点共圆.(1)证明: CA 是△ABC 外接圆的直径;(2)若 DB=BE=EA,求过 B、E、F、C 四点的圆的面积与△ABC外接圆面积的比值.(1)证明:因为 CD 为△ ABC 外接圆的切线,因此∠DCB=∠A,BC DC由题设知FA=EA,因此△CDB∽△ AEF ,因此∠DBC=∠EFA.因为 B、E、F、 C 四点共圆,因此∠CFE =∠DBC,因此∠EFA=∠CFE =90°,因此∠CBA=90°,因此 CA 是△ABC 外接圆的直径.(2)解:连结 CE,因为∠CBE=90°,因此过 B、 E、 F、C 四点的圆的直径为 CE,因为 DB= BE, CE= DC,又因为 BC2=DB·BA=2DB2,因此 CA2=4DB2+ BC2=6DB2,又因为 DC2= DB·DA= 3DB2,因此 CE2=3DB2.因此过 B、 E、 F、C 四点的圆的面积与△ABC 外接圆面积的比1值为2.B 级能力提高1.如下图,四边形 ABCD 是⊙ O 的内接四边形,延伸 BC 到 E,已知∠ BCD∶∠ ECD=3∶2,那么∠ BOD 等于 ()A.120°B.136°C.144°D.150°分析:因为∠BCD∶∠ ECD=3∶2,且∠BCD+∠ECD=180°,因此∠ECD=72°.由圆内接四边形的性质得∠A=∠ECD=72°.又由圆周角定理知∠BOD=2∠A= 2×72°= 144°.答案: C2.两圆订交于 A,B,过 A 作两直线分别交两圆于 C,D 和 E,F.若∠ EAB=∠ DAB,则 CD=________.分析:因为四边形 ABEC 为圆内接四边形,因此∠2=∠ CEB.又因为∠1=∠ECB,且∠1=∠ 2,因此∠CEB=∠ECB.因此 BC=BE.在△CBD 与△ EBF 中,∠ECD=∠BEF ,∠D=∠ F,BC=BE,因此△CBD≌△ EBF ,因此 CD=EF .答案: EF3.如下图, A,B,C,D 四点在同一圆上, AD 的延伸线与 BC 的延伸线交于 E 点,且 EC=ED.(1)证明: CD∥AB;(2)延伸 CD 到 F,延伸 DC 到 G,使得 EF =EG,证明: A,B,G,F 四点共圆.证明: (1)因为 EC=ED,因此∠EDC=∠ECD.因为 A,B,C, D 四点在同一圆上,因此∠EDC=∠EBA.故∠ECD=∠EBA.因此 CD∥AB.(2)由(1)知, AE=BE.因为 EF =EG,故∠EFD =∠EGC,进而∠FED =∠GEC.如图,连结 AF, BG,则△EFA≌△ EGB,故∠FAE=∠GBE.又 CD∥AB,∠ EDC=∠ECD,因此∠FAB=∠ GBA.因此∠AFG+∠GBA=180°.故 A,B,G, F 四点共圆.。
课堂探究知能点一:圆内接四边形的性质的应用当已知条件中出现圆内接四边形时,常用到圆内接四边形的性质来获得角相等或互补,从而为证明三角形相似或两直线平行等问题创造条件.【例1】两圆相交于A、B,过A作两直线分别交两圆于C、D和E、F.若∠EAB=∠DAB,求证:CD=EF.连接CB,BF,要证CD=EF,只需证明△CBD≌△EBF即可.从图可以看出,∠BCA=∠BEA,∠D=∠F,因此,尚需找一条对应边相等即可.比如,能否推出BC=BE 呢?要证BC=BE,只需∠CEB=∠ECB,有无可能呢?可以发现,∠ECB=∠1,又已知∠1=∠2,所以只需证∠2=∠CEB即可.这时我们发现,四边形ABEC是圆内接四边形,根据性质定理,它的外角∠2与它的内对角∠CEB当然相等.至此,结论得证.证明:连接CB、BF,因为四边形ABEC为圆内接四边形,所以∠2=∠CEB.又因为∠1=∠ECB,且∠1=∠2,而∠2=∠CEB,所以∠CEB=∠ECB.所以BC=BE.在△CBD与△EBF中,∠BCA=∠BEA,∠D=∠F,BC=BE,所以△CBD≌△EBF.所以CD=EF.1.四边形ABCD内接于圆O,∠A∶∠B∶∠C=2∶3∶7,试求∠D的度数.解:∵圆的内接四边形对角互补,∴∠A+∠C=180°.又∵∠A∶∠C=2∶7,∴∠A=40°.∴∠B=60°,∠C=140°.∴∠D=360°-(40°+60°+140°)=120°.2.ABCD是圆内接四边形,过点C作DB的平行线交AB的延长线于E点,求证:BE·AD =BC·CD证明:如图,连接AC,∵四边形ABCD为圆内接四边形,∴∠ADC=∠EBC.又BD∥EC,∴∠CEB=∠DBA,且∠ACD=∠DBA,∴∠CEB=∠ACD.∴△ADC∽△CBE.∴ADDC=BCBE,即BE·AD=BC·CD.知能点二:圆内接四边形的判定定理的应用判定四点共圆的方法有:(1)如果四个点与一定点的距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个三角形有公共边,公共边所对的角相等且在公共边的同侧,那么这两个三角形的四个顶点共圆.【例2】如图所示,在△ABC中,AD=DB,DF⊥AB交AC于点F,AE=EC,EG⊥AC 交AB于点G.求证:(1)D、E、F、G四点共圆;(2)G、B、C、F四点共圆.(1)连接GF,则易证△GDF与△GEF均为直角三角形,由直角三角形斜边的中点到三个顶点的距离相等可得出结论.(2)连接DE,由条件易证DE∥BC,从而∠AED=∠C,由(1)知∠AED=∠DGF,从而∠DGF=∠C,从而得到结论.证明:(1)连接GF,由DF⊥AB,EG⊥AC,知∠GDF=∠GEF=90°,∴GF的中点到D、E、F、G四点的距离相等,∴D、E、F、G四点共圆.(2)连接DE.由AD=DB,AE=EC,知DE∥BC,∴∠ADE=∠B.又由(1)中D、E、F、G四点共圆,∴∠ADE=∠GFE,∴∠GFE=∠B,∴G、B、C、F四点共圆.如图所示,在△ABC中,AB=AC,延长CA到P,再延长AB到Q,使得AP =BQ.求证:△ABC的外心O与A、P、Q四点共圆.证明:连接OA、OC、OP、OQ、PQ.在△OCP和△OAQ中,OC=OA.由已知CA=AB,AP=BQ.∴CP=AQ.又O是△ABC的外心,∴∠OCP=∠OAC.由于等腰三角形的外心在顶角平分线上,∴∠OAC=∠OAQ,从而∠OCP=∠OAQ.∴△OCP≌△OAQ.∴∠CPO=∠AQO.∴O、A、P、Q四点共圆.。
庖丁巧解牛知识·巧学一、圆内接四边形的性质定理圆内接四边形的性质定理包括两个:定理1是圆的内接四边形对角互补;定理2是圆的内接四边形的外角等于它的内角的对角.这两个定理的表述形式稍有差别,但反映的本质相同,都反映了圆内接四边形所具有的特征.知识拓展利用这两个定理,可以借助圆变换角的位置,得到角的相等关系或互补关系;再进行其他的计算或证明.利用这两个定理可以得出一些重要结论:如内接于圆的平行四边形是矩形;内接于圆的菱形是正方形;内接于圆的梯形是等腰梯形.应用这些性质可以大大简化证明有关几何题的推理过程.二、圆内接四边形的判定定理1.定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆.2.符号语言表述:在四边形ABCD中,如果∠B+∠D=180°,那么四边形ABCD内接于圆.疑点突破要证明四边形ABCD内接于圆,就是要证明A、B、C、D四点在同一个圆上.根据我们的经验,只要能证明这四个点到一个定点距离相等即可.但是这个定点一时还找不出来.不过对于不在同一条直线上的三点来说,总可以确定一个圆.因此我们可以先经过A、B、C、D中的任意三个点,譬如A、B、C三点作一个圆,再证明第四个点D也在这个圆上就可以了.但是直接证明点D在圆上很困难,所以我们采用反证法证明.也就是假设点D不在圆上,经过推理论证,得出错误的结论,这就说明点D不在圆上是错误的,因此点D只能在圆上.由于点D不在圆上时,可能出现点D在圆外和点D在圆内两种情况,所以应分别加以证明,下面先讨论点D在圆内的情况.假设点D在圆内,若作出对角线BD,设BD和圆交于D′,连结AD′、CD′,则ABCD′为圆内接四边形(如图2-2-2),则∠ABC+∠AD′C=180°.另一方面,因为∠ADB、∠BDC分别是△AD′D和△CD′D的外角,所以有∠AD′B<∠ADB,∠BD′C<∠BDC,于是有∠AD′C<∠ADC.因为已知∠ABC+∠ADC=180°,所以∠ABC+∠AD′C<180°,这与圆内接四边形的性质定理矛盾.因此可证点D不能在圆内.用类似的方法也可以证明点D也不能在圆外.因此点D在圆上,即四边形ABCD内接于圆.图2-2-2三、判定四点共圆的方法(1)如果四个点到一定点的距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点的距离相等).问题·探究问题圆内接四边形判定定理的证明,推导出与圆内接四边形性质定理相矛盾的结果,体现了用反证法证明几何命题的基本思路.反证法是证明问题的有效方法,那么与正面证明相比较,反证法有什么特点?它证明问题的步骤怎样?它有什么优点?思路:反证法是一种间接证法,它先是提出一个与命题的结论相反的假设,然后从这个假设出发,经过正确的推理,导致矛盾,从而否定原假设,达到肯定原命题正确的一种方法.探究:反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是不都是;至少有一个一个也没有;至少有n个至多有(n-1)个;至多有一个至少有两个;唯一至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾,与已知的公理、定义、定理、公式矛盾,与反设矛盾,自相矛盾.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不止一种),如在上述定理证明中,假设点D不在圆上,则有点D在圆外和点D在圆内两种情况,必须一一证出这两种情况都不成立后,才能肯定点D在圆上.用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.对于一些从正面难以说明的问题,反证法往往有着出奇制胜的作用.典题·热题例1如图2-2-3,已知ABCD为平行四边形,过点A和B的圆与AD、BC分别交于E、F.求证:C、D、E、F四点共圆.图2-2-3思路分析:连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.证明:连结EF.∵ABCD为平行四边形,∴∠B+∠C=180°.∵A、B、F、E内接于圆,∴∠B+∠AEF=180°.∴∠AEF=∠C.∴C、D、E、F四点共圆.深化升华要证明四点共圆,首先要把这四个点连结组成四边形,然后说明其对角互补或外角等于它的内对角.例2两圆相交于A、B,过A作两直线分别交两圆于C、D和E、F.若∠EAB=∠DAB.求证:CD=EF.思路分析:要证CD=EF,只需证明△CBD≌△EBF即可.从图2-2-4可以看出,∠C=∠E,∠D=∠F,因此,只需再找一条对应边相等即可.比如,能否推出BC=BE呢?要证BC=BE,只需∠CEB=∠ECB.有无可能呢?可以发现,∠ECB=∠1,又已知∠1=∠2,所以,只需证∠2=∠CEB即可.这时我们发现,A、B、E、C是圆内接四边形,根据性质定理,它的外角∠2与它的内对角∠CEB当然相等.至此,思路完全沟通.图2-2-4证明:∵ABEC为圆内接四边形,∴∠2=∠CEB.又∵∠1=∠ECB,且∠1=∠2,∴∠CEB=∠ECB.∴BC=BE.在△CBD与△EBF中,∠C=∠E,∠D=∠F,BC=BE,∴△CBD≌△EBF.∴CD=EF.深化升华利用圆内接四边形的性质,直接写出∠2=∠CEB,简化了通过弧与角的计算推证∠2=∠CEB的过程,正如运用算术乘法的九九表一样,可以大大简化思维的过程.例3在锐角△ABC中,BD、CE分别是边AC、AB上的高线,DG⊥CE于G,EF⊥BD于F.求证:FG∥BC.思路分析:证FG∥BC,只需证∠DFG=∠DBC即可.我们设法由共斜边的两个直角三角形的四顶点共圆来分析角的关系,探求证明的思路.证明:如图2-2-5,由于Rt△BCE与Rt△BCD共斜边BC,所以B、C、D、E四点共圆.由同弧上的圆周角,有∠DBC=∠DEG.同理,Rt△EDF与Rt△DGE共斜边DE,所以D、E、F、G四点共圆.图2-2-5于是,∠DEG=∠DFG.因此,∠DBC=∠DFG.于是FG∥BC.例4如图2-2-6所示,在△ABC中,AB=AC,延长CA到P,再延长AB到Q,使得AP=BQ.图2-2-6求证:△ABC的外心O与A、P、Q四点共圆.思路分析:要证O、A、P、Q四点共圆,只需证∠CPO=∠AQO即可.为此,只要证△CPO≌△AQO即可.证明:连结OA、OC、OP、OQ.在△OCP和△OAQ中,OC=OA,由已知,CA=AB,AP=BQ,∴CP=AQ.又O是△ABC的外心,∴∠OCP=∠OAC.由于等腰三角形的外心在顶角的平分线上,∴∠OAC=∠OAQ,从而∠OCP=∠OAQ.∴△OCP≌△OAQ.∴∠CPO=∠AQO.∴O、A、P、Q四点共圆.深化升华本题也可证△OAP≌△OBQ,得到角相等,进而说明四点共圆.你可以试着写出另一种证明.例5如图2-2-7所示,在半径为1的⊙O 中,引两条互相垂直的直径AE 和BF ,在上取点C ,弦AC 交BF 于P ,弦CB 交AE 于Q.证明四边形APQB 的面积是1.图2-2-7思路分析:由已知条件可以证明四边形ABEF 是正方形,且边长为2,则正方形面积为2. 而△ABD 的面积为正方形面积的一半,所以,只需证明S 四边形APQB =S △ABD ,即证S △BPD =S △BPQ ,即证DQ ∥PB.因为BP ⊥AE ,所以,只需证DQ ⊥AE.证明:∵AE 、BF 为互相垂直的两条直径,垂足O 为圆心,∴AE 、BF 互相平分、垂直且相等.∴四边形ABEF 是正方形.∴∠ACB=∠AEF=45°,即∠DCQ=∠QED.∴D 、Q 、E 、C 四点共圆.连结CE 、DQ ,则∠DCE+∠DQE=180°.∵AE 为⊙O 的直径,∴∠DCE=90°,∠DQE=90°.∵∠FOE=90°,进而DQ ∥BF ,∴S △BPQ =S △BPD .∴S △ABP +S △BPQ =S △ABP +S △BPD ,即S 四边形ABQP =S △ABD .∵⊙O 的半径为1,∴正方形边长为2,即AB=AF=2.∴S 四边形ABQP =S △ABD =21AB·AF=1. 方法归纳 当题目的结论直接证明较繁或无法证明时,可根据条件先证明某四点共圆,再利用圆的性质可使问题得以解决,这种方法常称之为“作辅助圆”方法.。