地震地层学方法
- 格式:ppt
- 大小:8.04 MB
- 文档页数:34
地质学中的地层学原理地质学是研究地球和地球物质的学科,而地层学则是地质学的重要分支之一。
地层学研究的是地球表层的岩石和地质现象。
而在地层学中,有很多原理被广泛应用,这些原理是构建地质年代学体系和实现地层对比的基础。
一、岩层相对时代原理岩层相对时代原理,又称相对年代划分法,是地层学的基本原理之一。
根据相对时代划分法的原理,同一区间内某一岩层是相对于其他岩层而言具有特定的地质年代。
这里的相对时代指的是地层中岩石的相对位置和结构特征,而不是绝对时代。
通过岩层相对时代原理运用,可以将地球历史的时间轴分为本来年代和相对年代两个层次。
相对年代可以按照顺序来排列,这为地质记录和演化的研究提供了一种方便的方式。
二、地层叠置法则原理地层叠置法则原理是基于地层相对时代原理的基础上开发出来的。
根据这个原理,垂直于岩层的力量涡流方向会导致岩层发生叠置。
这个原理意味着在水平时间内,顶部岩层年代小于下部岩层年代。
通过地层叠置法则原理,我们可以判断岩石的相对年代,具有重要的应用价值。
例如,当岩层的叠置方向向上或者向下倾斜时,我们可以根据叠置的方向来判断岩石的年代,提供了方便快捷的年代划分。
三、地质断裂原理地质断裂原理指的是地球或地壳内的地震,会导致岩层中的重要断层。
这个原理应用非常广泛,可以在寻找石油、煤炭、矿产、地下水方面有着非常重要的作用。
根据地质断裂原理,并不是所有岩石都有同样的年代,不同年代的岩石可以通过地层中的断裂带区别出来。
这个原理在矿产勘探中应用广泛,可以从中得出石油、煤炭、铁矿石、铜矿石等矿产的年代和分布。
四、生物带原理生物带原理是通过不同生物类型的分布在不同的岩石中,来判断该岩石的地质年代。
常见的情形包括不同的化石或不同种类的化石的分布区域、分布深度和分布时间顺序等。
同样的,在现代地质学研究中,也经常利用生物学原理来进一步研究岩石中的化石,这可以使我们对不同化石种类,以及不同地质年代的地球演化的认识更加深入。
层序及地震反射终止方式1.层序地层学涉及的概念层序地层学的解释过程为推出一个旋回式的、在成因上有联系的年代地层格架(chronostratigraphic framework),这些地层以侵蚀作用或者无沉积作用造成的不连续地层界面为界,或者以与这些不连续面可以对比的整合面为界。
变量 控制作用构造沉降 ———— 可供沉积的空间全球海平面升降 —— 地层和岩相分布模式沉积物供应 ———— 沉积充填和古水深气候 —————— 沉积物类型层序:一套相对整一的、成因上有联系的、其顶和底面以不整合面或者与这些不整合面可以对比的整合面为界的地层(据Vail等,1977)。
层序是在海平面升降周期曲线上相邻的两个下降速度转折点之间沉积的,它由一套体系域所组成。
根据定义,每个层序都是从一个不整合面(图2‐6中SB1)或者说从一个海平面急刷下降(下降速度最大的转折点处)产生侵蚀的时刻开始形成的,结束于下一个海面急剧下降的转折点(图2‐7中SB2)。
在SB1与SB2之间,依据沉积物展布范围是局限于陆架边缘以下,还是陆架边缘以上,划分体系域,层序顶底不整合界面有两种形式。
当侵蚀范围延续到陆架边缘以下时,称作Ⅰ型不整合或Ⅰ型层序界面。
当侵蚀范围局限于陆架以上没有延续到陆架边缘以下时,称作Ⅱ型不整合或Ⅱ型层序界面。
图2‐7中SB1为Ⅰ型界面,SB2为Ⅱ型界面。
Ⅰ型层序界面之上为低水位体系域(LST)。
Ⅱ型层序界面之上为陆架边缘体系域(SMST)。
因此,由LST、TST、 HST组成的层序称Ⅰ型层序。
由SMST、TST、HST组成的层序称Ⅱ型层序。
图2‐6中低水位体系域分布在陆架边缘以下的低处,它包括有盆底扇、带有天然堤的斜坡扇、楔形前积复合体,有时还有滑塌扇、滑移体等沉积体。
低水位体系域的另一特征,是在陆架上出现切割谷(incised valley),在陆坡的上段出现海底峡谷(canyon)。
它们通常下切到较老的下伏层序的高水位体系域内。
确定地层相对地质年代的方法确定地层相对地质年代是地质学中非常重要的一环,它是了解地球历史的必要方式之一。
确定地层相对地质年代,顾名思义,就是要确定地质中不同岩石层叠加次序和时间上的前后关系,相对地质年代的确定必须建立在现有地层学和古生物学的基础上,以确保对地层相对年代的准确判定。
本文将介绍地质学中用于确定地层相对地质年代的十种方法和详细描述。
1.叠加原理叠加原理是确定地层相对地质年代的最基本原理。
根据这一原理,当地层沉积结束时,上一层会覆盖下一层。
处于上层的岩石层比处于下层的岩石层年代更年轻。
叠加原理通常用于建立地层序列图。
2.岩石特征不同地层的岩石具有不同特征,可以通过观察这些特征来确定它们的相对地质年代。
如果两个岩石层的岩性和厚度都非常相似,则它们可能是同一地层时期的产物。
某些地层如煤炭和盐岩只在特定的地层时期中产生,因此可以用它们的存在证明该地层的存在。
3.化石记录化石记录可以用来确定不同地层的相对地质年代。
由于化石存在于地质中,化石的时代和地层年代可以相对比较。
如果两个地层含有相同的化石,则它们可能在相同的地质年代产生,即地质同期。
如果一个化石在某一地层中出现,而在其他地层中不存在,那么它有助于确定该地层的相对年代。
4.地球磁场地球磁场在地质时间尺度上经历了显著的变化。
通过测量岩石磁性取向的方法,可以识别出不同时期的地球磁极取向,并据此确定地层相对年代。
这种方法被称为磁性地层学。
5.断层关系如果两个地层之间可能存在断层,那么通过研究断层和地层的相互关系,可以确定该地层的相对年代。
如果断层越过一个年轻的地层,它会在那个地层之上,而对于一个较旧的地层,断层会在下方。
6.沉积速率地层的沉积速率也可以用来确定地层的相对年代。
如果两层含有相同类似的岩石、化石、环境与沉积条件,则较厚的地层是较短时间内沉积下来的,意味着较年轻的地层。
7.火山喷发地震学和地层学可以利用火山爆发,确定地层的相对年代。
火山爆发形成的岩石在地层之上,可以确定它们的年龄比下面的地层年轻。
第二节地层的划分与对比及地质年代表一、地层划分与对比的概念(一)地层划分地层的划分是地层学的一项基础任务,也是地质工作的基础。
其目的在于确定区域地层层序和建立相应的地质年代系统。
我们把一个地区的岩层,按其形成的先后顺序、岩性、化石等特征归纳成不同级别的地层单位,建立区域地层层序,了解该区域地层在时间上的变化规律,称为地层划分。
如果地层形成以后,一直保持其原始生成顺序,即老地层在下,新地层在上,属正常层序。
但在地壳发生过强烈运动的地区,由于岩层遭受褶皱和断裂的影响,使原始地层产状发生变动,甚至倒转,使早期形成的岩层覆盖于晚期形成的岩层之上。
因此地层划分首先要判定地层的正反顺序,建立正常层序。
地层的特征和属性是多种多样的,如岩层的几何形态、接触关系、岩性、岩石组合、化石特征、地球物理和地球化学性质等,其中任何一种特征都可以作为划分地层的依据。
由于切分地层的依据和标准不同且具有多样性,因而可以划分出多种地层系统,不同种类的地层划分可以重叠在同一剖面上进行,这就是地层单位和地层划分的多重性。
目前常用的有岩石地层单位、生物地层单位和年代地层单位三种。
(二)地层对比在地层划分的基础上,将不同地区(或剖面)的地层进行比较,论证其地质时代、地层特征和地层层位的对应关系,即为地层对比。
在实际工作中,由于特征和依据不同,有不同种类的对比。
例如:岩石地层对比是论证岩性特征和岩石地层位置是否相当;年代层对比是要论证地层的地质年龄和年代地层单位的位置是否相当;生物地层对比是要说明含化石层的化石内容和生物地层位置是否相当。
地层划分与对比两者在原则和依据上是同一的,在方法上是有密切联系的。
二、地层划分与对比的方法(一)岩石地层学方法凡是以地层的岩性特征为主要研究内容,以岩性界面变化为准,划分地层,是建立区域地层层序的主要方法统称为岩石地层学方法。
岩石特征主要指岩性、岩石组合、岩相、岩层的横向展布和岩石的变质程度等。
根据岩石特征的相似程度,对地层进行划分,并建立岩石地层系统。
地层的地震解释方法地层的地震解释方法就像是一场神秘的寻宝之旅。
咱们都知道地层那可是地球的“历史书”,一层一层地记录着地球的过去。
可这地层在地下,咱们又不能像挖土豆似的把它挖出来看个究竟,这时候地震解释方法就闪亮登场了。
地震解释方法,简单说就是通过地震波来解读地层的信息。
你可以把地震波想象成一群小信使,它们在地层里跑来跑去,然后把地层的各种消息带回来给我们。
这就好比你想知道一个黑箱子里装了啥,你就往里面扔个小石子,听听声音来判断,地震波干的就是这个事儿。
那怎么从这些小信使带回来的消息里解读出有用的东西呢?这里面学问可大了。
有一种方法叫反射地震法。
这就好比你在一个空荡荡的大房间里大喊一声,声音碰到墙壁会反射回来一样。
地震波在地层里传播,碰到不同的地层界面也会反射回来。
这些反射回来的地震波就像一个个小镜子,反射出地层界面的模样。
我们得到这些反射回来的地震波信号之后呢,就开始分析它们的时间和振幅等信息。
这时间啊,就像是小信使跑一个来回的表,从地震波发射出去到反射回来用了多久,这个时间可以告诉我们地层界面的深度。
比如说,一个小信使很快就跑回来了,那说明它碰到的地层界面离得近;要是过了老半天才回来,那这个地层界面肯定在很深的地方。
振幅呢,就像是小信使的嗓门大小。
不同的地层界面,反射回来的地震波振幅不一样。
这就像不同的墙壁,对声音的反射强度不同。
如果某个地层界面让地震波的振幅变得很大,那就像是一堵特别结实的墙,把声音反射得很强烈。
我们通过这个就能判断地层的一些特性,比如这个地层是硬的还是软的。
还有一个重要的概念叫地震相。
这就好比是地层的“外貌”。
不同的地层在地震图上会呈现出不同的样子,就像不同的人有不同的长相一样。
有的地层在地震图上是一片光滑的区域,就像一个文静的姑娘,这可能代表这个地层比较均匀;有的地层在地震图上是乱七八糟的一团,就像一个调皮捣蛋的小孩把东西弄得乱七八糟,这可能说明这个地层比较复杂,可能是有很多小的地质构造在里面。
地震地层学牟中海一.绪论1.地震地层学概念:利用地震资料,结合钻井资料,测井资料,露头资料,研究地层的分布及沉积特征,分析盆地的演化史,恢复盆地的古沉积环境,评价石油地质条件。
2.地震地层学特点:综合性,科学性,预测性。
3.地震地层学研究内容:地震层序划分,海湖平面相对变化分析,地震相分析,地震相的岩性解释,储层预测,生储盖条件的评价,隐蔽圈闭的预测。
二.地震层序划分⒈一般情况下,地震反射界面就代表了地质界面——层面和不整合面。
但是,地震发射界面与地质界面并无一一对应的关系,为什么?答:①并非所有的地质界面都是波阻抗界面,只有波阻抗差大到一定程度,才能够成反射界面②地质界面是波阻抗界面,但当相邻地质界面间距离或地层厚度小于1/4波长时,由于相邻界面的反射波互相干涉迭加而在地震剖面上无对应反射界面,实际上此时的反射界面则代表的是若干地质界面地震响应的总和③实际上不存在反射界面,可能由于其它波阻抗界面的多相位延续子波而造成假的反射界面④噪声和异常波,如多次反射、回转波、陡斜角反射、绕射以及侧反射等。
它们不是原始的反射或偏离了其本来的位臵,在剖面上可形成假的反射面,必须加以识别。
连续的地震反射相对于地质界面即层面及不整合面;⑤地震子波频率不同,同向轴的数目也不同。
地震反射与地质界面基本平行,但并无一一对应的关系,地层内岩性的变化,只改变波形特征,并不产生连续反射。
⒊地震反射界面与地质界面的关系。
答:连续的地震反射相对于地质界面即层面及不整合面;地震反射与地质界面基本平行,但并无一一对应的关系,地层内岩性的变化,只改变波形特征,并不产生连续反射。
⒋地震反射界面为什么具有年代地层意义?答:地震反射主要来自层面和不整合面(当然还有流体界面及断面等)由于不整合面以及与之可对比的整合面分隔了不同的年代地层单位,所以这就使得地震反射具有年代地层学意义。
⒌地震层序的概念。
答:沉积层序在地震剖面上的反映,它是由一套互相整合的,成因上有关联的地层所构成,这套地层的顶界和底界都是不整合面以及与之相连结的整合面。
名词解释:1. 构造:利用由地震资料提供的反射波旅行时、速度等信息,查明地下地层的构造形态,埋藏深度、解除关系等。
2. 地震地层学:根地震政剖面特征、结构来划分沉积层序,分析沉积岩相和沉积环境,进一步预测沉积盆地的有利油气聚集带。
3. 地震岩性学:采用各种有效的地震技术,提取一系列地震属性参数,并综合利用地质、钻井、测井资料,研究特定地层的岩性、厚度分布、孔隙度、流体性质等。
4. 垂向分辨率:是指地震记录或者地震剖面上能分辨的最小地层厚度。
地震勘探上的垂向分辨率一般在1/4波长到1/8波长之间。
5. 横向分辨率:是指在地震记录或者水平叠加剖面上能够分辨相邻地质体的最小宽度。
通常由第一菲涅尔(Fresnel )带的大小来确定,其半径R 为:6. 标准层:具有较强振幅、同相轴连续性较好、可在整个工区内追踪的目标反射层。
它往往是主要的地层或岩性的分界面,与生油层或储集层有一定的关系,或本身就是生、储油层。
7. 波组:是指三四个数目不等的同相轴组合在一起形成的反射波组合,或指比较靠近的若干界面所产生的反射波组合。
8. 波系:有两个或者两个以上波组所组成的反射波系列成为波系。
9. 标定:广泛意义来说,标定是指利用测井、钻井资料所揭示的地质含义(如岩性、层厚、含流体性质等)和地震属性参数(如振幅、波形、频谱、速度等)之间的对比关系,判别或预测远离或缺少井控制区域内地震反射信息(如同相轴、地震相、各种属性参数等)的地质含义。
10. 层位标定:把对比解释的反射波同相轴赋予具体而明确的地质意义,如沉积相、岩性、流体性质等,并把这些已知的地质含义向地震剖面或地震数据体延伸的过程。
11. 全三维解释:使用自动拾取,体元追踪、层面切片等分析和解释手段,并以垂直剖面和水平切片的解释为辅助方法,在与三维相干体等不连续性分析相结合,结果用三维可视化等的一整套解释流程,也有人称之为地震数据体的“真”三维解释。
12. 三维相干体技术:利用相邻道数据间的相思程度,实际上就是利用相邻道间不连续性来判断、分辨断层级油气藏的一种方法。
准噶尔盆地彩南地区石树沟群地震层序划分与层序地层学解释准噶尔盆地是中国西北地区的一个大型前陆盆地,其彩南地区石树沟群地处于该盆地的中部。
石树沟群地区是一个复杂的地质构造,地震层序划分的分析对于研究该区域的地质演化和储层性质具有重要意义。
据研究结果显示,石树沟群地区的地震层序可分为四个层序:上海西组、下海东组、中侏罗统、下侏罗统。
其中上海西组主要以含油气层为主,下海东组则是以烃源岩为主。
中下侏罗统则为典型的岩性判断层段。
各层序之间层位基本稳定,反应了该区域的地质背景和构造演化历史。
上海西组主要分布在石树沟群地区的上部,其地层为长兴岩、泥页岩、灰岩及泥岩等。
该地层发育了两种类型的岩石,分别为发育于典型的深水相环境下的灰岩和孔隙度较高的泥岩。
由于上海西组主要分布在盆地高处,其沉积过程相对稳定,因此含油气层具有较好的连通性和稳定性。
下海东组地震层序分布在石树沟群地区的中下部,其地层为煤系地层和烃源岩。
该层主要包括以下岩石类型:黑色泥岩、页岩、煤岩、碳酸盐岩、细粒砂岩以及凝灰岩。
下海东组主要分布在盆地底部,其沉积过程相对不稳定,导致了沉积物的振实作用,从而使岩石之间的孔隙度降低。
该层主要是烃源岩,因此具有较高的有机质含量和丰富的油气资源。
中侏罗统和下侏罗统层位之间的界线较为明显,主要由蓝灰色石英砂岩和灰色泥岩组成。
这一层段主要发育于高地,因此具有过多的剥蚀和侵蚀作用。
中下侏罗统的研究是研究石树沟群地区油气运移和储量分布的关键。
在中下侏罗统之间进行有效的油气运移,需从下夹层到上夹层进行的上升运移。
这种上升运移往往在油气运移途径上遇到较大的阻力,并且由于底部地质条件的影响,容易形成油气聚集。
综合分析,石树沟群地震层序层位稳定且各层序之间有明显的界线,反应了该区域的构造演化历史和地质背景。
该地区上海西组主要是以含油气层为主,下海东组则是以烃源岩为主。
中下侏罗统层段是石树沟群地区石油勘探和开发的重要层段,其研究对于该区域石油资源的开发有着重要的意义。
地震地层学前言一、地震勘探方法简介1.与重、磁、电法的异同相同点:均用于查明沉积覆盖区的地下地质概况。
差异:也是优点:(1)不仅能查明深度、构造而且可查明地层、岩性等信息;(2)工作效率高,比单独钻井找油更快更省钱;(3)探测岩石的弹性,而不是电性、磁性或密度(重力) 2.适用于油气勘探各个阶段:盆地普查→区带评价→圈闭预测→油藏描述。
中国95%油田都是用地震勘探提供的构造位置找到。
世界上的油田也是如此。
多年来,世界物探方面的投资中有百分之九十多用于地3.勘探方法:沿地表某测线在浅井用炸药振源或震源车人工激发地震波、地震波向下传插,当遇到不同的分界面时,就发生反射或折射。
在测线的一些点上有专门的仪器记录地震波( 一条振动曲线)。
由于接收的地震波受到了地下地层介质的改造,就带有与地质构造、地层岩性等有关的各种信息,诸始时间、能量、速度、频率等。
从地震记录中提取这些信息,就有可能推断解释地质构造的形态,含油气地层分布等。
二、地震勘探发展第一阶段,“光点”记录阶段,1927-1952,用电子管元件把接收的地震波变成光点的摆动,记录在照相纸上。
记录质量差,人工解释第二阶段:“模拟磁带”记录阶段,1953-1963,把磁带录音技术用于地震勘探。
采用了模拟磁带地震仪,由晶体管元件组装而成,把接收的地震波录制在磁带上,在室内用模拟电子计算机(基地回收仪),对资料进行处理,待到地震时间剖面,使资料整理工作实现了半自动第三阶段:“数字磁带”阶段,1964年至现在,采用电子集成电路技术,把地震波以数字形式记录在磁带上,然后直接输入计算机进行各种处理,实现了资料整理工作自动化,工作效率和精度得到空前提高我国1951年成立第一个地震队,1960年发展到了近百个地震队。
70年代初我国设计制造了第近十年来,“三高”三维技术得到快速发展和应用,三高:高信噪比、高分辨率、高保真度。
从而伴随出现了地震地层学、层序地层学和油藏描述技术,使得利用地震资料可以直接探测未来趋势:四维地震:三维+三维多分量地震勘探:识别裂缝性储层的裂缝方向和密集带,多用于煤层气和碳酸盐岩油气藏勘探其它领域:地热资源、水文工程、城市建设、地壳测深等工作中已被广泛应用。