地震资料地层岩性解释
- 格式:ppt
- 大小:5.90 MB
- 文档页数:58
第四章地震速度-岩性分析地震波的速度是地震勘探中最重要的一个参数,同时也是地震地层解释中最重要的一个参数。
从实质上讲,各种(大多数)地震技术的核心任务(主要目标),在诞生初期,几乎都是围绕着地层速度的勘测在进行。
从另一方面看,地震反射资料无非是地层界面之间波阻抗差的反映。
第一节地震波传播速度的影响因素一、岩石弹性常数的影响根据“均匀的完全弹性介质中弹性波的波动方程”可以知道,地震纵波与横波在介质中传播的速度与介质的弹性常数之间存在下述关系:V==(4-1)pV==(4-2)s式中λ、μ是拉梅系数;ρ是介质的密度;E是杨氏模量;δ是泊松比。
它们都是说明介质的弹性性质的参数。
E比ρ相对于密度增加了,增加的级次较高。
二、岩性的影响表一、表二、沉积岩的波速三、密度的影响除了波动方程导出的严格公式外,已经可以肯定,速度与密度的关系近似为线性关系,随着密度的增加,速度也会增加。
另外,国外对大量岩石样品做了物性研究后,提出了下列经验公式:4Va ρ= (4-3)140.31V ρ= (4-4) 但是,速度与密度的关系随地区的不同而有差异,在每个地区应该存在一定的关系。
四、与埋深的关系大量实际资料表明,在岩石性质和地质年代相同的条件下,地震波的速度随岩石埋藏深度的增加而增大,其原因主要是埋深控制地层压实程度的高低。
一般地,存在如下公式:0()CZ V Z V e = (4-5)五、与地质年代的关系在相同埋深条件下,地质年代增加时,塑性介质的蠕变,造成压实程度增高,进而速度降低。
六、与孔隙度和流体成分的关系 1、时间平均方程11f mV V V Φ-Φ=+ (4-6) 2、油、气、水等流体的速度很小,尤其是气。
5000/m V m s =,(1600/f V m s =盐水), (1300/fV m s =油),(300~400/f V m s =气)。
七、温度压力的影响温度升高,速度减小;压力增大,速度减小。
地震勘探seismic prospecting利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。
在地表以人工方法激发地震波(见地震),在向地下传播时,遇有介质性质不同的岩层分界面,地震波将发生反射与折射,在地表或井中用检波器接收这种地震波。
收到的地震波信号与震源特性、检波点的位置、地震波经过的地下岩层的性质和结构有关。
通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。
地震勘探在分层的详细程度上,以及勘查的精度上,都优于其他地球物理勘探方法。
地震勘探的深度一般从数十米到数十公里。
爆炸震源是地震勘探中广泛采用的非人工震源。
目前已发展了一系列地面震源,如重锤、连续震动源、气动震源等,但陆地地震勘探经常采用的重要震源仍为炸药。
海上地震勘探除采用炸药震源之外,还广泛采用空气枪、蒸汽枪及电火花引爆气体等方法。
地震勘探是钻探前勘测石油与天然气资源的重要手段。
在煤田和工程地质勘察、区域地质研究和地壳研究等方面,地震勘探也得到广泛应用。
20世纪80年代以来,对某些类型的金属矿的勘查也有选择地采用了地震勘探方法。
发展简史地震勘探始于19世纪中叶1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。
这可以说是地震勘探方法的萌芽。
在第一次世界大战期间,交战双方都曾利用重炮后坐力产生的地震波来确定对方的炮位。
反射法地震勘探最早起源于1913年前后R.费森登的工作,但当时的技术尚未达到能够实际应用的水平1921年,J.C.卡彻将反射法地震勘探投入实际应用,在美国俄克拉荷马州首次记录到人工地震产生的清晰的反射波。
1930年,通过反射法地震勘探工作,在该地区发现了3个油田。
从此,反射法进入了工业应用的阶段。
折射法地震勘探始于20世纪早期德国L.明特罗普的工作。
20年代,在墨西哥湾沿岸地区,利用折射法地震勘探发现很多盐丘(见底辟构造)。
地震资料处理(仅供参考)一名词解释(1)地震相干体:由三维地震数据体经过相干处理而得到的一个新的数据体,其基本原理是在三维数据体中,求每一道每一样点处小时窗内分析点所在道与相邻道波形的相似性,形成一个表征相干性的三维数据体,即计算时窗内的数据相干性,把这一结果赋予时窗中心样点。
(2)时移地震:利用不同时间观测的三维地震有效信息的差异进行储层监测,完善油气藏管理方案,提高油气采收率。
(3)地震亮点:指在地震剖面上,由于地下气藏的存在所引起的地震反射波振幅相对增强的“点”。
(4)地震反演:根据各种位场(电位、重力位等)、波场(声波、弹性波等)、电磁场和热学场等的地球物理观测数据去推测地球内部的结构形态及物质成分,定量计算其相关物理参数的过程。
(5)地震三维数据体:三维地震勘探经过三维地震资料处理后形成一个三维数据体,由采集的几何形态确定的(处理期间可能调整的)规则间距的正交数据点的排列。
(6)地震属性:表征地震波几何形态、运动学、动力学和统计学特征、由数学变换、或者物理变换引入的物理量。
(7)地震层序:地震层序是沉积层序在地震剖面图上的反映。
在地震剖面图上找出两个相邻的反映地层不整合接触的界面,则两个界面之间的地层叫做一个地震层序。
(8)AVO:(Amplitude Versus Offset)技术——利用振幅随炮检距或AVO 偏移距的变化来估算界面两侧介质的泊松比,进而推断介质的岩性(9)三维可视化:三维可视化是用于显示描述和理解地下及地面诸多地质现象特征的一种工具,广泛应用于地质和地球物理学的所有领域,通过计算机交互绘图和成像,从复杂的数据集中提取有意义信息的方法。
(10)地震资料综合解释:地震资料解释就是把这从野外采集的经过处理的资料转化成地质术语,即根据地震资料确定地质构造形态和空间位置,推测地层的岩性、厚度及层间接触关系,确定地层含油气的可能性,为钻探提供准确井位等。
二简答题1识别亮点的标志:(1)振幅异常(2)极性反转(3)水平反射同相轴的出现(平点)(4)速度下降(5)吸收衰减2.三维地震勘探有哪些优势(1)野外施工方便灵活,不受地形、地物条件的限制,满足面积观测、覆盖次数和炮检距相同即可。
1、均方根速度:把水平层状介质情况下的反射波时距曲线近似当作双曲线时,求出的波速就是这一水平层状介质的均方根速度。
它是用各分层的层速度加权再取均方根值得到的。
VR2、射线速度:波沿射线传播的速度,Vr3、平均速度:地震波垂直穿过地层的总厚度与单程传播所需的总时间之比4、自激自收时间:时距曲线在t轴上的截距,在地震勘探中称为t0时间,表示波沿界面法线传播的双程旅行时间,t0=2h0/v5、真速度:波沿射线方向传播的速度,也称射线速度。
6、视速度:地震勘探中,一般是在地面或海面观测波的传播,观测方向往往和波射线方向不一致,这时沿观测方向测得的波速度称为视速度。
7、倾角时差:这种在激发点两侧对称位置观测到的来自同一界面的反射波的时差由界面倾角引起的,称为倾角时差。
正常时差:任一接收点的反射旅行时间tx和同一反射界面的双程垂直时间t0的差,用△tn 表示8、波的对比:在时间剖面上根据反射波同相轴的一些特征来识别和追踪同一反射界面反射波的工作,就叫做波的对比。
波的对比是地震资料解释中的一项最重要的基础工作,对比工作的正确与否将直接影响地质成果的可靠程度。
9、地震资料地层岩性解释概念:---动力学信息主要是指地震波的振幅、频率、极性等;----地震剖面上反射波总的特征如同相轴的连续性、反射波的内部和外部几何形态等信息;----地层岩性解释可分为地层解释和岩性解释两方面(即地震地层学和地震岩性学);10、构造发育史图:又称为古地理-古构造恢复剖面,就是将某些有地质意义的层位认为是古时期的沉积平面,然后将这一层位向上时移拉平,就可得到古构造剖面,其目的是研究这一层在其沉积时期与其它各层之间的关系。
11、振动图:在某一确定距离r处质点位移随时间而变化的曲线12、波剖图:在某一固定时刻t,介质中不同位置处的质点的位移状态变化曲线13、多次覆盖技术:多次覆盖技术也称共中心点叠加,共深度点叠加,共反射点叠加,其基本思想是在地面上不同的观测点或以不同的方式对地下某点的地质信息进行重复观测,这样可以保证即使个别观测点受到干扰也能得到地下每一点的信息。
《地震地层学》考试重点一、名词解释1.地震地层学(Seismic Stratigraphy)地震地层学是利用地震资料结合钻井资料、测井资料、露头资料,研究地层的分布及沉积特征,分析盆地的演化史,恢复盆地的古沉积环境,评价石油地质条件的一门边缘学科。
2.沉积层序(sedimentary sequence):沉积层序是一个相对整一的、成因上有联系的一套地层,其顶部和底部以不整合面或与之可以对比的整合面为界。
A depositional sequence is a relatively conformable succession of genetically related strata bounded at its top and base by unconformities or their correlative conformities.3.层序(Sequence):是一套相对整一的、成因上联系的、顶底以不整合面或与之相对应的整合面为界的地层单元(Mitchum,1977)。
4.地震层序(Seismic sequence):地震层序是沉积层序在地震剖面上的反映,由一套互相整合的、成因上有关联的地层所组成,这套地层的顶界和底界都是不整合面以及与之相连接的整合面。
5.地震分辨率(Seismic resolution):指的是用地震资料能区分单独地质体的能力。
6.地震相(Seismic facies):是一个在一定区域内可以确定的、由地震反射所组成的三维单元,其地震参数(例如反射结构、振幅、频率、连续性和层速度)不同于相邻地震相单元。
7.地震相分析(Seismic facies analysis):是指对地震反射波参数的描述和地质解释(环境背景,岩相等)8.地震相单元Seismic Facies Unit是指由反射波组构成的可在图上表示的三维地震单元,且这些地震单元的参数不同于邻近单元的参数a mappable,three dimensional seismic unit composed of groups of reflections whoseparameters differ from those of adjacent facies units.9.准层序组(Parasequence Set)一系列成因相关的、并具特定叠加模式的准层序,大多数情况下,它以主要洪泛面和与之相对应的界面为界。
地震解释基础 复习题1.为什么并非每一个地质界面都对应一个反射同相轴?子波有一定的延续长度,若地层很薄,相邻分界面的信号可能会重叠到一起形成复合波,导致无法分辨界面。
所以一个反射同相轴可能包含多个地质界面。
2.影响地震资料纵向分辨率的因素有哪些?提高分辨率的实质是什么?1)激发条件——激发宽频带子波——井深、药量、激发岩性、虚反射、激发组合2)接收条件——检波器类型、地表岩性、检波器耦合、组合方式、仪器响应3)近地表低降速带的影响4)大地滤波作用、地层速度实质:提高主频,拓宽频带3.提高横向分辨率的方法是什么?为什么它能提高横向分辨率?偏移是提高地震勘探横向分辨率的根本方法提高横向分辨率的核心是减小菲涅尔带的大小,菲涅尔带的极限 :h=0,所以菲涅尔带减小到极限L=λ/4,所以偏移能提高横向分辨率。
4.地震剖面的对比方法1)掌握地质规律、统观全局在对比之前,要收集和分析勘探区的各种资料。
研究规律性的地质构造特征,用地质规律指导对比解释。
了解地震资料采集和处理的方法及相关因素,以便准确识别和判断出剖面假象。
2)从主测线开始对比在一个工区有多条地震剖面,应先从主测线开始对比工作,然后从主测线的反射层延伸到其他测线上去。
(主测线:指垂直构造走向、横穿主要构造,并且信噪比高、反射同相轴连续性好的测线。
它还应有一定的延伸长度,最好能经过钻探井位。
)3)重点对比标准层对某条测线而言,可能有几个反射层,应重点对比目标层(或称为标准层,标准层:具有较强振幅、连续性较好、可在整个工区内追踪的目标反射层。
它往往是主要的地层或岩性的分界面,与生油层或储集层有一定的关系,或本身就为生油层、储油层)。
4)相位对比反射波的初至难以辨认,采用相位对比。
若选振幅最强、连续性最好的某同相轴进行追踪,为强相位对比。
在各个剖面上对比的相位应一致,否则会造成错误的解释。
反射层无明显的强相位,可以对比全部或多个相位,为多相位对比。
也可用整个波组的所有相位对比,提高解释的正确度。
地震资料解释中必须弄懂的50个基本概念!地震资料解释中的基本概念.1. 地震资料解释是将地震信息转换成地质信息。
核心就是依据地震剖面的反射特征和地震信息,应用地震勘探原理和地质基础理论,赋予其明确的地质意义和概念模型2.地震解释的发展阶段: 地震构造解释阶段----在构造地质学和地震成像基本原理的基础上,确定地下主要反射界面的埋藏深度,落实和描述地下岩层的构造形态特征,为钻探提供有力的构造圈闭是其主要目的。
地震沉积解释阶段----以地震地层学和层序地层学理论(思想方法)为基础,以落实隐蔽油气藏、描述地下储层空间几何形态为主要目的.地震资料综合解释阶段----以地震资料为基础,综合一切可能获得的资料(包括地质、钻井、测井以及地球化学和其他地球物理资料),合理判断和分析各种地震信息的地质意义,以达到精确重现地下地质情况。
3.地震子波:震源激发时产生尖脉冲,在激发点附近的介质中以冲击波的形式传播,当传播到一定距离时,波形逐渐稳定,称该时刻的地震波为地震子波4.地震剖面的种类:时间剖面有两种:一是水平叠加时间剖面,简称水平剖面;二是叠加偏移时间剖面,简称偏移剖面。
时间剖面的显示:波形剖面,变面积剖面,变密度剖面,波形加变面积剖面,彩色显示剖面,5. 时间剖面的特点:时间剖面由图头和记录两部分组成。
图头部分:位于剖面的起始部分,用以说明剖面的工区、测线号、起止桩号、剖面性质、野外施工参数和处理方法与流程,其显示内容由处理人员提出。
记录部分:是时间剖面的主要部分。
横轴:代表共中心点叠加道的位置,一般用CDP点号和相应的测线桩号表示。
CDP点距为道距的一半,通常为25m。
桩号SP,单位为米或千米。
纵轴:双程反射时间T。
单位为秒。
速度谱:每km一组显示于剖面上方地形线: 显示于剖面上方或下方。
基准面:统一或浮动的,多选在低速带之下。
地震剖面上0秒所对应的海拔。
视周期:相邻波峰(谷)之间的时间长度视主频:视周期的倒数。
第五章1,、时间剖面与地质剖面存在的主要差别?解决地震剖面存在问题的途径?主要差别(1)在测线同一点,根据钻井资料得到的地质剖面上的地层分界面与时间剖面上的反射波同相轴在数量上、出现位置上常常不是一一对应的。
(2)时间剖面的纵坐标是双程旅行时,而地质剖面或测井资料是以铅垂深度表示的,两者需经时深转换,其媒介就是地震波的传播速度,它通常随深度或空间而变化。
(3)时间剖面上的反射波振幅、同相轴及波形本身包含了地下地层的构造和岩性信息。
但是反射波同相轴是与地下的分界面相对应,一个界面的反射特性又与界面两侧的地层、岩性有关。
必须经过一些特殊处理才能把反射波所包含的“界面”的信息转换成为与“层”有关的信息后,才能与地质和钻井资料进行直接地对比。
(4)地震剖面上的反射波通常是反射子波叠加、复合的结果。
复合反射子波的形成取决于地下一组靠的很近的地层结构的稳定性,如薄层厚度、岩性、砂泥岩比等。
(5)在水平叠加剖面上常出现各种特殊波,如绕射波、断面波、回转波、侧面波等。
这些波的同相轴形态并不表示真实的地质形态,它们在全三维偏移剖面上都会准确归位。
途径(1)通过数学关系(如三个角度或三个深度的相互转换关系)换算得到地质分界面的正确空间位置。
(2)偏移处理它是把反射和绕射准确归位到其真实位置的反演过程。
(3)进行空间校正,恢复地质t构构造的真正形态。
它是利用水平叠加剖面进行对比解释后,对绘制的目标层造图进行空间校正的一系列工作过程。
2、地震剖面上识别各种波的主要标志?(1)强振幅反射波一般以较强的振幅出现在干扰背景上。
反射波振幅的强弱还与反射系数、界面形状等因素有关,如果沿界面无构造或岩性的突变,则反射波的振幅眼侧线应当是稳定或渐变的。
(2)波形相似由于震源所激发的地震子波基本相同,同一界面反射波传播的路程相近,传播过程中所经受的地层吸收等因素的影响也相近,所以同一反射波在相邻地震道上的波形特征是相似的。
(3)同向性如果有一个反射波传导测线上,它的视速度不变,或只是沿测线缓慢变化,沿测线布置得观测点又相距不远,则同一个反射波的相同相位在相邻地震道上的射线路经或到达时间是相近的,相邻地震道记录下来的振动图也是相似的,形成同相轴。