最新-有理数 精品
- 格式:doc
- 大小:185.23 KB
- 文档页数:3
第二章有理数的运算一、有理数加法→知识点回顾:→要点点拨:有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条。
法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”。
有理数加法的运算律①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)。
根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便。
二、有理数减法→知识点回顾:三、有理数乘法→知识点回顾:→要点点拨:有理数的乘法满足的运算律: ①乘法交换律:ab ba =; ②乘法结合律:()()ab c a bc =; ③乘法分配律:()a b c ab ac +=+有理数乘法运算步骤:先确定积的符号,再求出各因数的绝对值的积。
四、有理数除法→知识点回顾:有理数的减法的意义与小学学过的减法的意义相同。
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
有理数的减法法则:减去一个数等于加上这个数的相反数. 设,则,.因此,.有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,都得零。
几个不等于零的数相乘,积的符号由负因数的个数决定;当负因数的个数为奇数个,积为负;当负因数的个数为偶数个,积为正;几个数相乘,如果有一个因数为零,积为零。
有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,都得零。
五、倒数→知识点回顾:→要点点拨: ①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
六、有理数的乘方→知识点回顾:→要点点拨:特别地,11n=,00n=(n 为正整数)正数的任何次幂都是正数,负数的奇数次幂是负数和,负数的偶数次幂是正数七、科学记数法→知识点回顾:八、近似数用和实际情况完全相符合的数来表示某一个量,这样的数叫做准确数。
有理数的除法篇一:有理数除法练习题20199633(1)(?)?(?)(2)(?2)?3105(3)(?323)?(?512)(5)(?3)????11???(?214?2 ?4)(7)(?314)?(?13)?8?42(9)5?(?22835)?21?(?14)?0755(4)(?33)?(?313)(6)1 12???5???3???(?025)(8)(?212)?(?5)?(?313)113(10)?(2?72?431(1)(?15)?(?3 )(2)(?12)?(?)4(3)(?075)?0251(4)(?12)?(?)?(?100)1273(5)?35??(?)841(6)? 6?(?4)?(?1)533(7)(?51)?(?34)?(?)(8)-35÷7×(-4)88二、若,互为相反数,,互为倒数,的倒数是2,课外拓展,推广法则求??的值1.若?0,?0,则____0若?0,?0,则____02.若?0,?0,则____0若?0,?0,则____0一.填空(1)-的相反数为,倒数为。
(2)若一个数的相反数为-1,则这个数为,这个数的倒数为。
(3)的相反数的倒数是。
(4)倒数是它本身的数是,相反数是它本身的数是。
(5)若两个数互为倒数,则它们的积是。
(6)若两个数互为负倒数,则它们的积是。
(7)若一个数的是-3,这个数是。
(8)一个不为0的数乘以它的相反数的倒数,其积为。
(9)若和互为相反数,和互为倒数,则3(+)-5=(10)2÷(-7)=0÷(-375)=(11)(-72)÷9=10÷(-025)=(12)÷(-2)+025=25×376×(-4)=二选择题(1)下列说法正确的是()0是最小的有理数0的相反数还是00的倒数是00除以任何数得0(2)若一个数的相反数与这个数的倒数的和等于0,则这个数的绝对值等于()。
1.2 有理数【教学目标】1.掌握有理数的概念;2.会对有理数按一定的标准进行分类;3.体检分类.【对话探索设计】〖复习〗我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗? 75.1可以写成两个整数的比吗? ∙3.0是不是分数? 结论:所有的有限小数和无限循环小数都是分数.〖探索1〗小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?结论:正整数﹑零﹑负整数统称整数.〖探索2〗下列负数哪些是负分数? -12,73-,-0.33,5π-,-12.03, ∙-3.5. 〖探索3〗所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -π, -3.88, 0, 3π-, 3.14159265, 237-,∙∙32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}(注意:大括号内的省略号表示什么?)〖探索4〗7π为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;(2)分数一定是小数,小数不一定是分数.〖探索5〗整数和分数统称有理数.在数-100, 70.8, -7, π, -3.8, 0, 32π-, ∙3.0, 722-中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.(友情提示:π, 32π-都是小数,但都不是分数,自然也都不是有理数.你答对了吗?) 〖练习〗P10.练习【作业】P18.习题1.【补充作业】1.列出竖式,把分数72化为小数.(体会分数不可能是无限不循环小数.) 2.把下列小数化为分数:3.14159, ∙∙32.0.【备选素材】1.判断:(1)一个有理数,不是正数,就是负数;(2)一个有理数,不是整数,就是分数;(3)一个有理数,是分数,就一定是小数;(4)一个无限小数,如果不循环,就不是有理数;(5)小数就是分数;(6)有理数只能分成两类.(7)负分数不是负数.2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.负有理数集合小数集合3.分数可以分为有限小数和________________两类.4.满足什么条件的小数才是有理数?5.(1)列出竖式,把分数722化为小数;(体会分数不可能是无限不循环小数.) (2)有的小数不是分数,你能举出一个例子吗?(3)说明为什么0.3是分数,而7π-却不是.6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.7.把下列各数填在相应的集合里:-|-3|, -(-0.072), π, -3.88, 3π-, 3.14, 237- , ∙3.0.。
七年级有理数经典例题一、有理数的概念相关例题例1:判断下列数哪些是有理数:公式, -3, 0,公式,公式, 0.333…(循环节为3), -0.1212212221…(相邻两个1之间2的个数逐次加1)。
解析:有理数是整数(正整数、0、负整数)和分数的统称。
-3是负整数,属于有理数。
0是整数,属于有理数。
公式是分数,属于有理数。
0.333…(循环节为3)是无限循环小数,可化为分数公式,属于有理数。
而公式是无限不循环小数,公式也是无限不循环小数, -0.1212212221…(相邻两个1之间2的个数逐次加1)是无限不循环小数,它们都不是有理数。
所以有理数有 -3,0,公式,0.333…(循环节为3)。
二、有理数的分类相关例题例2:把下列有理数分类: -1,公式,0, -0.5,3, -2.5,公式解析:1. 按整数和分数分类整数有: -1,0,3。
分数有:公式, -0.5, -2.5,公式。
2. 按正有理数、负有理数和0分类正有理数有:公式,3,公式。
负有理数有: -1, -0.5, -2.5。
0单独一类。
三、有理数的数轴表示相关例题例3:在数轴上表示下列有理数: -2,公式,0, -1.5,1解析:1. 画数轴,确定原点(表示0)、正方向(一般向右为正方向)和单位长度。
2. -2在原点左边2个单位长度处。
3. 公式,在原点右边1.5个单位长度处。
4. 0就在原点处。
5. -1.5在原点左边1.5个单位长度处。
6. 1在原点右边1个单位长度处。
四、有理数的大小比较相关例题例4:比较下列有理数的大小: -3与 -2.5,0与 -1,公式与公式解析:1. 对于 -3与 -2.5:两个负数比较大小,绝对值大的反而小。
公式,公式。
因为3>2.5,所以 -3< -2.5。
2. 对于0与 -1:0大于负数,所以0> -1。
3. 对于公式与公式:先通分,公式,公式。
因为公式,所以公式。
五、有理数的运算相关例题例5:计算:1. 公式2. 公式3. 公式4. 公式解析:1. 对于公式:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
有理数经典题型十题一、题型一:有理数的概念判断1. 下列数中:-2,0,(1)/(3),0.5,π,-0.3,-(5)/(2),其中有理数有()A. 6个B. 5个C. 4个D. 3个解析:有理数是整数(正整数、0、负整数)和分数的统称。
-2是整数,0是整数,(1)/(3)是分数,0.5=(1)/(2)是分数,-0.3 =-(3)/(10)是分数,-(5)/(2)是分数,而π是无理数。
所以有理数有-2,0,(1)/(3),0.5,-0.3,-(5)/(2)共6个,答案是A。
二、题型二:有理数的大小比较2. 比较-3,-(5)/(2),0,1的大小,并用“<”连接。
解析:先把-(5)/(2)=- 2.5。
负数小于0和正数,两个负数比较大小,绝对值大的反而小。
| - 3|=3,|-(5)/(2)| = 2.5,因为3>2.5,所以-3<-(5)/(2)。
所以-3<-(5)/(2)<0<1。
三、题型三:有理数的加法运算3. 计算(-2)+3+(-5)解析:begin{align}(-2)+3+(-5) =(-2)+3 - 5 =1-5 =-4end{align}四、题型四:有理数的减法运算4. 计算5 - (-3)解析:减去一个数等于加上这个数的相反数,所以5-(-3)=5 + 3=8。
五、题型五:有理数的乘法运算5. 计算(-2)×(-3)×(-4)解析:begin{align}(-2)×(-3)×(-4) =6×(-4) = - 24end{align}几个不为0的数相乘,负因数的个数为奇数时,积为负。
这里有3个因数,其中负因数有2个,负因数个数为偶数,先计算(-2)×(-3) = 6,再乘以-4得到-24。
六、题型六:有理数的除法运算6. 计算(-12)÷(-3)解析:两数相除,同号得正,异号得负,并把绝对值相除。
初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
第一讲有理数令狐采学11正数与正数B. 任意有限小数可以化为分数,但无限循环小数不克不及化为分数;C. 圆周率兀是无限不循环小数,故不是有理数;D. 0暗示没有,它是正数和正数的分界点知识点2:有理数的分类1.下列说法中正确的是()[正整数正有理数[正整数 A.-个有理数不是正数就是正数;整数〔正分数B.-个有理数不是整数就是分数;有理数<负整数有理数<C.有理数是指整数、分数、 正数、 正数和0;分数正分数 负有理数[负整数 D.有理数是指正数和正数、负分数、负分数2.在有理数中,不存在这样的数 ()A.既是整数,又是正数;正数和正有理数有什么区别呢?B.既不是正数,也不是正数注意:正数和正有理数是不合的,例如:就是正数,但不是正有理数; C.既是正数,又是正数;D.既是分数,又是正数正数和0统称为 ;0和正数统称为 0 3.小于5.5的正整数有.0和正整数统称为;0和负整数统称为 04.比正数年夜的所有有理数中, 最小的数 是知识点3: 数集把下列各数填入它所属的集合内:把一些数放在一起,就组成了一个数的集合,简称数集。
22o 3女口:所有有理数组成的集合叫有理数集。
所有整数组成的集合叫整数集。
3,21,0,—3,+8,—0.1,3 +4 ,,所有正数组成的集合叫正数集。
所有正数组成的集合叫正数集。
221.7,25%,7,—o所有正整数和零组成的集合叫自然数集。
等等。
0。
正整数集合:{…}负整数集合:{…} 【例5】把下列各数中的正数和正数辨别填在暗示正数集合和正数集 正分数集合:{…} 合里: 1 。
丄/1负分数集合:{…} 12,—,,—3.14,兀,0,-2,—2,1,10%;整数集合:{…}分数集合:{…} 正整数集合:非负整数集合:{…} 负分数集合: 有理数集合:{…}正有理数集合:非正数集合:二、当堂检测一、填空题1、把下列各数填入相应的年夜括号里:16.——,0.61&—3.14,260,-2009,—,—0.010010005,0,03 37,正分数集合{ ■•};整数集合{非正数集合{ ■ •};有理数集合{…}无理数集合{■ ■}...统称为整数; 和统称为有理数;和统称为非正数;和统称为非正数;和统称为非正整数;和统称为非负整数;有限小数和无限循环小数可看作;无限不循环小数称为。
有理数计算 1使用说明:本题集的制作初衷是为学生提供计算题目以便强化计算能力。
此题集共500道,1-445题为基本四则运算,建议每天做10道,如能保证答题准确率在80%以上,说明计算能力比较过关。
446-500题为能力计算题目,涉及等差数列,等比数列,裂项等技巧,建议学完计算技巧后再作题进行巩固。
要相信坚持总有回报,祝愿每位同学取得优异的成绩。
由于时间有限,后面所附答案如有错漏之处,请批评指正。
1. ⨯--÷5324()61152. ÷--⨯-÷7571234(2)525553. ⨯+⨯--÷+⨯1177110.8 4.8() 2.20.822394. --+-⨯-⨯620512)(154)(13475. -⨯⨯-187()( 2.4)736. ÷-⨯÷-7772()(5)3417. -+⨯÷-24528[15(13)](1)113118. ⨯-÷-⨯55(5)()511初一年级《有理数》计算题集500道(含答案)第1页,共64页有理数计算2 9. --+-÷-32114742)()(1132110. -⨯-⨯+⨯--⨯3737130.34(13)0.34221511. -⨯-⨯⨯-1367(13)(134)()1112. ---+--8248(4)(5)(4)3711113. --+÷-(16503)(2)14. (-)-(-)-+420.53 6.7551115. -++-212117887.21435312.7921916. -⨯-+-÷--(6)(4)(32)(8)317. ----+722()|1|21118. -⨯-+-÷(9)(4) (60)12第2页,共64页3有理数计算 19. 9581[()1]()1472142--+÷-20. 1|3|10(15)3--÷--⨯21. 375112532162-⨯-÷()22. 11171(231)(1)(7)32186+÷-⨯--23. 31(820.04)43-⨯--24. []551(0.4)( 2.5)---⨯-25. 251(1)(10.5)3---⨯26.575(7)(243)(246)--+---+-+-27. 213(2)(1)8()312--⨯--÷-⨯-+28. 912311(27)9()(24)1123412-÷-+--⨯-第3页,共64页有理数计算430.()()1120.12533110.25483⎛⎫⎛⎫⎛⎫+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31. 211(455)365455211545545365⨯-+⨯-⨯+⨯32. 102131111()[9(3)]314122---⨯--+÷33. 8221211(1)()()[2(3)]0.52368---÷-⨯-----34. 25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦35. ()131170.125 1.213213⎛⎫⎛⎫-⨯-÷-⨯- ⎪ ⎪⎝⎭⎝⎭36. ()2342()()0.2534⨯-+-÷-37. ()7511[30()36]59612-+-⨯-÷-()第4页,共64页5有理数计算 38. 23155(1)()()()74148+÷-÷-⨯-39. 31315(1)(1) ()()42424-÷--+÷-40. 8)3(4)2(323+-⨯--⨯41. 2)2(2)1(3210÷-+⨯-42. 2)2(2)2(23322--+----43. ])3(2[61124--⨯--44. ]2)33()4[()10(222⨯+--+-45. ])2(2[31)5.01()1(24--⨯⨯---46. 20022003)2()2(-+-47. 20052004(0.25)4-⨯48. 94)211(42415.0322⨯-----+-第5页,共64页有理数计算6 49. )2()3(]2)4[(3)2(223-÷--+-⨯--50. 32(4)(75)÷-⨯-+-51. 2)2(2)1(3210÷-+⨯-52. ()()574283+-⨯-÷-53. 2225(3)[()](6)439⨯+÷-----54. 31[2(10.54)]⨯-----55. 312123)2122(3)543(31512⨯-÷++÷+-⨯-56. 295(3)(2)4⨯--÷+-57. 3(5)[2(6)]3005-⨯---÷ 58. 2211(1)1339⨯-÷-59. [124(310)]4⨯-÷-第6页,共64页7有理数计算 60. 32(3)4(3)15⨯-⨯--+61. 4211[2(3)]6―⨯---62. 213502()15÷⨯-+-63. 421632()94÷⨯--64. ()1003212181215.20-⨯⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-÷-65. 21002212(1)1221|132|----÷-+--⨯()66. 3483(1)(4)--⨯---67. 3145()2⨯--68. 2)3121(36-⨯69. 24)23(942-⨯÷-第7页,共64页有理数计算8 70. 5434361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- 71. )12()4332125(-⨯-+72. )4()81()2(163-⨯---÷73. 2111()()(2)(14)236--÷--⨯-+ 74. 33[5(10.2)(2)]5---+-⨯÷-75. 111122399100++⋅⋅⋅+⨯⨯⨯76. 911321321÷⎪⎭⎫⎝⎛-⨯-77. ()124310(49)-⨯-÷-⎡⎤⎣⎦78. 4435222-+--÷-()() 79. 32416210+÷-÷-()() 第8页,共64页9有理数计算 80. 2153233+÷÷-+-()()()81. 3342331---÷-()() 82. 232[3323]43-⨯-⨯--()83. 1293123223-÷+-⨯+()84. )6(23517235)34()235(-⨯-⨯--⨯-85. 15511512277227⎛⎫⎛⎫⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭86. 23(2)(1)31(2)-⨯--⨯---[] 87. 3223(4)(9)0---⨯-⨯ 88. 31452-⨯-()89. 348311--⨯---()()第9页,共64页有理数计算10 90. 32422()93-÷⨯-91. 211[123]6--⨯--()92. 759015-⨯--÷-()()() 93. 23420.2534⨯-+-÷-()()()94. ()11731348126424⎛⎫-+-⨯- ⎪⎝⎭95. ()113700.2524.5525%42⎛⎫⎛⎫-⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭96. 333145⎛⎫⨯- ⎪⎝⎭97. ()()()525306⎛⎫-⨯-⨯+⨯- ⎪⎝⎭98. ()5411.5112153⎛⎫-⨯⨯-⨯ ⎪⎝⎭第10页,共64页99. 13810.0434⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭100. ()()3338878158777⎛⎫⎛⎫-⨯-+-⨯--⨯ ⎪ ⎪⎝⎭⎝⎭101. 1799918⎛⎫⨯- ⎪⎝⎭102. ()17.984⎛⎫-⨯- ⎪⎝⎭103. ()()()450.258-⨯⨯-⨯-104. 130.570445⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭105. 7213.2329213⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦106. ()74948⨯-107. 157556⎛⎫⨯- ⎪⎝⎭有理数计算12 108. ()24912525⎛⎫-⨯- ⎪⎝⎭109. ()200420062005-⨯110. ()231243412⎛⎫-++⨯- ⎪⎝⎭111. 2211613325⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112. 17371178412⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭113. 1173332127⎛⎫-⨯⨯ ⎪⎝⎭114. 15511521214142214⎛⎫⎛⎫-⨯--⨯+⨯ ⎪ ⎪⎝⎭⎝⎭115. 4555542792793⎛⎫⨯+⨯+⨯- ⎪⎝⎭116. ()7 1.7516⎛⎫+÷- ⎪⎝⎭117. 31231527⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭118. ()()148121549-÷⨯÷-119. ()()()1084-÷-⨯-120. ()()1177-÷⨯-121. 294.558-⨯÷122. 121311234⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭123. 141315432251518⎛⎫⎛⎫⎛⎫⎛⎫+÷-⨯-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭124. ()1347415620512⎛⎫⨯-⨯--+- ⎪⎝⎭125. 111111111111357357357357⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+-⨯-⨯-+-⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭126. 25(8)(1)--⨯-有理数计算14 127. 11()128--+128. 4(6)(3)-⨯-129. 12()( 3.25)5---130. 313.5(0.7)(5)5-⨯-÷-131. 112167342⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭132. ()1230.1434⎛⎫⎛⎫÷---÷- ⎪ ⎪⎝⎭⎝⎭133. 2212162()2-÷⨯-134. 344411117777⎛⎫⎛⎫-⨯÷--+ ⎪ ⎪⎝⎭⎝⎭135. 211110.5210.5100.5323⎛⎫⎛⎫⎛⎫-÷--÷-+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭136. 21.8( 1.8)3--+137. 114254-+138. 1348(1)124-⨯-+139. 220.52(3)⨯--140. 113()1234÷-+141. 322322(2)()(2)2()833-⨯---÷⨯-142. 4327221()()1727173⎡⎤----+-⎢⎥⎣⎦143. 3777(1)()48128--÷-144. 241(7)(30)3 3.25134-÷--⨯+145. 868635.28.642⨯-⨯-+有理数计算16 146. 200720092008-⨯147. 199279-⨯148. 762()(1.5)3-⨯149. 201020111()33-⨯150. 201120102009(7)147(49)(7)-+⨯--⨯-151. 214.732(2.631)33⎡⎤---⎢⎥⎣⎦152. 421(3)(1)()7315-÷-⨯-153. 812763189--+-÷-()() 154. 13122(3)2523-⨯--+÷---155. ()28[710.63]3⎛⎫-⨯-+-⨯÷- ⎪⎝⎭156. 151()46-+-157. 2(0.8)15-+-158. 15631218⎛⎫+- ⎪⎝⎭159. ()(){}1.5 1.80.80.9+-++-⎡⎤⎣⎦160. 112133[2357]32324⎛⎫⎛⎫-++-++- ⎪ ⎪⎝⎭⎝⎭161. 222115[1344]33155⎛⎫-+--+- ⎪⎝⎭162. ()43510.712150.7(15)9494⨯+⨯-+⨯+⨯-163. 45812605615⎛⎫--⨯ ⎪⎝⎭164. ()15154232918⎛⎫-÷-÷- ⎪⎝⎭有理数计算18 165. 142 81614 9÷÷--⨯()166. 1211 4.43.1830+++++-())(167. 41889365036.25525323+-++--()168. 53145119(20)(302.5)(151)119197131717132⎛⎫⎛⎫+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭169. ()5113(3[(2) 5.1753 6.325]3714837⎛⎫-+-++++-+ ⎪⎝⎭) 170. 53124(3)(3)(1)6565--+---+171. 3511(114662+--+)172. 224411()(0.6)33535⎛⎫-+----- ⎪⎝⎭173. 7131441232555555---++-+174.1116 3253 5.252 3477⎡⎤⎛⎫--+---⎪⎢⎥⎝⎭⎣⎦175.275315 (3(2)(3)5(1)5 58125812⎛⎫++--+--+--⎪⎝⎭)176.21 1(1) 35⨯-177.()56.5()6 -⨯-178.314 ()(1)() 429 -⨯-⨯-179.50.25(4)9 6-⨯⨯-⨯180.51 ()(3) 63 -÷-181.421 (3)(1)(1)7314 -÷-÷-182.12114 ()()(1)(1)(1) 23435 -⨯-⨯-⨯-⨯-有理数计算20 183. 31123.8 2.4799.6()(339)8873-⨯⨯⨯-⨯-⨯⨯184. ()8[3.6(0.2)(0.4)1]-----⨯-⨯-185. 2231356(8)2(2)4⎡⎤⨯-+--⨯-⨯⎢⎥⎣⎦186. 5.7215.8-+()187. 0.47()50347---188. 11(3)(5)24--+189. 1111(()()()6432-+---+--)190. ()23632(2)3482(2)-⨯+-⨯-÷-+-191. 232111(32)4(0.5)(1)325⎡⎤--÷-⨯-⨯-⎣⎦192. 54()(3)(1)(2)65-÷-⨯-⨯-193. 283256(1)(0.5)81477⨯-÷-+-194. 3311112(2)332--⨯-+-195. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-196. 2(3)2--⨯197. 12411()()()23523+-++-+-198. 11( 1.5)4 2.75(5)42-+++-199. 8(5)63-⨯--200. 3145()2-⨯-201. 25()()( 4.9)0.656-+----202. 22(10)5()5-÷⨯-有理数计算22 203. 323(5)()5-⨯-204. 25(6)(4)(8)⨯---÷-205. 1612()(2)472⨯-÷-206. 67()()51313-+--207. 211()1722---+-208. 737()()848-÷-209. 21(50)()510-⨯+210. 2(16503)(2)5--+÷-211. 32(6)8(2)(4)5-⨯----⨯ 212. 21122()(2)2233-+⨯--213. 199711(10.5)3---⨯214. 2232[3()2]23-⨯-⨯--215. 232()(1)043-+-+⨯216. 4211(10.5)[2(3)]3---⨯⨯--217. 4(81)( 2.25)()169-÷+⨯-÷218. 215[4(10.2)(2)]5---+-⨯÷-219. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-220. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-221. 23122(3)(1)6293--⨯-÷-222. 32323(2)()()32-⨯-⨯-有理数计算24 223. 13812711()3(2)()23-⨯⨯-⨯-224. 222172(3)(6)()3+⨯-+÷---225.()43212(8)()(2)2-÷---⨯-226. 81)4(2833--÷-227. 22100(2)(2)()3÷---÷-228. 22(3)(4)-÷-229. 22312()(0.8)2-⨯-÷-230. 2232113()(2)()32-⨯---÷-231. 232()(1)043-⨯-+⨯232. 2162()5+⨯-233. 2108(2)43-+÷--⨯234. []551(0.4)( 2.5)---⨯-235. 251(1)(10.5)3---⨯236. (14)26(14)(16)8-++-+-+ 237. ( 5.5)( 3.2)( 2.5) 4.8-+---- 238. (8)(25)(0.02)-⨯-⨯- 239. 1557()(72)29612-+-⨯-240. 11(2)()32-÷-241. 211(4)()22+-⨯-有理数计算26 242. 51552040.65(31)112280.52-÷⨯+÷--÷243. 2212113()12( 4.53)()233⎡⎤⎡⎤⨯⨯---⨯---+⎣⎦⎢⎥⎣⎦244. 23242341()()()(1)32232-⨯-÷-⨯--+-245. 111512255()()16(1)44543⎧⎫⎡⎤÷-+⨯÷--⨯-⎨⎬⎢⎥⎣⎦⎩⎭246. 20(15)(28)17-+---- 247. 6523157-+-+248. 2113()(1)3838---+-249. ( 5.54)( 3.2)( 2.5) 4.8-+---- 250. 295(3)(2)4+⨯---÷ 251. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦252. 32432(2)(1)(2)(2)-+-⨯---÷-253. []3(5)2(6)3005-⨯---÷ 254. 222221()32()4(1)3332-⨯-⨯-+-⨯-255. 221313(5)()240(4)2354⎡⎤-⨯--⨯--÷-⨯-⎢⎥⎣⎦256. 1347()(154)620512--+-⨯-⨯257. 3412()(5)777÷-⨯÷-258. ( 5.5) 3.2 4.5 6.8-⨯+⨯ 259. 2238()(4)()(8)595⨯---⨯-+-⨯260. 11(13)(134)()1367-⨯-⨯⨯-261. ()()()224275543()7811⎡⎤----⨯÷⨯-⎣⎦有理数计算28 262. ()()23210022()(2)3÷---÷-+-263. 222172(3)(6)()3-+⨯-+-÷-264. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦265. 201023)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--266. )145()2(52825-⨯-÷+-267. 7111(4)(5)(4)38248---+--268. 11(0.5)(3) 6.75542---+-269. (6)(4)(32)(8)3-⨯-+-÷-- 270. 1(5)(16)(2)3-÷-÷-271. 4321(2)(8)()(2)2-÷---⨯-272. 322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--273. 111117(113)(2)92844⨯-+⨯-274. 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭275. 1113|16|2(4)()448⎡⎤⎡⎤---⨯-÷--⎢⎥⎢⎥⎣⎦⎣⎦276. (9)(4)(60)12-⨯-+-÷ 277. 230(3)3(2)--÷⨯-278. 22312()(0.8)2-⨯-÷-279. 37511()2532162-⨯-÷280. 2232113()(2)()32-⨯---÷-281. 2333(2)(3)(1)(3)---⨯---有理数计算30 282. 3233112()()(2)33-÷---⨯-283. 22131(2)2[()3]245--⨯--⨯÷284. 13611754136227231++-285. 22)36()33(24)12581(÷-÷---⨯-286. 2132()5+⨯-287. 222172(3)(6)()3-+⨯-+-÷-288. 225(3)[()]39-⨯-+-289. 28(3)(2)+-⨯- 290. 22100(2)(2)()3÷÷----291. 421232()33÷⨯--292. 24(3)2(3)4--⨯--⨯293. 12411()()()23523+-++-+-294. 11( 1.5)4 2.75(5)42-+++-295. 200612(1)(24)(2 2.75)83-+-⨯+-296. 103(1)2(2)4-⨯+-÷297. 422(10)[(4)(33)2]-+--+⨯298. 33422()93-÷⨯-299. 2310110.25(0.5)()(1)82-÷-+-⨯-300. 4321(2)(8)()(2)2-÷---⨯-301. 222475(5)4(3)()(7)811⎡⎤----⨯÷⨯-⎣⎦有理数计算32 302. 31{(3)[30.4(1)(2)]}2---+⨯-÷-303. 421110.52(3)3-+-⨯⨯⨯-()[]304. 3334[(17)6][(5)3](2)⨯-÷+--÷--305. 332313[8(2)1](3)(2)0.25--÷--+-⨯-÷306. 9.538(2|11.64 1.53 1.36|)----+-307. 73.17(812.03|219.83518|)--+308. 1112(398)-+--309. 95(945)----310. 5.6 4.7| 3.8 3.8-+---|311. 1213521(36)(16)(45)(10)27277+-+-+-++312. 5211()(2)(4)319152⨯-⨯-⨯-313. 555()83()(13)()28666-⨯+-⨯---⨯314. 23181920222...222-----+315. 111 (133519971999)+++⨯⨯⨯316. 3145()2-⨯-317. 25()()( 4.9)0.656-+----318. 22(10)5()5-÷⨯-319. 323(5)()5-⨯-320. 25(6)(4)(8)⨯---÷-321. 1612()(2)472⨯-÷-322. 2(16503)(2)5--+÷-有理数计算34 323. 32(6)8(2)(4)5-⨯----⨯324. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-325. 23122(3)(1)6293--⨯-÷-326. 21122()(2)2233-+⨯--327. 19971(1)(10.5)3----⨯328. 2232[3()2]23-⨯-⨯--329. 232()(1)043-+-+⨯330. 4211(10.5)[2(3)]3---⨯⨯--331. 215[4(10.2)(2)]5---+-⨯÷-332. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-333. 42311[ 2(3)]6--⨯--- 334. 7574.037127.5371236)9618-+-⨯-+(335. 2212[3()0.8](2)35-⨯--÷-336. --+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪---+3825583521()337. [(3)(4)5][82(6)]4-⨯--⨯--⨯-÷338. -÷--÷-824134()()339. ()[()()]-÷-⨯⨯-11551135340. 42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭341. 131********11-÷⨯÷342. ---⎛⎝ ⎫⎭⎪----⎛⎝ ⎫⎭⎪1133411334有理数计算36 343. ()()------22222233344. 1235342123341822--÷-⎛⎝ ⎫⎭⎪+⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪345. -----÷-+--÷--22331349722232()|()()|||||346. 13525(2)2514⎛⎫--÷-⨯- ⎪⎝⎭347. 234( 1.5)1243⎛⎫-÷-⨯- ⎪⎝⎭348. 34311(1)2⎡⎤⎛⎫-----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦349. 210.2343 5.35⎡⎤⎛⎫-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦350. 222243(3)(5)(0.3)0.95⎛⎫---+-⨯---÷- ⎪⎝⎭351. ()11232311412243⨯⨯-⎛⎝ ⎫⎭⎪--⎡⎣⎢⎢⎤⎦⎥⎥+÷-⎛⎝ ⎫⎭⎪352. 71957180251411313..-⎛⎝ ⎫⎭⎪÷-÷⨯⎛⎝ ⎫⎭⎪353. ()-÷⨯-⨯÷⨯-⎛⎝ ⎫⎭⎪11234021341435..354. ()()11160752116340534+--⎡⎣⎢⎤⎦⎥⨯-⎧⎨⎩⎫⎬⎭÷---⎛⎝ ⎫⎭⎪..355. ()-⨯-⎛⎝ ⎫⎭⎪-⨯--⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥212341351499113192222356. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦357. 33423(1)(1)--⨯---358. 33510.2(2)5⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦359. 12(17)1(0.6)4⎡⎤---÷-+-⎢⎥⎣⎦360. 2311(10.6432)⎡⎤----÷⎣⎦有理数计算38 361. 3213322.2512853⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦362. []261(0.4)( 2.5)---⨯-363. 362211362⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭364. 1448551836615335175123192155⨯÷-+⨯⎛⎝ ⎫⎭⎪-⨯+⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥.....365. ()()()222410.4 3.1 2.610.30.15⎧⎫⎡⎤⎛⎫-⨯---+⨯---÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭366. 513113(50)217348⎛⎫⎛⎫⎛⎫⨯-÷-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭367. ()11572348126824⎛⎫-+-⨯- ⎪⎝⎭368. 4535522723723237⎛⎫⎛⎫⎛⎫⨯---⨯--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369. ()199719996661998⎛⎫-⨯- ⎪⎝⎭370. 33371. 4946111(3)20.24911235⎡⎤⎛⎫⎛⎫-÷⨯-⨯-⨯-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦372. 2782411813318833⨯÷⎪⎭⎫ ⎝⎛-⨯373. )2()2(2123322-+--⎪⎭⎫ ⎝⎛-+-374. ⎪⎭⎫⎝⎛----÷⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2135322132213122375. ()87216543313113)1(61)5.4(187********÷⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛---⨯⎪⎭⎫⎝⎛--⨯+-⨯⎪⎭⎫ ⎝⎛-376. )57(5857-⨯377. ()4443145-÷-378.(有理数计算40 379. ()3330037÷-380. ()()()199084481990199014181990-⨯--⨯--⨯-⨯381. ()()999999999999999999+-⨯-+-382. ()()()()()149297483149297483-÷-⨯-÷-⨯-÷-383. ()()()⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷⨯-2314.0411432417384. ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+÷-⨯⨯-⎪⎭⎫ ⎝⎛-÷-12122211341125.0221132322385. ()41611143125.1012112310013+--⎪⎭⎫ ⎝⎛-÷+386. 199519953(0.125)[(2)]⨯-387. 25413()(0.612)()651010⨯+-÷-388. 322333342(-)⨯(-0.6)-(-)⨯1.5-2÷(-)253389. 232006333...3++++390. 199720002000200019971997⨯-⨯391. 22222221949195019511952...199719981999-+-++-+392. 22221111(1)(1)...(1)(1)23910---- 393. 1111 (12123123100)++++++++++394. 987654321987654324987654323987654322⨯-⨯395.1121231299()()...(...)233444100100100++++++++++396. 32)65()43(21--+---397. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭有理数计算42398.111135()532114⨯-⨯÷399. 34153()2--⨯-()400. 42223721-+--⨯-()()401. 1031224-⨯+-÷()()402. 2395525-⨯-÷-()()() 403. 333(125)()62187()777-÷-+÷+÷- 404.2725.0)431(218)522(52⨯÷--⨯--÷405. 311252525424⨯--⨯-⨯()406. 38(4)23--÷⨯407. 22733(3)⨯÷+-408. 4435(2)2(2)-+--÷-409. (28)(64)(1)5-÷-++-⨯410. 2(2)07(8)(2)÷-+÷--⨯-411. 13131()24524864⎡⎤-+-⨯÷⎢⎥⎣⎦412. 2332312(3)(2)(9)3÷-÷---÷413. 222122(1)33-÷⨯-414. 32432(2)(1)(2)(2)-+-⨯---÷-415. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦416. 75.61258)431(121-----417. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦418. 75)21(212)75(75211⨯-+⨯--⨯有理数计算44419. 4)2(51232⨯--÷-420. 50)3(15)3(42--÷--⨯421. 3211(10.5)2(3)7⎡⎤---⨯⨯--⎣⎦422. 22)7()6(6112119750-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛+--423. []3521325.06.05.2)1(⎪⎭⎫⎝⎛-⨯+--÷-424. 111117(113)(2)92844⨯-+⨯-425. 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦426. 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦427. 2375(2)(10.8)114⎡⎤----+-⨯÷--⎢⎥⎣⎦428. 151623-÷-÷-()()() 429. 42(3)60.25-+⨯--÷430. 3(5)[1.85(21)7]4-÷--⨯431. []18{10.4 (10.4)0.4}÷-+-⨯432. 1111()636÷-⨯433. –3[4(4 3.51)][2(3)]---⨯⨯-+-434. ()3.57.75 4.25 1.1--÷435. 321612115()|(2)|(2)(|()|)2114332⎡⎤----+-⨯-÷---⎢⎥⎣⎦436. 1110.125(3)(3)()(0.25)488+++-+++-437. 5215[(9)]317.75632-----+有理数计算46438. 1211[3()1](8)8233⨯⨯---⨯--439. 7211()(4)9353-÷--⨯-440. 78(0.125)8-⨯441. 4010(0.25)256⨯442. 12(3)(4)56(7)(8)(23)(24)++-+-+++-+-+⋯+-+-443.1111111142648620102008-+-+-+⋯+-444. 1111(1)(1)(1)(1)2009200820071000-⨯-⨯-⨯⋯⨯- 445. 19(7)128(7)33(7)÷--÷-+÷-446.111111223344556++++⨯⨯⨯⨯⨯447.111 (101111125960)+++⨯⨯⨯448.2222 109985443 ++++⨯⨯⨯⨯449.1111 11212312100 ++++++++++450.1111 133******** ++++⨯⨯⨯⨯451.1111251335572325⎛⎫⨯++++⎪⨯⨯⨯⨯⎝⎭452.251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯453.3245671 255771111161622222929 ++++++⨯⨯⨯⨯⨯⨯454.11111111()128 8244880120168224288+++++++⨯455.11111111 612203042567290 +++++++456.111111 13610152128 ++++++457.111111111 2612203042567290 --------458.11111 104088154238 ++++459.1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯460.74.50.161111 1813153563 13 3.75 3.23⨯+⎛⎫⨯+++⎪⎝⎭-⨯461.11111 123420 261220420 +++++462.11111 20082009201020112012 1854108180270 ++++463.11224 26153577 ++++464.1111111 315356399143195 ++++++465.1511192997019899 2612203097029900 +++++++466.111 123234789 +++⨯⨯⨯⨯⨯⨯467.111 1232349899100 +++⨯⨯⨯⨯⨯⨯有理数计算48468.1111 135246357202224 ++++⨯⨯⨯⨯⨯⨯⨯⨯469.4444...... 135357939597959799 ++++⨯⨯⨯⨯⨯⨯⨯⨯470.9998971 12323434599100101 ++++⨯⨯⨯⨯⨯⨯⨯⨯471.11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯472.333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯473.5719 1232348910 +++⨯⨯⨯⨯⨯⨯474.571719 1155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()475.34512 12452356346710111314 ++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯476.12349 223234234523410 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯477.123456 121231234123451234561234567 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯有理数计算50478.23993!4!100!+++ 479.234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++ 480.2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++ 481. 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++ ()482.22222211111131517191111131+++++------483. 222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯- 484.222222223571512233478++++⨯⨯⨯⨯ 485. 222222222231517119931199513151711993119951++++++++++-----。
有理数集有理数是以整数和分数形式表示的数,是数学中最基本和最常见的数之一。
有理数集包括正整数、负整数、零、正分数和负分数。
在数轴上,有理数按照大小顺序排列,形成一个无限的连续集合。
有理数的定义是可以用两个整数的比来表示的数。
例如,1/2、3/4、-2/5和-7/3都是有理数。
有理数可以用无限循环小数的形式表示,例如1/3=0.3333...和5/6=0.8333...。
有理数也可以用整数的形式表示,例如3和-5。
有理数集的性质:1. 封闭性:有理数集对于加法和乘法运算是封闭的。
即两个有理数相加或相乘的结果仍然是有理数。
例如,1/2 + 3/4 = 5/4,5/9 * -2/3 = -10/27。
2. 密度性:有理数集在实数轴上是密集的。
对于任意两个不相等的有理数a和b(a < b),总存在一个有理数c满足a < c < b。
这意味着在任意两个有理数之间,都可以找到一个有理数。
3. 有序性:有理数集在实数轴上有良序性。
即任意两个有理数a和b,必然满足a < b、a = b或a > b。
4. 唯一因式分解定理:每个非零有理数可以唯一地分解为素数的乘积,其中素数是指不能分解为其他两个较小的整数的乘积。
5. 有理数的运算封闭:有理数集对于加法、减法、乘法和除法运算是封闭的。
即两个有理数相加、相减、相乘或相除的结果仍然是有理数。
有理数集在日常生活中有许多应用。
例如在购物中,我们使用有理数来表示价格,比如5元或-10元。
在计算分数时,我们使用有理数。
有理数还可以用来表示时间,例如半小时可以表示为1/2。
有理数集在数学中也有广泛的应用。
它是代数学中一个重要的基础概念,对于理解代数运算、方程和不等式有很大的帮助。
有理数集还与整数集和实数集相互关联,构成了数学中重要的数域。
总之,有理数集是数学中基本且常见的数集。
它具有封闭性、密度性、有序性等性质。
有理数集在日常生活和数学领域都有广泛的应用,是数学学习中的基础知识之一。
有理数应用题100道【精品】的结果
本文档总结了100道有理数应用题的结果,旨在帮助学生们加深对有理数的理解和应用能力。
题目1
题目描述:某商店原价\$200的商品打折后,售价为\$160,请问打折后的折扣率是多少?
解答:折扣率 = (原价 - 售价)/原价 × 100% = (200 - 160)/ 200 × 100% = 20%
题目2
题目描述:小明在游戏中一共赢得了\$500,他决定将其中的1/4 捐赠给慈善机构,请问他将捐赠多少金额?
解答:捐赠金额 = 赢得金额 ×捐赠比例 = 500 × 1/4 = \$125
......
题目100
题目描述:一个球从一个高度为100米的高楼上自由落下,每次落地后反弹回原高度的一半,求球总共弹起多少次?
解答:球每次弹起的高度形成一个等比数列,球总共弹起的次数为等比数列求和的结果,即S = a1 = (1 - q^n) / (1 - q),其中a1为首项,q为公比,n为项数。
根据题目中的信息,首项为100,公比为1/2,项数为无穷大。
将这些值代入公式可以计算出球总共弹起的次数。
......
通过以上100道题目的练习,学生们可以加深对有理数的应用理解,提高解题能力和数学思维。
希望这份资料能对学习有利。
1.2.1有理数〔教学目标〕1、了解集合的概念,理解有理数及有关概念;2、能将所给的有理数按要求进行分类,体验分类思想.〔重点难点〕有理数及有关概念是重点;有理数的分类是难点. 〔教学过程〕 一、导入新课[投影1]1、“一个数如果不是正数,那么一定是负数”这句话对不对?为什么? 不对.因为零既不是正数,也不是负数. 所以,一个数可能是正数,负数或零.2、引入负数后,你已经认识了哪些类型的数?试举几例. 正整数,如1,2,3,…; 零,0;负整数,如-1,-2,-3,…; 正分数,如1/2,2/3,15/7,0.1,5.32,…;负分数,如-0.5,-5/2,-2/3,-1/7,-15,0.25,…. 我们学过的有限小数和无限循环小数都可化为分数. 二、有理数及分类 1、有理数的概念正整数、0、负整数统称为整数. 正分数和负分数统称为分数. 整数和分数统称为有理数. 2、有理数的分类(1)按定义有理数可以怎样分类?(2)按性质有理数可以怎样分类?⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数0负整数负有理数负分数 注意:对概念进行分类,可以明了概念之间的关系,有利于我们进一步理解概念;分类必须按同一标准进行,做到不重复不遗漏. 三、例题[投影3]例 把下列各数填入表示它所在的数集的圈里.-17,22/7, -3/5,3,0.107, -63% ,0.分析:把一些具有相同特征的数合在一起组成了一个集合.所有正整数合在一起组成正整数集合,所有负整数合在一起组成负整数集合….什么是正数集合,负数集合,整数集合,分数集合?它们中分别是哪些数?· 0.2-答:正数集合中有22/7,3,0.107;负数集合中有-17 ,-3/5, -63%,;整数集合中有-17,3,0;分数集合中有22/7,0.107,-3/5,四、巩固练习[投影4]1、填空:(1)有理数中,是整数而不是正数的是;是负数而不是整数的是.(2)零是还是;但不是,也不是.[投影5]2、把下列各数放在相应的集合中.10,-0.72,-2,0,-98,25,8/3,6.3%,3.14.五、课堂小结1、什么是整数、分数、有理数?2、有理数可以怎样分类?分类要注意什么问题?作业:课本14面第1题.1.2.2 数轴教学目标: 1.巩固理解有理数的概念;2.掌握数轴的意义及构成特点,明确其在实际中的应用;3.会用数轴上的点表示有理数.教学重点: 数轴的意义及作用.教学难点: 数轴上的点与有理数的直观对应关系.教学方法: 自主互助,小组交流课前预习:课本p8—10教学过程:一.新课导入(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
有理数
时间:45分钟 满分:100分
一、填空题(每小题2分,共28分)
1. 在数+8.3、 4-、8.0-、 5
1-
、 0、 90、 334
-、
|24|--中,________________是正数,
____________________________不是整数。
2.+2与2-是一对相反数,请赋予它实际的意义:______________________________________。
3.3
5
-
的倒数的绝对值是___________。
4.用“>”、“<”、“=”号填空; (1)1___02.0-; (2)
4
3___54; (3)][)75.0(___)4
3
(-+---; (4)14.3___7
22
--。
5.绝对值大于1而小于4的整数有____________,其和为_________。
6.用科学记数法表示13 180 000,应记作_____________________。
7.若a 、b 互为相反数,c 、d 互为倒数,则 (a + b)33-(cd)4 =__________。
8.123456-+-+-+…20012002+-的值是__________________。
9.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
10.数轴上表示数5-和表示14-的两点之间的距
离是__________。
11.若0|2|)1(2=++-b a ,则b a +=_________。
12.平方等于它本身的有理数是_____________, 立方等于它本身的有理数是______________。
13.在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14.第十四届亚运会体操比赛中,十名裁判为某体操运动员打分如下:10、 9.7、 9.85、 9.93、 9.6、 9.8、 9.9、 9.95、 9.87、 9.6,去掉一个最高分,去掉一个最低分,其余8个分数的平均分记为该运动员的得分,则此运动员的得分是_________。
二、选择题(每小题3分,共21分)
15.两个非零有理数的和为零,则它们的商是( ) A .0 B .1- C .+1 D .不能确定 16.一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和0 17.如果a a -=||,下列成立的是( ) A .0>a B .0<a
C .0≥a
D .0≤a 18.用四舍五入法按要求对0.18019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.18(精确到百分位)
C .0.18(保留两个有效数字)
D .0.1818(精确到0.0001) 19.计算1011)2()2(-+-的值是( ) A .2- B .21)2(- C .0 D .10
2- 20.有理数a 、b 在数轴上的对应的位置如图所示: 则( )
0-11a b
A .a + b <0
B .a + b >0
C .a -b = 0
D .a -b >0 21.下列各式中正确的是( ) A .22)(a a -= B .33)(a a -=
C .|| 22a a -=-
D .|| 33a a =
三、计算(每小题5分,共35分) 22.13)18()14(20----+-
23.2
)5()2(10-⨯-+
24.(7)(5)90-⨯--÷(15)-
25.47÷)6(3
2
87-⨯-
26.)1279543(+--÷36
1 27.|9
7|-÷2)4(31
)5132(-⨯--
28.32
2
)43(6)12(7311-⨯⎥⎦
⎤
⎢⎣⎡÷-+--
四、解答题(每小题8分,共16分)
29.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
30.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部
少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?
五、附加题(每小题5分,共10分) 1.如果规定符号“﹡”的意义是a ﹡b =ab
a b
+,求2﹡(3)-﹡4的值。
2.已知|1|x += 4,2
(2)4y +=,求x y +的值。
有理数参考答案 1.+8.3、90; +8.3、8.0-、5
1-
、334-。
2.向前走2米记为+2米,向后走2米记为2-米。
3.
5
3
4.<,>,=,<。
5.±2,±3; 0。
6.1.318×118。
7.-3
8.-1001。
9.512.(即29 = 512) 10.9. 11.-1。
12.0,1; 0,±1。
13.75; -30。
14.9.825. 15.B 16.C 17.D 18.C 19.D 20.A 21.A 22.-29 23.-40 24.41 25.6 26.-26 27.-11/3 28.-169/196 29.(1)0km ,就在鼓楼; (2)139.2元。
30.(1)多24克; (2)9184克。
附加题 1.2.4.
2.3或-1或-5或-9。