2006年高考第一轮复习数学:3.3 等比数列
- 格式:doc
- 大小:354.50 KB
- 文档页数:9
2006年高考第一轮复习数学:3.4 等差数列与等比数列的综合问题一、选择题(共4小题,每小题4分,满分16分)*3.(4分)若关于x的方程x2﹣x+a=0和x2﹣x+b=0(a≠b)的四个根可组成首项为的等差数列,则a+b的值是().C D..C D.二、填空题(共4小题,每小题5分,满分20分)5.(5分)(2004•上海)在等差数列{a n}中,当a r=a s(r≠s)时,{a n}必定是常数数列.然而在等比数列{a n}中,对某些正整数r、s(r≠s),当a r=a s时,非常数数列{a n}的一个例子是_________.6.(5分)(2002•北京)等差数列{a n}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于_________.7.(5分)公差不为零的等差数列{a n}的第二、三及第六项构成等比数列,则=_________.8.(5分)若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是_________.三、解答题(共10小题,满分0分)9.已知{a n}是等比数列,a1=2,a3=18;{b n}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{b n}的通项公式;(2)求数列{b n}的前n项和S n的公式;(3)设P n=b1+b4+b7+…+b3n﹣2,Q n=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较P n与Q n的大小,并证明你的结论.10.(2011•密山市模拟)已知等差数列{a n}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是等比数列{b n}的第二项、第三项、第四项.(I)求数列{a n}与{b n}的通项公式;(Ⅱ)设数列{c n}对任意正整数n均有+++…+=(n+1)a n+1成立,其中m为不等于零的常数,求数列{c n}的前n项和S n.11.在等比数列{a n}(n∈N*)中,a1>1,公比q>0.设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n;(3)试比较a n与S n的大小.12.已知数列{a n}中,a1=且对任意非零自然数n都有a n+1=a n+()n+1.数列{b n}对任意非零自然数n都有b n=a n+1﹣a n.(1)求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.13.(2002•广东)设{a n}为等差数列,{b n}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{a n}及{b n}的前10项的和S10及T10.14.(2003•北京)已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=a n x n(x∈R),求数列{b n}前n项和的公式.15.数列{a n}中,a1=8,a4=2,且满足a n+2﹣2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式.(2)设b n=(n∈N*),S n=b1+b2+…+b n,是否存在最大的整数m,使得任意的n均有S n>总成立?若存在,求出m;若不存在,请说明理由.16.已知数列{a n}的各项均为正整数,且满足a n+1=a n2﹣2na n+2(n∈N*),又a5=11.(1)求a1,a2,a3,a4的值,并由此推测出{a n}的通项公式(不要求证明);(2)设b n=11﹣a n,S n=b1+b2+…+b n,S n′=|b1|+|b2|+…+|b n|,求的值.17.设f(k)是满足不等式log2x+log2(3•2k﹣1﹣x)≥2k﹣1(k∈N*)的正整数x的个数.(1)求f(k)的解析式;(2)记S n=f(1)+f(2)+…+f(n),P n=n2+n﹣1(n∈N*)试比较S n与P n的大小.18.已知数列{a n},构造一个新数列a1,(a2﹣a1),(a3﹣a2),…,(a n﹣a n﹣1),…,此数列是首项为1,公比为的等比数列.(1)求数列{a n}的通项;(2)求数列{a n}的前n项和S n.2006年高考第一轮复习数学:3.4 等差数列与等比数列的综合问题参考答案与试题解析一、选择题(共4小题,每小题4分,满分16分)*3.(4分)若关于x的方程x2﹣x+a=0和x2﹣x+b=0(a≠b)的四个根可组成首项为的等差数列,则a+b的值是().C D.,即,,.=×+×==.C D.二、填空题(共4小题,每小题5分,满分20分)5.(5分)(2004•上海)在等差数列{a n}中,当a r=a s(r≠s)时,{a n}必定是常数数列.然而在等比数列{a n}中,对某些正整数r、s(r≠s),当a r=a s时,非常数数列{a n}的一个例子是a,﹣a,a,﹣a,…(a≠0),r与s同为奇数或偶数.时,=16.(5分)(2002•北京)等差数列{a n}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于4.7.(5分)公差不为零的等差数列{a n}的第二、三及第六项构成等比数列,则=.,代入==故答案:8.(5分)若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是[4,+∞)或(﹣∞,0].由题意可知=++2的取值范围.∴=++≥,故+≤,故三、解答题(共10小题,满分0分)9.已知{a n}是等比数列,a1=2,a3=18;{b n}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{b n}的通项公式;(2)求数列{b n}的前n项和S n的公式;(3)设P n=b1+b4+b7+…+b3n﹣2,Q n=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较P n与Q n的大小,并证明你的结论.==9d=26=n n•n n•n n10.(2011•密山市模拟)已知等差数列{a n}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是等比数列{b n}的第二项、第三项、第四项.(I)求数列{a n}与{b n}的通项公式;(Ⅱ)设数列{c n}对任意正整数n均有+++…+=(n+1)a n+1成立,其中m为不等于零的常数,求数列{c n}的前n项和S n.时,时,≠+11.在等比数列{a n}(n∈N*)中,a1>1,公比q>0.设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n;(3)试比较a n与S n的大小.22∴×∵∴,,,12.已知数列{a n}中,a1=且对任意非零自然数n都有a n+1=a n+()n+1.数列{b n}对任意非零自然数n都有b n=a n+1﹣a n.(1)求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.﹣=[a)a)a(a)﹣[a =(a•)•)﹣•)﹣∴是公比为)a﹣•=)))﹣,得()(a﹣(13.(2002•广东)设{a n}为等差数列,{b n}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{a n}及{b n}的前10项的和S10及T10.∴的公差为∴,的公比为14.(2003•北京)已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=a n x n(x∈R),求数列{b n}前n项和的公式..﹣15.数列{a n}中,a1=8,a4=2,且满足a n+2﹣2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式.(2)设b n=(n∈N*),S n=b1+b2+…+b n,是否存在最大的整数m,使得任意的n均有S n>总成立?若存在,求出m;若不存在,请说明理由.(=(﹣[﹣﹣)﹣)).总成立.﹣为的最小值,故<16.已知数列{a n}的各项均为正整数,且满足a n+1=a n2﹣2na n+2(n∈N*),又a5=11.(1)求a1,a2,a3,a4的值,并由此推测出{a n}的通项公式(不要求证明);(2)设b n=11﹣a n,S n=b1+b2+…+b n,S n′=|b1|+|b2|+…+|b n|,求的值.,再求出=时,=1时,=∴=17.设f(k)是满足不等式log2x+log2(3•2k﹣1﹣x)≥2k﹣1(k∈N*)的正整数x的个数.(1)求f(k)的解析式;(2)记S n=f(1)+f(2)+…+f(n),P n=n2+n﹣1(n∈N*)试比较S n与P n的大小.∴18.已知数列{a n},构造一个新数列a1,(a2﹣a1),(a3﹣a2),…,(a n﹣a n﹣1),…,此数列是首项为1,公比为的等比数列.(1)求数列{a n}的通项;(2)求数列{a n}的前n项和S n.,公比为==﹣(=﹣(++)=(﹣n+。
高考数学第一轮复习:《等比数列》最新考纲1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.【教材导读】1.如何推导等比数列的通项公式?采用什么方法?提示:可采用累积法推导.2.b2=ac是a,b,c成等比数列的什么条件?提示:必要而不充分条件,因为b2=ac时,不一定有a,b,c成等比数列(如a=0,b=0,c=1),而a,b,c成等比数列,则必有b2=ac.3.如何推导等比数列的前n项和公式?采用了什么方法?提示:可用错位相减法推导.1.等比数列的相关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.符号表示为a na n-1=q(n≥2),q为常数.(2)等比中项:如果三个数a,G,b成等比数列,则G叫做a和b的等比中项,那么Ga=bG,即G2=ab.2.等比数列的通项公式(1)设等比数列{a n}的首项为a1,公比为q,q≠0,则它的通项公式a n=a1q n-1.(2)通项公式的推广a n=a m·q n-m.3.等比数列的前n 项和公式S n =⎩⎨⎧na 1, q =1,a 1(1-q n )1-q =a 1-a n q1-q , q ≠1.4.等比数列的常见性质(1)在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍然是等比数列.(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.5.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 6.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.1.等比数列x,3x +3,6x +6,…的第四项等于( ) (A)-24 (B)0 (C)12(D)24A 解析:由等比数列的性质和定义进行解题,由等比中项性质得(3x +3)2=x ·(6x +6),因x +1≠0,得x =-3.所以a 4=(6x +6)·3x +3x =18·(x +1)2x =-24.故选A.2.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A)1盏(B)3盏(C)5盏(D)9盏B解析:每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得a1(1-27)1-2=381,解得a1=3,选择B.3.已知a1,a2,…,a n,…为各项均大于零的等比数列,公比q≠1,则()(A)a1+a8>a4+a5(B)a1+a8<a4+a5(C)a1+a8=a4+a5(D)a1+a8与a4+a5的大小关系不能由已知条件确定A解析:(a1+a8)-(a4+a5)=a1(1+q7)-a1(q3+q4)=a1(1+q7-q3-q4)=a1(1-q3)(1-q4).q=a na n-1>0且q≠1,当q>1时,q3>1,q4>1,1-q3<0,1-q4<0;当0<q<1时,q3<1,q4<1,1-q3>0,1-q4>0.总之a1(1-q3)(1-q4)>0.∴a1+a8>a4+a5.4.若正项等比数列{a n}满足a n+2=a n+1+2a n,则其公比为()(A)12(B)2或-1(C)2 (D)-1C解析:根据题意,设等比数列{a n}的公比为q,若a n+2=a n+1+2a n,则有a n q2=a n q+2a n,即q2-q-2=0,解可得q=2或-1,由数列{a n}为正项等比数列,可得q=2,故选C.5.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 为________. 解析:若q =1,则S n =na 1,∴{S n }是等差数列; 若q ≠1,则当{S n }是等差数列时,一定有2S 2=S 1+S 3, ∴2·a 1(1-q 2)1-q =a 1+a 1(1-q 3)1-q ,即q 3-2q 2+q =0,故q (q -1)2=0, ∴q =0或q =1,而q ≠0,q ≠1,∴此时不成立. 答案:1考点一 等比数列的基本运算(1)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) (A)31 (B)36 (C)42(D)48解析:(1)解法一 由题意知a 1+4a 1+16a 1=21, 解得a 1=1,所以等比数列{a n }的通项公式为a n =a 1q n -1=4n -1.解法二 由题意可设等比数列{a n }的前3项分别为x 4,x,4x ,则x4+x +4x =21,解得x =4,所以等比数列{a n }的通项公式为a n =a 2q n -2=4×4n -2=4n -1.(2)a 3a 5=a 2a 6=64,因为a 3+a 5=20,所以a 3和a 5为方程x 2-20x +64=0的两根,因为a n >0,q >1,所以a 3<a 5,所以a 5=16,a 3=4,所以q =a 5a 3=164=2,所以a 1=a 3q 2=44=1,所以S 5=1-q 51-q=31.【反思归纳】 等比数列基本运算的方法策略(1)将条件用a 1,q 表示,在表示S n 时要注意判断q 是否为1; (2)解方程(组)求出a 1,q ,消元时要注意两式相除和整体代入; (3)利用a 1,q 研究结论.【即时训练】 (1)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).(2)若S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 8等于( ) (A)255 (B)256 (C)510(D)511解析:(1)很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.(2)当n =1时,a 1=2a 1-2,据此可得:a 1=2, 当n ≥2时:S n =2a n -2,S n -1=2a n -1-2, 两式作差可得:a n =2a n -2a n -1,则:a n =2a n -1, 据此可得数列{a n }是首项为2,公比为2的等比数列, 其前8项和为:S 8=2×(1-28)1-2=29-2=510-2=510.故选C.答案:(1)-12 (2)C考点二 等比数列的判定与证明已知数列{a n }的前n 项和为S n ,且对任意的n ∈N *有a n +S n =n . (1)设b n =a n -1,求证:数列{b n }是等比数列; (2)设c 1=a 1且c n =a n -a n -1(n ≥2),求{c n }的通项公式.(1)证明:由a 1+S 1=1及a 1=S 1得a 1=12. 又由a n +S n =n 及a n +1+S n +1=n +1得 a n +1-a n +a n +1=1,∴2a n +1=a n +1. ∴2(a n +1-1)=a n -1,即2b n +1=b n .∴数列{b n }是以b 1=a 1-1=-12为首项,12为公比的等比数列. (2)解:方法一:由(1)知2a n +1=a n +1. ∴2a n =a n -1+1(n ≥2), ∴2a n +1-2a n =a n -a n -1, ∴2c n +1=c n (n ≥2).又c 1=a 1=12,a 2+a 1+a 2=2,∴a 2=34. ∴c 2=34-12=14,c 2=12c 1.∴数列{c n }是首项为12,公比为12的等比数列. ∴c n =12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n . 方法二:由(1)b n =-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =⎝ ⎛⎭⎪⎫12n+1.∴c n =-⎝ ⎛⎭⎪⎫12n +1-⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫12n -1+1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫1-12=⎝ ⎛⎭⎪⎫12n (n ≥2). 又c 1=a 1=12也适合上式,∴c n =⎝ ⎛⎭⎪⎫12n .【反思归纳】 等比数列的判定方法(1)定义法:若a n +1a n=q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则数列{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式写成a n =c ·q n (c 、q 均是不为0的常数,n ∈N *),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则数列{a n }是等比数列.如果判定某数列不是等比数列,只需判定其任意的连续三项不成等比数列即可. 【即时训练】 已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.解析:(1)假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,这与事实相矛盾.所以对任意实数λ,数列{a n }都不是等比数列.(2)因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1·⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n (a n -3n +21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b 1=0(n ∈N *),此时{b n }不是等比数列; 当λ≠-18时,b 1=-(λ+18)≠0, 则b n ≠0,所以b n +1b n=-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列. 考点三 等比数列的性质及应用(1)等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( ) (A)1 (B)2 (C)3(D)5(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:(1)因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2;同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项,所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:(1)C (2)-12【反思归纳】 在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程(组)求解,但如果灵活运用等比数列的性质,可减少运算量,提高解题速度.【即时训练】 (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )(A)18 (B)-18 (C)578(D)558(2)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 解析:(1)因为a 7+a 8+a 9=S 9-S 6,在等比数列中S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=1,即S 9-S 6=18.故选A.(2)利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝ ⎛⎭⎪⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n . 记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:(1)A (2)64等比数列的基本运算教材源题:在等比数列{a n }中: (1)已知a 1=-1,a 4=64,求q 与S 4; (2)已知a 3=32,S 3=92,求a 1与q . 解:(1)由q 3=a 4a 1=-64,解得q =-4,所以S 4=a 1-a 4q 1-q =-1+64×41+4=51.(2)因为S 3=a 1+a 2+a 3=a 3(q -2+q -1+1), 所以q -2+q -1+1=3, 即2q 2-q -1=0,解这个方程得q =1或q =-12. 当q =1时,a 1=32; 当q =-12时,a 1=6.【规律总结】 解决等比数列的基本计算问题主要是利用方程思想,建立方程(组)求解.注意两式相除、整体代换、分类讨论等技巧的应用.【源题变式】 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:因为a 5-a 1=15,a 4-a 2=6.所以⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两者相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0,所以q =2或q =12, 当q =2时,a 1=1, 当q =12时,a 1=-16(舍去).所以a 3=1×22=4.答案:4课时作业基础对点练(时间:30分钟)1.已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件B 解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( ) (A)(-2)n -1 (B)-(-2)n -1 (C)(-2)n(D)-(-2)nA 解析:∵|a 1|=1,∴a 1=1或a 1=-1.∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2.又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1.故a n =a 1·(-2)n -1=(-2)n -1.故选A.3.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( ) (A)16(1-4-n )(B)16(1-2-n )(C)323()1-4-n (D)323(1-2-n )C 解析:∵a 2=2,a 5=14,∴a 1=4,q =12.a 1a 2+a 2a 3+…+a n a n +1=323(1-4-n ).故选C. 4.在等比数列{a n }中,若a 1=19,a 4=3,则该数列前5项的积为( ) (A)±3 (B)3 (C)±1(D)1D 解析:因为a 4=3,所以3=19×q 3(q 为公比),得q =3,所以a 1a 2a 3a 4a 5=a 53=(a 1q 2)5=⎝ ⎛⎭⎪⎫19×95=1,故选D. 5.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn 等于( )(A)32 (B)32或23 (C)23(D)以上都不对B 解析:设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到:c =1,d =2,则m =a +b =92,n =c +d =3或m =c +d =3,n =a +b =92,则m n =32或m n =23.故选B.6.已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n ,若b 10b 11=2,则a 21=( )(A)29 (B)210 (C)211(D)212C 解析:由b n =a n +1a n,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211.故选C.7.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ①,∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n-1②,∵①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2016=1-210081-2+2×(1-21008)1-2=3×21008-3.答案:3×21008-38.如图,“杨辉三角”中从上往下共有n (n >7,n ∈N )行,设第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n ,现有下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .其中正确的结论序号为________.1 1 12 1 13 3 1 14 6 4 1 …… ……解析:a n =2n -2,S n =21+22+…+2n -2n =2(1-2n )1-2-2n =2n +1-2-2n ,故只有①④正确.答案:①④9.设数列{a n },{b n }都是正项等比数列,S n ,T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n 2n +1,则log b 5a 5=________.解析:设正项数列{a n }的公比为q ,正项数列{b n }的公比为p ,则数列{lg a n }是公差为lg q 的等差数列,{lg b n }是公差为lg p 的等差数列. 故S n =n lg a 1+n (n -1)2lg q . T n =n lg b 1+n (n -1)2lg p .又S n T n=n 2n +1=lg a 1+n -12lg q lg b 1+n -12lg p.所以log b 5a 5=lg a 5lg b 5=lg a 1+4lg q lg b 1+4lg p =S 9T 9=919.答案:91910.设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大项为27,求数列的第2n 项.解:若q =1,则na 1=40,2na 1=3 280,矛盾. ∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q=40 ①a 1(1-q 2n)1-q=3 280 ②①②得1+q n =82,∴q n =81③将③代入①得q =1+2a 1④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27由③④⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.能力提升练(时间:20分钟)11.已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项a 2+a 4+…+a 100为( )(A)15 (B)30 (C)45(D)60D 解析:S 100=a 1+a 2+…+a 100=90,设S =a 1+a 3+…+a 99,则2S =a 2+a 4+…+a 100, 所以S +2S =90,S =30,故a 2+a 4+…+a 100=2S =60,故选D.12.已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )(A)158或4 (B)4027或4 (C)4027(D)158C 解析:设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.而S 6=6,两者不相等,因此不合题意.当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q .解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为1+13+19+127=4027.故选C.13.已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为{a n }的前n 项和,则S 3a 3=( )(A)139 (B)79 (C)3(D)1A 解析:4a 3=3a 2+a 4, 4a 1q 2=3a 1q +a 1q 3, ∴q 2-4q +3=0, q =3或q =1(舍).∴S 3a 3=a 1(1-q 3)1-q a 1q 2 =1-q 3q 2(1-q )=1-279×(-2)=139.故选A.14.已知数列{a n }的各项均为正数,且前n 项和S n 满足S n =16(a n +1)(a n +2).若a 2,a 4,a 9成等比数列,求数列{a n }的通项公式.解析:因为S n =16(a n +1)(a n +2),所以当n =1时,有S 1=a 1=16(a 1+1)(a 1+2), 解得a 1=1或a 1=2;当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).①-②并整理,得(a n +a n -1)(a n -a n -1-3)=0(n ≥2).因为数列{a n }的各项均为正数,所以a n -a n -1=3(n ≥2).当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立.当a 1=2时,a n =2+3(n -1)=3n -1,此时a 24=a 2a 9不成立.所以a 1=2舍去.故a n =3n -2.15.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }和通项公式.(2)证明:1a 1+1a 2+…+1a n<32.解析:证明:(1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32, 所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1,因为当n ≥1时,23n -1<2+13n -1+1=13n -1,所以1a 1+1a 2+…+1a n <1+13+…+13n -1=⎝⎛⎭⎪⎫1-13n ×32,所以1a 1+1a 2+…+1a n <32.。
2009届高考一轮复习3.3等比数列及其性质基础训练题(理科)注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间45分钟。
第Ⅰ卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列四个命题中:①公比1q >的等比数列是递增的数列; ②公比1q 0<<的等比数列是递增的数列; ③常数列是公比为1的等比数列;④公比0q <的等比数列是递减的数列。
其中正确命题的个数是( ) (A )0(B )1(C )2(D )32. 已知数列{}n a 是等比数列,且每一项都是正数,若482a ,a 是06x 7x 22=+-的两个根,则49482521a ·a ·a ·a ·a 的值为( )(A )221(B )39 (C )39±(D )533.若递增等比数列{}n a 满足641a ·a ·a ,87a a a 321321==++,则此数列的公比=q ( )(A )21 (B )221或 (C )2 (D )223或 4.(2007·陕西高考)各项均为正数的等比数列{}n a 的前n 项和为n S ,若14S ,2S n 3n ==,则n 4S 等于( )(A )80(B )30(C )26(D )165. 首项为2,公比为3的等比数列,从第n 项到第N 项的和为720,则n ,N 的值分别为( )(A )6N ,2n ==(B )6N ,3n == (C )7N ,2n ==(D )7N ,3n ==6. 已知数列{}n a 的前n 项和为常数),k *N n (k 3S n n ∈+=,那么下面结论正确的是( )(A )k 为任意实数时,{}n a 是等比数列(B )1k -=时,{}n a 是等比数列 (C )0k =时,{}n a 是等比数列 (D ){}n a 不可能是等比数列第Ⅱ卷(非选择题部分 共64分)二、填空题(本大题共3小题,每小题6分,共18分。
3.5 数列的应用●知识梳理1.实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常通过数列知识加以解决.2.理解“复利”的概念,注意分期付款因方式的不同抽象出来的数列模型也不同.3.实际问题转化成数列问题,首先要弄清首项、公差(或公比),其次是弄清是求某一项还是求某些项的和的问题.●点击双基1.已知{a n }是递增的数列,且对于任意n ∈N *,都有a n =n 2+λn 成立,则实数λ的取值范围是A.λ>0B.λ<0C.λ=0D.λ>-3解析:由题意知a n <a n +1恒成立,即2n +1+λ>0恒成立,得λ>-3. 答案:D2.设a 1,a 2,…,a 50是从-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9,且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50中有0的个数为A.10B.11C.12D.13解析:将已知的等式展开整理得a 12+a 22+a 32+…+a 502=39,故此50个数中有11个数为0.答案:B3.如下图,它满足:(1)第n 行首尾两数均为n ;(2)表中的递推关系类似杨辉三角,则第n 行(n ≥2)第2个数是_______________.12 23 4 34 7 7 45 11 14 11 56 16 25 25 16 6解析:设第n 行的第2个数为a n ,不难得出规律,则a n +1=a n +n ,累加得a n =a 1+1+2+3+…+(n -1)=222+-n n . 答案:222+-n n4.已知a n =log n +1(n +2)(n ∈N *),观察下列运算a 1·a 2=log 23·log 34=2lg 3lg ·3lg 4lg =2,a 1·a 2·a 3·a 4·a 5·a 6=log 23·log 34·…·log 67·log 78=2lg 3lg ·3lg 4lg ·…·6lg 7lg ·7lg 8lg =3.……定义使a 1·a 2·a 3·…·a k 为整数的k (k ∈N *)叫做企盼数.试确定当a 1·a 2·a 3·…·a k =2008时,企盼数k =______________.解析:由a 1·a 2·…·a k =2lg 3lg ·3lg 4lg ·4lg 5lg ·…·)1lg()2lg(++k k =2lg )2lg(+k =log 2(k +2)=2008,解之得k =22008-2. 答案:22008-2●典例剖析【例1】 (2005年春季上海,20)某市2004年底有住房面积1200万平方米,计划从2005年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2005年底和2006年底的住房面积;(2)求2024年底的住房面积.(计算结果以万平方米为单位,且精确到0.01) 剖析:本题实质是一个等比数列的求和问题. 解:(1)2005年底的住房面积为1200(1+5%)-20=1240(万平方米),2006年底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),∴2005年底的住房面积为1240万平方米,2006年底的住房面积为1282万平方米. (2)2024年底的住房面积为1200(1+5%)20-20(1+5%)19-20(1+5%)18-…-20(1+5%)-20 =1200(1+5%)20-20×05.0105.120-≈2522.64(万平方米),∴2024年底的住房面积约为2522.64万平方米.评述:应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 【例2】 由于美伊战争的影响,据估计,伊拉克将产生60~100万难民,联合国难民署计划从4月1日起为伊难民运送食品.第一天运送1000 t ,第二天运送1100 t ,以后每天都比前一天多运送100 t ,直到达到运送食品的最大量,然后再每天递减100 t ,连续运送15天,总共运送21300 t ,求在第几天达到运送食品的最大量.剖析:本题实质上是一个等差数列的求通项和求和的问题. 解:设在第n 天达到运送食品的最大量.则前n 天每天运送的食品量是首项为1000,公差为100的等差数列. a n =1000+(n -1)·100=100n +900. 其余每天运送的食品量是首项为100n +800,公差为-100的等差数列. 依题意,得 1000n +2)1(-n n ×100+(100n +800)(15-n )+2)14)(15(n n --×(-100)=21300(1≤n ≤15).整理化简得n 2-31n +198=0.解得n =9或22(不合题意,舍去).答:在第9天达到运送食品的最大量.评述:对数列应用题要分清是求通项问题还是求和问题.【例3】 2002年底某县的绿化面积占全县总面积的40%,从2003年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化.(1)设该县的总面积为1,2002年底绿化面积为a 1=104,经过n 年后绿化的面积为a n +1,试用a n 表示a n +1;(2)求数列{a n }的第n +1项a n +1;(3)至少需要多少年的努力,才能使绿化率超过60%.(lg2=0.3010,lg3=0.4771)剖析:当年的绿化面积等于上年被非绿化后剩余面积加上新绿化面积. 解:(1)设现有非绿化面积为b 1,经过n 年后非绿化面积为b n +1. 于是a 1+b 1=1,a n +b n =1.依题意,a n +1是由两部分组成,一部分是原有的绿化面积a n 减去被非绿化部分1002a n后剩余的面积10098a n ,另一部分是新绿化的面积1008b n ,于是a n +1=10098a n +1008b n =10098a n +1008(1-a n )=109a n +252.(2)a n +1=109a n +252,a n +1-54=109(a n -54). 数列{a n -54}是公比为109,首项a 1-54=104-54=-52的等比数列.∴a n +1=54+(-52)(109)n .(3)a n +1>60%,54+(-52)(109)n>53,(109)n<21,n (lg9-1)<-lg2,n >3lg 212lg ≈6.5720.至少需要7年,绿化率才能超过60%.思考讨论你知道他是怎么想出{a n -54}中的54来的吗?●闯关训练 夯实基础1.某林厂年初有森林木材存量S m 3,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量x m 3,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是A.32S B.34S C.36S D.38S解析:一次砍伐后木材的存量为S (1+25%)-x ; 二次砍伐后木材存量为[S (1+25%)-x ](1+25%)-x . 由题意知(45)2S -45x -x =S (1+50%),解得x =36S .答案:C2.一批花盆堆成三角形垛,顶层一个,以下各层排成正三角形,逐层每边增加一个花盆,若第n 层与第n +1层花盆总数分别为f (n )和f (n +1),则f (n )与f (n +1)的关系为A.f (n +1)-f (n )=n +1B.f (n +1)-f (n )=nC.f (n +1)=f (n )+2nD.f (n +1)-f (n )=1 答案:A3.从2002年1月2日起,每年1月2日到银行存入一万元定期储蓄,若年利率为p ,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,到2008年1月1日将所有存款及利息全部取回,则可取回的钱的总数为___________万元.解析:存款从后向前考虑(1+p )+(1+p )2+…+(1+p )5=pp p ]1)1)[(1(6-++=p1[(1+p )7-(1+p )].注:2008年不再存款. 答案:p1[(1+p )7-(1+p )]4.某工厂去年产值为a ,计划在今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为___________.解析:每年的总产值构成以a (1+10%)=1.1a 为首项,公比为1.1的等比数列, ∴S 5=1.11)1.11(1.15--a =11×(1.15-1)a .答案:11×(1.15-1)a5.从盛满a L (a >1)纯酒精容器里倒出1 L ,然后再用水填满,再倒出1 L 混合溶液后,再用水填满,如此继续下去,问第九次、第十次共倒出多少纯酒精.解:每次用水填满后酒精浓度依次为a a 1-,(aa 1-)2,(aa 1-)3,…,故每次倒出的纯酒精为1,aa 1-,(aa 1-)2,…,(aa 1-)n -1,….∴第九、十两次共倒出的纯酒精为 (aa 1-)8+(aa 1-)9=(aa 1-)8(1+aa 1-)=98)1)(12(aa a --.培养能力6.已知直线l 上有一列点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,其中n ∈N *,x 1=1,x 2=2,点P n +2分有向线段1+n n P P 所成的比为λ(λ≠-1).(1)写出x n +2与x n +1,x n 之间的关系式; (2)设a n =x n +1-x n ,求数列{a n }的通项公式.解:(1)由定比分点坐标公式得x n +2=λλ+++11n n x x .(2)a 1=x 2-x 1=1, a n +1=x n +2-x n +1=λλ+++11n n x x -x n +1=-λ+11(x n +1-x n )=-λ+11a n ,∴nn a a 1+=-λ+11,即{a n }是以a 1=1为首项,-λ+11为公比的等比数列.∴a n =(-λ+11)n -1.7.(2002年春季北京,21)已知点的序列A n (x n ,0),n ∈N*,其中x l =0,x 2=a (a >0),A 3是线段A l A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a l ,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. 解:(1)当n ≥3时,x n =221--+n n x x . (2)a 1=x 2-x 1=a ,a 2=x 3-x 2=212x x +-x 2=-21(x 2-x 1)=-21a ,a 3=x 4-x 3=223x x +-x 3=-21(x 3-x 2)=-21(-21a )=41a ,由此推测:a n =(-21)n -1a (n ∈N *).证明如下:因为a 1=a >0,且a n =x n +1-x n =21-+n n x x -x n =21nn x x --=-21(x n -x n -1)=-21a n -1(n ≥2),所以a n =(-21)n -1a .探究创新其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数. (1)写出a 45的值;(2)写出a ij 的计算公式;(3)证明:正整数N 在该等差数阵中的充要条件是2N +1可以分解成两个不是1的正整数之积.(1)解:a 45=49.(2)解:该等差数阵的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1),第二行是首项为7,公差为5的等差数列:a2j=7+5(j-1),……第i行是首项为4+3(i-1),公差为2i+1的等差数列,因此a ij=4+3(i-1)+(2i+1)(j-1)=2ij+i+j=i(2j+1)+j.(3)证明:必要性:若N在该等差数阵中,则存在正整数i、j使得N=i(2j+1)+j,从而2N+1=2i(2j+1)+2j+1=(2i+1)(2j+1),即正整数2N+1可以分解成两个不是1的正整数之积.充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为两个不是1的奇数之积,即存在正整数k、l,使得2N+1=(2k+1)(2l+1),从而N=k(2l+1)+l=a kl,可见N在该等差数阵中.综上所述,正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.●思悟小结1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题.2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求a n还是求S n,特别要准确地确定项数n.3.数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.●教师下载中心教学点睛1.解应用题的关键是建立数学模型,转化为数学问题,要加强培养学生的转化意识.2.分期付款问题要弄清付款方式,不同方式抽象出的数学模型则不一样.3.“等额还款方式”采用“双向储蓄”的方法比较简便.4.强化转化思想、方程思想的应用.拓展题例【例1】杭州某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.解:(1)设引进设备n年后开始盈利,盈利为y万元,则y=50n-(12n+2)1(nn×4)-98=-2n2+40n-98,由y>0,得10-51<n<10+51.∵n∈N*,∴3≤n≤17,即3年后开始盈利.(2)方案一:年平均盈利为ny ,ny =-2n -n98+40≤-2nn 982⋅+40=12,当且仅当2n =n98,即n =7时,年平均利润最大,共盈利12×7+26=110万元.方案二:盈利总额y =-2(n -10)2+102,n =10时,y 取最大值102, 即经过10年盈利总额最大,共计盈利102+8=110万元.两种方案获利相等,但由于方案二时间长,所以采用方案一合算.【例2】 据某城市2002年末所作的统计资料显示,到2002年末,该城市堆积的垃圾已达50万吨,侵占了大量的土地,并且成为造成环境污染的因素之一.根据预测,从2003年起该城市还将以每年3万吨的速度产生新的垃圾,垃圾的资源化和回收处理已经成为该市城市建设中的重要问题.(1)假设1992年底该城市堆积的垃圾为10万吨,从1993年到2002年这十年中,该城市每年产生的新垃圾以8%的年平均增长率增长,试求1993年该城市产生的新垃圾约有多少万吨?(精确到0.01,参考数据:1.0810≈2.159)(2)如果从2003年起,该市每年处理上年堆积垃圾的20%,现有b 1表示2003年底该市堆积的垃圾数量,b 2表示2004年底该市堆积的垃圾数量……b n 表示2002+n 年底该城市堆积的垃圾数量,①求b 1;②试归纳出b n 的表达式(不用证明);③计算∞→n lim b n ,并说明其实际意义.解:(1)设1993年该城市产生的新垃圾为x 万吨.依题意,得10+x +1.08x +1.082x +…+1.089x =50, ∴08.1108.1110--·x =40.∴x =108.108.010-×40≈2.76万吨.∴1993年该城市产生的新垃圾约为2.76万吨. (2)①b 1=50×80%+3=43(万吨). ②∵b 1=50×80%+3=50×54+3,b 2=54b 1+3=50×(54)2+3×54+3,b 3=54b 2+3=50×(54)3+3×(54)2+3×54+3,∴可归纳出b n =50×(54)n +3×(54)n -1+3×(54)n -2+ (3)54+3=50×(54)n +3×541)54(1--n=50×(54)n +15[1-(54)n ]=35×(54)n +15.③∞→n lim b n =∞→n lim [35×(54)n +15]=15.这说明,按题目设想的方法处理垃圾,该市垃圾总量将逐年减少,但不会少于15万吨.。
高三数学一轮复习第3课时等比数列学案【课本导读】1.基础知识(1)等比数列的定义:若数列{a n}满足,则称数列{a n}为等比数列.(2)通项公式a n==a m·.(3)前n项和公式S n=a1-q n1-q,成立的条件是,另一形式为.(4)M、N同号时它们的等比中项为 .2.性质(1)等比数列{a n}中,m、n、p、q∈N*,若m+n=p+q,则a m·a n=.(2)等比数列{a n}中,S n为其前n项和,当n为偶数时,S偶=S奇· .(3)等比数列{a n}中,公比为q,依次k项和为S k,S2k-S k,S3k-S2k成(S k≠0)数列,新公比q′=.3.常用技巧(1)若{a n}是等比数列,且a n>0(n∈N*),则{log a a n}(a>0且a≠1)成数列,反之亦然.(2)三个数成等比数列可设三数为,四个数成等比数列且公比大于0时,可设四个数为 .【教材回归】1.(2013·江西)等比数列x,3x+3,6x+6,…的第四项等于 ( )A.-24 B.0 C.12 D.242.(课本习题改编)如果-1,a,b,c,-9成等比数列,那么( )A.b=3,ac=9 B.b=-3,ac=9C.b=3,ac=-9 D.b=-3,ac=-93.在等比数列{a n}中,a1+a2=30,a3+a4=60,则a7+a8=________.4.(2013·课标全国Ⅱ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-195.在1与4之间插入三个数使这五个数成等比数列,则这三个数分别是________.【授人以渔】题型一等比数列的基本量例1 {a n}为等比数列,求下列各值.(1)已知a3+a6=36,a4+a7=18,a n=12,求n;(2)已知a2·a8=36,a3+a7=15,求公比q;(3)已知q=-2,S8=15(1-2),求a1.思考题1 (1)设{a n}是公比为正数的等比数列,若a1=1,a5=16,则数列{a n}前7项的和为( )A.63 B.64 C.127 D.128(2)在等比数列{a n}中,a3=112,S3=412,求a1和q.题型二等比数列的性质例2 (1)(2012·广东)若等比数列{a n}满足a2a4=12,则a1a23a5=________.(2)在等比数列{a n}中,若a3=4,a9=1,则a6=________,若a3=4,a11=1,则a7=________.(3)已知数列{a n}是等比数列,且S m=10,S2m=30,则S3m=________(m∈N*).思考题2 (1)(2012·安徽)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=( )A.4 B.5 C.6 D.7(2)已知等比数列{a n},a1+a2+a3=7,a1a2a3=8,则a n=________.题型三等比数列的判定与论证例3 数列{a n}的前n项和为S n,a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1-2a n,求证:{b n}是等比数列;(2)设c n=a n3n-1,求证:{c n}是等比数列.思考题3 已知数列{a n}的前n项和为S n,且对任意的n∈N*有a n+S n=n.(1)设b n=a n-1,求证:数列{b n}是等比数列;(2)设c1=a1且c n=a n-a n-1(n≥2),求{c n}的通项公式..【本课总结】1.通过例1复习等比数列求基本量的问题.2.通过例2复习等比数列的性质.“巧用性质、减少运算量\”在等差、等比数列的计算中非常重要但有时产生增解.3.应用等比数列前n项和公式时,需注意是否对q=1和q≠1进行讨论.4.解答数列综合题,要重视审题、精心联想、沟通联系.如数列{a n}中的a3,a9是方程x2-6x+2=0的两根,求a6,由根与系数可知a3·a9=2再由等比数列性质知a26=2,∴a6=±2,若将a3,a9改为a2,a10其他条件不变,a6为什么只等于2,而a6≠-2,你知道吗?【自助餐】1.等比数列{a n}中,公比q=2,S4=1,则S8的值为( )A.15 B.17 C.19 D.212.在等比数列{a n}中,S n表示前n项和,若a3=2S2+1,a4=2S3+1,则公比q等于( )A.3 B.-3 C.-1 D.13.数列{a n}的前n项和为S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b等于( ) A.-1 B.0 C.1 D.44.(2013·北京)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和S n=________.5.(2012·课标全国)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=________.6.一正数等比数列前11项的几何平均数为32,从这11项中抽去一项后所余下的10项的几何平均数为32,那么抽去的这一项是第________项.。
数列的解题技巧编稿:林景飞审稿:张扬责编:严春梅【命题趋向】从2007年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中与之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量、(或),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意和两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如与的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q 表示.(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N +(1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).常用结论1.正确理解等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时 ,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时 ,{a n }是递减数列; 当q =1时,{a n }是常数列; 当q =-1时,{a n }是摆动数列. 2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. (2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂.(4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n(k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.二、教材衍化1.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫-12n -1.答案:-⎝ ⎛⎭⎪⎫-12n -1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( )(2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) 答案:(1)× (2)× (3)× 二、易错纠偏常见误区|K(1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±82.数列{a n }的通项公式是a n =a n(a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为________.解析:因为x,2x+2,3x+3是一个等比数列的前三项,所以(2x+2)2=x(3x+3),即x2+5x+4=0,解得x=-1或x=-4.当x=-1时,数列的前三项为-1,0,0,不是等比数列,舍去.答案:-4等比数列基本量的运算(师生共研)(1)(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8C.4 D.2(2)等比数列{a n}中,a1=1,a5=4a3.①求{a n}的通项公式;②记S n为{a n}的前n项和.若S m=63,求m.【解】(1)选C.设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.(2)①设{a n}的公比为q,由题设得a n=q n-1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n=1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解.若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解 分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n=a 1(1-q n )1-q =a 1-a n q 1-qn n 前n 项和,若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12132.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.等比数列的判定与证明(师生共研)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解】 (1)由条件可得a n +1=2(n+1)na n .将n =1代入得,a 2=4a 1, 而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2, 所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.等比数列的4种常用判定方法定义法若a n +1a n =q (q 为非零常数,n ∈N +)或a na n -1=q (q 为非零常数且n ≥2,n ∈N +),则{a n }是等比数列中项 公式法 若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N +),则数列{a n }是等比数列通项若数列通项公式可写成a n =c ·qn -1(c ,q 均是不为0的常数,证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知数列{a n}的前n项和为S n,a1=1,S n+1=4a n+2(n∈N*),若b n=a n+1-2a n,求证:{b n}是等比数列.证明:因为a n+2=S n+2-S n+1=4a n+1+2-4a n-2=4a n+1-4a n,所以b n+1b n=a n+2-2a n+1a n+1-2a n=4a n+1-4a n-2a n+1a n+1-2a n=2a n+1-4a na n+1-2a n=2.因为S2=a1+a2=4a1+2,所以a2=5.所以b1=a2-2a1=3.所以数列{b n}是首项为3,公比为2的等比数列.2.已知数列{a n}的前n项和为S n,且S n=2a n-3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.解:(1)当n=1时,S1=a1=2a1-3,解得a1=3,当n=2时,S2=a1+a2=2a2-6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3-9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1,所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列.所以a n +3=6×2n -1,即a n =3(2n-1)(n ∈N +).等比数列的性质(多维探究) 角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)(一题多解)等比数列{a n }中,前n 项和为48,前2n项和为60,则其前3n 项和为________.(2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q =48,①a 1(1-q 2n)1-q=60,②②÷①,得1+q n=54,所以q n=14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14,所以S 3n =S 2n +q2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.【答案】 (1)63(2)12×⎝ ⎛⎭⎪⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形. (2)等比中项的变形. (3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(一题多解)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18解析:选C.法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.数列与数学文化及实际应用1.等差数列与数学文化(2020·陕西汉中二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( )A .6斤B .7斤C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【答案】 D以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.2.等比数列与数学文化(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( )A.253 B .503C.507D .1007【解析】 5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【答案】 D以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.3.递推数列与数学文化(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N +)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( )A .7B .10C .12D .22【解析】 因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.4.周期数列与数学文化(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N +).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2. 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346.故选C.以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.5.数列在实际问题中的应用私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】 设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n +1.65=4.65,当且仅当0.15n =15n,即n=10时,年平均费用S nn取得最小值.所以这辆汽车报废的最佳年限是10年.【答案】 10数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.[基础题组练]1.(2020·江西宜春一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( )A .{6}B .{-8,8}C .{-8}D .{8}解析:选D.因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .135B .100C .95D .80解析:选A.由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135.3.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( )A .1B .2 C.22D .2解析:选D.设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q=2(舍负),故选D.4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( )A .6里B .12里C .24里D .96里解析:选A.由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解析:选B.设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n,即7292=3n,所以n =12.6.(2020·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16[1-(12)5]1-12=31.答案:317.(一题多解)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.解析:法一:设数列{a n }的公比为q ,则由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.答案:-78.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N +,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:29.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.10.(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n+2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[综合题组练]1.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2(1q +1+q )=1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-(-q -1q)≤1-2(-q )·(-1q)=-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).2.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-12B .12C .-32D .32解析:选C.{b n }有连续四项在{-53,-23,19,37,82}中且b n =a n +1.a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中.因为{a n }是等比数列,等比数列中有负数项,则q <0,且负数项为相隔两项,所以等比数列各项的绝对值递增或递减.按绝对值的顺序排列上述数值18,-24,36,-54,81, 相邻两项相除-2418=-43,36-24=-32,-5436=-32,81-54=-32,则可得-24,36,-54,81是{a n }中连续的四项.q =-32或q =-23(因为|q |>1,所以此种情况应舍),所以q =-32.故选C.3.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________.解析:因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1qn -1=2×4n -1=32,解得n =3. 答案:34.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________.解析:因为a n +ma m=a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n)1-2=2n +1-2.答案:2n +1-25.(2020·湖北武汉4月毕业班调研)已知正项等比数列{a n }的前n 项和S n 满足S 2+4S 4=S 6,a 1=1.(1)求数列{a n }的公比q ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值. 解:(1)由题意可得q ≠1, 由S 2+4S 4=S 6,可知a 1(1-q 2)1-q +4·a 1(1-q 4)1-q =a 1(1-q 6)1-q,所以(1-q 2)+4(1-q 4)=1-q 6,而q ≠1,q >0, 所以1+4(1+q 2)=1+q 2+q 4,即q 4-3q 2-4=0, 所以(q 2-4)(q 2+1)=0,所以q =2.(2)由(1)知a n =2n -1,则{a n }的前n 项和S n =1-2n1-2=2n-1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0,所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6) =-S 4+S 10-S 4+60-90=S 10-2S 4-30=(210-1)-2(24-1)-30 =210-25-29=1 024-32-29=963.6.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N +.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解:(1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n .因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,因为a 1=1,a 1·a 2=12,所以a 2=12,所以b 1=a 1+a 2=32.所以{b n }是首项为32,公比为12的等比数列.所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。
数列一、 知识梳理概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n na a a S +++=Λ21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n n n .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1Λ--- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即Λ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比. 2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即Λ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列) 1)根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==nS a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
高考数学第一轮复习 第3讲 等比数列及前n 项和 考点一 等比数列的概念及运算知识点1 等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数q (q ≠0),那么这个数列叫做等比数列,这个常数q 叫做等比数列的公比.2 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 3 等比数列的通项公式及其变形通项公式:a n =a 1·q n -1(a 1q ≠0),其中a 1是首项,q 是公比.通项公式的变形:a n =a m ·q n -m . 4 等比数列前n 项和公式S n =⎩⎪⎨⎪⎧ a 1(1-q n)1-q (q ≠1),na 1(q =1)或S n =⎩⎪⎨⎪⎧a 1-a n q 1-q (q ≠1),na 1(q =1).5 等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列.注意点 等差中项与等比中项的区别两个数的等差中项只有一个,两个同号且不为0的数的等比中项有两个.入门测1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列. ( )(2)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )2.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( ) A .63 B .64 C .127D .1283.已知在等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则该等比数列的公比q 为( )A.14B.12 C .2D .8[考法综述] 通过等比数列的通项公式,前n 项和公式等考查,a 1,a n ,n ,q ,S n 之间的运算关系.通过等比数列的概念考查判断数列为等比数列的方法.命题法1 等比数列的基本运算典例1 (1)在等比数列{a n }中,前n 项和为S n ,若S 3=7,S 6=63,则公比q 的值是( ) A .2 B .-2 C .3D .-3(2)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.【解题法】 等比数列的基本运算方法(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列问题一般要给出两个条件,可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题.(3)对称设元法:一般地,连续奇数个项成等比数列,可设为…,xq ,x ,xq ,…;连续偶数个项成等比数列,可设为…,x q 3,xq ,xq, xq 3,…(注意:此时公比q 2>0,并不适合所有情况),这样既可减少未知量的个数,也使得解方程较为方便.命题法2 等比数列的判定与证明典例2 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.【解题法】 等比数列的判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .842.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C.n (n +1)2D.n (n -1)24.设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q =2,S k +2-S k =48,则k 等于( ) A .7 B .6 C .5D .45.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________. 6.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N *都有a n +2+a n +1-2a n =0,则S 5=________.7.设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 8.已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.9.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.考点二 等比数列的性质及应用知识点等比数列及其前n 项和的性质设数列{a n }是等比数列,S n 是其前n 项和.(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *.特别地,若2s =p +r ,则a p a r =a 2s ,其中p ,s ,r ∈N *.(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列.(4)S m +n =S n +q n S m =S m +q m S n .(5)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列. (6)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列. (7)若数列{a n }的项数为2n ,S 偶与S 奇分别为偶数项与奇数项的和,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .注意点 使用性质解题时的注意事项(1)在使用等比数列及其前n 项和的性质时,要注意字母间的上标、下标的对应关系. (2)在等比数列中,若a m ·a n =a p ·a q (m ,n ,p ,q ∈N *),则不一定有m +n =p +q 成立.如{a n }是非零常数列时,此结论就不成立.入门测1.思维辨析(1)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (3)若{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) (4)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )2.公比为2的等比数列{a n }的各项都是正数,且a 4a 10=16,则a 6=( ) A .1 B .2 C .4D .83.若等比数列{a n }满足a 2a 4=12,则a 1a 23a 5=________.[考法综述] 等比数列的性质是高考中的常考内容,灵活应用由概念推出的重要性质,在解题过程中可以达到避繁就简的目的.命题法 等比数列性质的应用典例 (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558(2)已知等比数列{a n }的各项均为正数,且a 1+2a 2=3,a 24=4a 3a 7,则数列{a n }的通项公式a n=________.【解题法】 等比数列性质的应用问题(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.1.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .32.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73 C.83D .33.已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( ) A .512 B .256 C .81D .164.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.6.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b }的通项公式;(2)求数列{b n}的前n项和S n.设四个实数成等比数列,其积为16,中间两项的和为5,则公比为________.课时练基础组1.在数列{a n}中,a n≠0,“a n=2a n-1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分与不必要条件2.等比数列{a n}中,a1=3,a4=24,则a3+a4+a5=()A.33B.72C.84 D.1893.设等比数列{a n}的前n项和为S n,若S m-1=5,S m=-11,S m+1=21,则m=()A.3 B.4C.5 D.64.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12 B.10C.8 D.2+log355.已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则log2a1+log2a3+…+log2a2n-1等于()A.n(2n-1) B.(n+1)2C.n2D.(n-1)26.]各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于() A.80 B.30C.26 D.167.已知公差不为0的等差数列{a n}满足a1,a3,a9成等比数列,S n为数列{a n}的前n项和,则S11-S9S7-S6=________.8.若数列{a n}满足:a1=1,a n+1=12a n(n∈N*),其前n项和为S n,则S4a4=________.9.若等比数列{a n}满足a m-3=4且a m a m-4=a24(m∈N*且m>4),则a1a5的值为________.10.已知公比为2的等比数列{a n}中,a2+a5+a8+a11+a14+a17+a20=13,则该数列前21项的和S21=________.11.已知正项等比数列{a n}中,2a1+a2=a3,3a6=8a1a3.(1)求数列{a}的通项公式;(2)设b n =log 2a 1+log 2a 2+…+log 2a n -n log 23,求数列⎩⎨⎧⎭⎬⎫1b n +1的前n 项和T n .12.已知a <b ,且满足a 2-a -6=0,b 2-b -6=0,数列{a n },{b n }满足a 1=1,a 2=-6a ,a n +1=6a n -9a n -1(n ≥2,n ∈N *),b n =a n +1-ba n (n ∈N *).(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式a n .能力组13.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152B.314C.334D.17214.数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n ,若b 10b 11=2015110,则a 21=______.15已知公差不为0的等差数列{a n }的前n 项和为S n ,S 3=a 4+6,且a 1,a 4,a 13成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n +1,求数列{b n }的前n 项和.16.已知数列{a n }满足a 1=1,a n +1=2⎝⎛⎭⎫1+1n 2a n . (1)设b n =a nn 2,求证:数列{b n }是等比数列;(2)求数列{a n }的通项公式;(3)设c n =a n +1-2a n ,求数列{c n }的前n 项和S n .。
3.3 等比数列●知识梳理 1.定义数列{a n }从第2项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.常数叫公比.2.通项公式:a n =a 1q n -1,推广形式:a n =a m q n -m .变式:q =mn mna a -(n 、m ∈N *). 3.前n 项和S n =⎪⎩⎪⎨⎧≠≠--=--=).10(11)1(),1(111q q q qa a q q a q na n n 或注:q ≠1时,m n S S =mnq q --11.4.等比中项:若a 、b 、c 成等比数列,则b 为a 、c 的等比中项,且b =±ac .5.三个数或四个数成等比数列且又知积时,则三个数可设为q a 、a 、aq ,四个数可设为3qa、qa、aq 、aq 3为好. 6.证明等比数列的方法:(1)用定义:只需证nn a a 1+=常数;(2)用中项性质:只需a n +12=a n ·a n +2或n n a a 1+=12++n n a a . ●点击双基1.一个直角三角形三内角的正弦值成等比数列,其最小内角是A.arccos215- B.arcsin215- C.arccos 251-D.arcsin 251-解析:设Rt △ABC 中,C =2π,则A 与B 互余且A 为最小内角.又由已知得sin 2B =sin A ,即cos 2A =sin A ,1-sin 2A =sin A ,解之得sin A =215-或sin A =215--(舍).答案:B2.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于A.210B.220C.216D.215解析:由等比数列的定义,a 1·a 2·a 3=(q a 3)3,故a 1·a 2·a 3·…·a 30=(1030963qa a a a ⋅⋅⋅⋅⋅⋅)3.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B3.某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为A.5B.10C.14D.15解析:由题意列式(1-20%)n <5%,两边取对数得n >2lg 3112lg -+≈13.4.故n ≥14.答案:C4.(2004年全国,文14)已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =___________________.解析:由已知得q 7=aa 10=128=27,故q =2.∴a n =a 3·q n -3=3·2n -3. 答案:3·2n -35.如下图,在杨辉三角中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是___________________.1 1 1 12 1 13 3 1 14 6 4 1……解析:观察可知,第n (n ∈N *)行中有n 个数,从左向右依次是二项式系数C 01-n ,C 11-n ,C 21-n ,…,C 11--n n ,故当n ≥3时,除了1外,第n 行各数的和为a n =C 11-n +C 21-n +…+C 21--n n =2n -1-2.又前两行全部为数字1,故前n 行非1的数字之和为a 3+a 4+…+a n =21)21(42---n -2(n -2)=2n -2n .答案:2n -2n ●典例剖析【例1】 已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n . 剖析:利用等比数列的基本量a 1,q ,根据条件求出a 1和q . 解:设{a n }的公比为q ,由题意知⎪⎩⎪⎨⎧=⋅⋅=++,8,721112111q a q a a q a q a a解得⎩⎨⎧==2,11q a 或⎪⎩⎪⎨⎧==.21,41q a ∴a n =2n -1或a n =23-n.评述:转化成基本量解方程是解决数列问题的基本方法.思考讨论用a 2和q 来表示其他的量好解吗?该题的{a n }若成等差数列呢?【例2】 已知数列{a n }为等差数列,公差d ≠0,{a n }的部分项组成下列数列:a 1k ,a 2k ,…,a n k ,恰为等比数列,其中k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n .剖析:运用等差(比)数列的定义分别求得a n k ,然后列方程求得k n .解:设{a n }的首项为a 1,∵a 1k 、a 2k 、a 3k 成等比数列,∴(a 1+4d )2=a 1(a 1+16d ). 得a 1=2d ,q =12k k a a =3.∵a n k =a 1+(k n -1)d ,又a n k =a 1·3n -1,∴k n =2·3n -1-1.∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n=2×3131--n-n =3n -n -1.评述:运用等差(比)数列的定义转化为关于k n 的方程是解题的关键,转化时要注意:a n k 是等差数列中的第k n 项,而是等比数列中的第n 项.【例3】 设各项均为正数的数列{a n }和{b n }满足5n a ,5n b ,51+n a 成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .剖析:由等比中项、等差中项的性质得a n +1=1+⋅n n b b 递推出a n =n n b b ⋅-1(n ≥2). 解:∵5n a ,5n b ,51+n a 成等比数列, ∴(5n b )2=5n a ·51+n a ,即2b n =a n +a n +1.①又∵lg b n ,lg a n +1,lg b n +1成等差数列, ∴2lg a n +1=lg b n +lg b n +1,即a n +12=b n ·b n +1.②由②及a i >0,b j >0(i 、j ∈N *)可得 a n +1=1+⋅n n b b .③∴a n =n n b b 1-(n ≥2).④将③④代入①可得2b n =n n b b ⋅-1+1+⋅n n b b (n ≥2), ∴2n b =1-n b +1+n b (n ≥2). ∴数列{n b }为等差数列. ∵b 1=2,a 2=3,a 22=b 1·b 2,∴b 2=29. ∴n b =2+(n -1)(29-2) =21(n +1)(n =1也成立).∴b n =2)1(2+n .∴a n =n n b b ⋅-1=2)1(222+⋅n n =2)1(+n n (n ≥2). 又当n =1时,a 1=1也成立. ∴a n =2)1(+n n . 评述:由S n 求a n 时要注意验证a 1与S 1是否一致. 特别提示1.{a n }为等比数列是a n +12=a n ·a n +2的充分但不必要条件.2.若证{a n }不是等比数列,只需证a k 2≠a k -1a k +1(k 为常数,k ∈N ,且k ≥2). ●闯关训练 夯实基础1.若等比数列{a n }的公比q <0,前n 项和为S n ,则S 8a 9与S 9a 8的大小关系是 A.S 8a 9>S 9a 8 B.S 8a 9<S 9a 8 C.S 8a 9=S 9a 8D.不确定 解析:由等比数列通项公式和前n 项和公式得 S 8·a 9-S 9·a 8=-q q a --1)1(81·a 1q 3-qq a --1)1(91·a 1q 7=q a q q q a ----1)]()[(16716821=qq q a --1)(7821=-a 12q 7.又q <0,则S 8·a 9-S 9·a 8>0,即S 8·a 9>S 9·a 8. 答案:A2.银行一年定期的年利率为r ,三年定期的年利率为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于A.1)1(3-+rB.31[(1+r )3-1] C.(1+r )3-1D.r解析:由题意得(1+r )3<1+3q ,故q >31[(1+r )3-1]. 答案:B3.(2003年上海,8)若首项为a 1,公比为q 的等比数列{a n }的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )=___________.解析:由题意知qq a n --1)1(1<q a -11且|q |<1对n ∈N 都成立,∴a 1>0,0<q <1.答案:(1,21)(a 1>0,0<q <1的一组数) 4.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =___________________.解析:分解因式可得[(n +1)a n +1-na n ]·[a n +1+a n ]=0,又a n >0,则(n +1)a n +1-na n =0,即n n a a 1+=1+n n .又a 1=1,由累积法可得a n =n1. 答案:n15.定义一种运算“*”对于任意非零自然数n 满足以下运算性质: (1)1*1=1; (2)(n +1)*1=3(n *1). 试求n *1关于n 的代数式. 解:“n *1”是一个整体,联想数列通项形式,设n *1=a n ,则a 1=1,a n +1=3a n ,得a n =3n-1,即n *1=3n -1.6.等比数列{a n }的各项均为正数,其前n 项中,数值最大的一项是54,若该数列的前n 项之和为S n ,且S n =80,S 2n =6560,求:(1)前100项之和S 100. (2)通项公式a n .解:设公比为q ,∵S 2n -S n =6480>S n ,∴q >1.则最大项是a n =a 1q n -1(∵a n >0). ①又S n =qq a n --1)1(1=80,②S 2n =qq a n --1)1(21=6560,③由①②③解得a 1=2,q =3,则(1)前100项之和S 100=13)13(2100--=3100-1.(2)通项公式为a n =2·3n -1. 培养能力7.数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n . (1)设c n =a n -1,求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.(1)证明:∵a 1=S 1,a n +S n =n ,∴a 1+S 1=1,得a 1=21.又a n +1+S n +1=n +1,两式相减得2(a n +1-1)=a n -1,即111--+n n a a =21,也即n n c c 1+=21,故数列{c n }是等比数列.(2)解:∵c 1=a 1-1=-21, ∴c n =-n21,a n =c n +1=1-n 21,a n -1=1-121-n .故当n ≥2时,b n =a n -a n -1=121-n -n 21=n 21.又b 1=a 1=21,即b n =n 21(n ∈N *).8.设数列{a n }、{b n }(b n >0,n ∈N*),满足a n =nb b b nlg lg lg 21+⋅⋅⋅++(n ∈N*),证明:{a n }为等差数列的充要条件是{b n }为等比数列.证明:充分性:若{b n }为等比数列,设公比为q ,则a n =nq q q b n n )lg(lg 121-⋅⋅⋅⋅⋅⋅+=nq b n n n 2)1(1lg lg -+=lg b 1+(n -1)lg q 21,a n +1-a n =lg q 21为常数,∴{a n }为等差数列. 必要性:由a n =nb b b nlg lg lg 21+⋅⋅⋅++得na n =lg b 1+lg b 2+…+lg b n ,(n +1)a n +1=lg b 1+lg b 2+…+lg b n +1,∴n (a n +1-a n )+a n +1=lg b n +1.若{a n }为等差数列,设公差为d , 则nd +a 1+nd =lg b n +1,∴b n +1=10nd a 21+,b n =10d n a )1(21-+. ∴nn b b 1+=102d 为常数. ∴{b n }为等比数列. 探究创新9.有点难度哟!设数列{a n },a 1=65,若以a 1,a 2,…,a n 为系数的二次方程:a n -1x 2-a n x +1=0(n ∈N*且n ≥2)都有根α、β满足3α-αβ+3β=1.(1)求证:{a n -21}为等比数列; (2)求a n ;(3)求{a n }的前n 项和S n . (1)证明:∵α+β=1-n n a a ,αβ=11-n a 代入3α-αβ+3β=1得a n =31a n -1+31, ∴21211---n n a a =2121313111--+--n n a a =31为定值. ∴数列{a n -21}是等比数列. (2)解:∵a 1-21=65-21=31,∴a n -21=31×(31)n -1=(31)n .∴a n =(31)n +21.(3)解:S n =(31+231+…+n 31)+2n =311)311(31--n +2n =21+n -n 321⨯. ●思悟小结1.深刻理解等比数列的定义,紧扣从“第二项起”和“比是同一常数”这两点.2.运用等比数列求和公式时,需对q =1和q ≠1进行讨论.3.证明数列{a n }是等差数列的两种基本方法是: (1)利用定义,证明1-n na a (n ≥2)为常数; (2)利用等比中项,即证明a n 2=a n -1·a n +1(n ≥2). ●教师下载中心 教学点睛1.等比数列的性质在求解中有着十分重要的作用,应让学生熟练掌握、灵活运用.2.解决等比数列有关问题的常见思想方法:(1)方程的思想:等比数列中五个元素a 1、a n 、n 、q 、S n 可以“知三求二”;(2)分类讨论的思想:当a 1>0,q >1或a 1<0,0<q <1时为递增数列,当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.3.转化为“基本量”是解决问题的基本方法. 拓展题例【例1】 数列{a n }中,a 1=1,a n =21a n -1+1(n ≥2),求通项公式a n . 解:由a n =21a n -1+1,得a n -2=21(a n -1-2). 令b n =a n -2,则b n -1=a n -1-2,∴有b n =21b n -1. ∴b n =21b n -1=21·21b n -2=21·21·21b n -3 =…=b 1=(21)n -1·b 1. ∵a 1=1,∴b 1=a 1-2=-1.∴b n =-(21)n -1.∴a n =2-121 n .【例2】 已知数列{a n }中,a 1=65,a 2=3619并且数列log 2(a 2-31a ),log 2(a 3-32a ),…,log 2(a n +1-3n a )是公差为-1的等差数列,而a 2-21a ,a 3-22a,…,a n +1-2n a 是公比为31的等比数列,求数列{a n }的通项公式. 分析:由数列{log 2(a n +1-3n a)}为等差数列及等差数列的通项公式,可求出a n +1与a n的一个递推关系式①;由数列{a n +1-2n a}为等比数列及等比数列的通项公式,可求出a n +1与a n 的另一个递推关系式②.解两个关系式的方程组,即可求出a n .解:∵数列{log 2(a n +1-3na )}是公差为-1的等差数列, ∴log 2(a n +1-3n a )=log 2(a 2-31a 1)+(n -1)(-1)=log 2(3619-31×65)-n +1=-(n +1),于是有a n +1-3n a =2-(n +1).①又∵数列{a n +1-21a n }是公比为31的等比数列, ∴a n +1-21a n =(a 2-21a 1)·3-(n -1)=(3619-21×65)·3-(n -1)=3-(n +1).于是有a n +1-21a n =3-(n +1).②由①-②可得61a n =2-(n +1)-3-(n +1), ∴a n =n 23-n32.。