2015年秋新人教版九年级数学上册四清导航单元教学习题课件21.1一元二次方程
- 格式:ppt
- 大小:215.50 KB
- 文档页数:12
一元二次方程教学设计【教材分析】本节内容是人民教育出版社义务教育课程标准实验教科书第二十一章第一节一元二次方程,以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念。
本节内容是在前面所学方程、一元一次方程、整式的基础上进行学习,也是后面学习二次函数的一个基础,起到了承上启下的作用。
此外,二元一次方程在中考中占有一定的比重,而本节这些概念是全章后继内容的基础。
在生活中解决实际问题时一元二次方程也有着广泛的应用,充分体现着数学来源于生活,又服务于生活的基本思想。
【学情分析】从心里特征来看,我所教学的学生是我校初三学生,经过两年的学习,大部分学生知识经验丰富了许多,他们的智力发展已得到了大幅度提升,具备了较强的验算和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
从认知情况来看,在本节课之前学生已经学习了方程、一元一次方程、一元二次方程、分式方程、整式,在八年级下学期勾股定理一节中接触过一元二次方程,这都为一元二次方程概念和一般式的教学提供了基础;同时学生已有了从实际问题中找等量关系的基本能力,因此在教学中以实际问题引出,通过学生自主探究、合作交流等形式主动建构知识,体验学习数学的成就感。
【设计思想】建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构。
根据课标要求,本课时要让学生体验从具体情境中抽象出数学符号的过程,理解方程,并通过用方程表述数量关系的过程,体会模型的思想,建立符号意识。
因此,本课时我主要通过丰富的实例,如“年龄问题”、“如何制作方盒”、“怎样组织排球赛”等问题,建立一元二次方程,让学生通过观察归纳出一元二次方程的有关概念,从中体会方程的模型思想。
初中数学试卷桑水出品《21.1 一元二次方程》一.选择题1.下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=02.下列方程中,是一元二次方程的是()A.5x+3=0 B.x2﹣x(x+1)=0 C.4x2=9 D.x2﹣x3+4=03.关于x 的方程是一元二次方程,则a的值是()A.a=±2 B.a=﹣2 C.a=2 D .4.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是()A.2,﹣3 B.﹣2,﹣3 C.2,﹣3x D.﹣2,﹣3x5.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.06.把方程2(x2+1)=5x化成一般形式ax2+bx+c=0后,a+b+c的值是()A.8 B.9 C.﹣2 D.﹣17.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1 B.﹣1 C.2 D.﹣28.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012二.填空题9.关于x的方程(m﹣3)﹣x=5是一元二次方程,则m=______.10.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是______.11.方程(3x﹣1)(x+1)=5的一次项系数是______.12.一元二次方程3x2+2x﹣5=0的一次项系数是______.13.关于x的一元二次方程3x(x﹣2)=4的一般形式是______.14.方程3x2=5x+2的二次项系数为______,一次项系数为______.15.已知x=﹣1是方程x2+mx+1=0的一个根,则m=______.16.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为______.17.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是______.18.已知关于x的一元二次方程ax2+bx+c=0(a≠0)有一个根为1,一个根为﹣1,则a+b+c=______,a﹣b+c=______.三.解答题19.若(m+1)x|m|+1+6x﹣2=0是关于x的一元二次方程,求m的值.20.关于x的方程(m2﹣8m+19)x2﹣2mx﹣13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程a(x+1)2+b(x+1)+c=0化为一般式后为3x2+2x﹣1=0,试求a2+b2﹣c2的值的算术平方根.《21.1 一元二次方程》参考答案与试题解析一.选择题1.下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=0【解答】解:A、本方程未知数x的最高次数是1;故本选项错误;B、本方程符合一元二次方程的定义;故本选项正确;C、x2﹣2x﹣3是代数式,不是等式;故本选项错误;D、本方程中含有两个未知数x和y;故本选项错误;故选B.2.下列方程中,是一元二次方程的是()A.5x+3=0 B.x2﹣x(x+1)=0 C.4x2=9 D.x2﹣x3+4=0【解答】解:A、方程5x+3=0未知数的最高次数是1,属于一元一次方程,故本选项错误;B、由原方程,得﹣x=0,属于一元一次方程,故本选项错误;C、符合一元二次方程的定义.故本选项正确;D、未知数x的最高次数是3,故本选项错误;故选:C.3.关于x的方程是一元二次方程,则a的值是()A.a=±2 B.a=﹣2 C.a=2 D.【解答】解:根据题意得,解得a=2.故选C.4.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是()A.2,﹣3 B.﹣2,﹣3 C.2,﹣3x D.﹣2,﹣3x【解答】解:一元二次方程2x(x﹣1)=(x﹣3)+4,去括号得:2x2﹣2x=x﹣3+4,移项,合并同类项得:2x2﹣3x﹣1=0,其二次项系数与一次项分别是2,﹣3x.故选C.5.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.0【解答】解:∵x2+5x+m2﹣1=0的常数项为0,∴m2﹣1=0,解得:m=1或﹣1.故选C6.把方程2(x2+1)=5x化成一般形式ax2+bx+c=0后,a+b+c的值是()A.8 B.9 C.﹣2 D.﹣1【解答】解:2(x2+1)=5x,2x2+2﹣5x=0,2x2﹣5x+2=0,这里a=2,b=﹣5,c=2,即a+b+c=2+(﹣5)+2=﹣1,故选D.7.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:因为x=3是原方程的根,所以将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选:A.8.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012【解答】解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2013﹣a﹣b=2013﹣(a+b)=2013﹣(﹣5)=2018.故选:A.二.填空题9.关于x的方程(m﹣3)﹣x=5是一元二次方程,则m= ﹣3 .【解答】解:由一元二次方程的特点得,解得m=﹣3.10.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是k≠3 .【解答】解:化为一般形式是(k﹣3)x2+x﹣1=0,根据题意得:k﹣3≠0,解得k≠3.11.方程(3x﹣1)(x+1)=5的一次项系数是 2 .【解答】解:(3x﹣1)(x+1)=5,去括号得:3x2+3x﹣x﹣1=5,移项、合并同类项得:3x2+2x﹣6=0,即一次项系数是2,故答案为:2.12.一元二次方程3x2+2x﹣5=0的一次项系数是 2 .【解答】解:一元二次方程3x2+2x﹣5=0的一次项系数是:2.故答案为:2.13.关于x的一元二次方程3x(x﹣2)=4的一般形式是3x2﹣6x﹣4=0 .【解答】解:方程3x(x﹣2)=4去括号得3x2﹣6x=4,移项得3x2﹣6x﹣4=0,原方程的一般形式是3x2﹣6x﹣4=0.14.方程3x2=5x+2的二次项系数为 3 ,一次项系数为﹣5 .【解答】解:∵3x2=5x+2的一般形式为3x2﹣5x﹣2=0,∴二次项系数为3,一次项系数为﹣5.15.已知x=﹣1是方程x2+mx+1=0的一个根,则m= 2 .【解答】解:把x=﹣1代入方程可得:1﹣m+1=0,解得m=2.故填2.16.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.17.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2 .【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.18.已知关于x的一元二次方程ax2+bx+c=0(a≠0)有一个根为1,一个根为﹣1,则a+b+c= 0 ,a﹣b+c= 0 .【解答】解:根据题意,一元二次方程ax2+bx+c=0有一个根为1,一个根为﹣1,即x=1或﹣1时,ax2+bx+c=0成立,即a+b+c=0或a﹣b+c=0故答案为0,0.三.解答题19.若(m+1)x|m|+1+6x﹣2=0是关于x的一元二次方程,求m的值.【解答】解:因为是关于x的一元二次方程,这个方程一定有一个二次项,则(m+1)x|m|+1一定是此二次项.所以得到,解得m=1.20.关于x的方程(m2﹣8m+19)x2﹣2mx﹣13=0是否一定是一元二次方程?请证明你的结论.【解答】解:方程m2﹣8m+19=0中,b2﹣4ac=64﹣19×4=﹣8<0,方程无解.故关于x的方程(m2﹣8m+19)x2﹣2mx﹣13=0一定是一元二次方程.21.一元二次方程a(x+1)2+b(x+1)+c=0化为一般式后为3x2+2x﹣1=0,试求a2+b2﹣c2的值的算术平方根.【解答】解:整理a(x+1)2+b(x+1)+c=0得ax2+(2a+b)x+(a+b+c)=0,则,解得,∴a2+b2﹣c2=9+16=25,∴a2+b2﹣c2的值的算术平方根是5.。
22.1 一元二次方程一、学习目标1、正确理解一元二次方程的意义,并能判断一个方程是否是一元二次方程;2、知道一元二次方程的一般形式是20(ax bx c a b c ++=、、是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;3、理解并会用一元二次方程一般形式中a ≠0这一条件;4、通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。
重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.二、知识准备1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程2、方程2(x+1)=3的解是____________3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。
三、学习过程1、 根据题意列方程:⑴正方形桌面的面积是2㎡,求它的边长。
设正方形桌面的边长是x m,根据题意,得方程_______________,这个方程含有_____个未知 数,未知数的最高次数是_____。
⑵如图4-1,矩形花园一面靠墙,另外三面所围的栅栏的总长度是19m,如果花园的面积是24㎡, 求花园的长和宽。
设花园的宽是x m,则花园的长是(19-2x )m,根据题意,得:x (19-2x )=24,去括号, 得:______________这个方程含有____________个未知数,含有未知数项的最高次数是 ________。
⑶如图,长5m 的梯子斜靠在墙上,梯子的底端与墙的距离是3m 。
若梯子底端向右滑动的距离与 梯子顶端向下滑动的距离相等,求梯子滑动的距离。
设梯子滑动的距离是x m,根据勾股定理,滑动之前梯子的顶端离地面4m,则滑动后梯子的 顶端离地面(4-x )m,梯子的底端与墙的距离是(3+x )m 。
22.1 二次函数的图象和性质22.1.1 二次函数1.设一个正方形的边长为x ,则该正方形的面积y =__x 2___,其中变量是__x ,y___,__y___是__x___的函数.2.一般地,形如y =ax 2+bx +c(__a ,b ,c 为常数且a ≠0___)的函数,叫做二次函数,其中x 是自变量,a ,b ,c 分别为二次项系数、一次项系数、常数项.知识点1:二次函数的定义1.下列函数是二次函数的是( C )A .y =2x +1B .y =-2x +1C .y =x 2+2D .y =0.5x -22.下列说法中,正确的是( B )A .二次函数中,自变量的取值范围是非零实数B .在圆的面积公式S =πr 2中,S 是r 的二次函数C .y =12(x -1)(x +4)不是二次函数 D .在y =1-2x 2中,一次项系数为13.若y =(a +3)x 2-3x +2是二次函数,则a 的取值范围是__a ≠-3___.4.已知二次函数y =1-3x +2x 2,则二次项系数a =__2___,一次项系数b =__-3___,常数项c =__1___.5.已知两个变量x ,y 之间的关系式为y =(a -2)x 2+(b +2)x -3.(1)当__a ≠2___时,x ,y 之间是二次函数关系;(2)当__a =2且b ≠-2___时,x ,y 之间是一次函数关系.6.已知两个变量x ,y 之间的关系为y =(m -2)xm 2-2+x -1,若x ,y 之间是二次函数关系,求m 的值.解:根据题意,得m 2-2=2,且m -2≠0,解得m =-2知识点2:实际问题中的二次函数的解析式7.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价.若每件商品售价为x 元,则可卖出(350-10x)件商品,那么商品所赚钱数y 元与售价x 元的函数关系式为( B )A .y =-10x 2-560x +7350B .y =-10x 2+560x -7350C .y =-10x 2+350x +7350D .y =-10x 2+350x -73508.某车的刹车距离y(m )与开始刹车时的速度x(m /s )之间满足二次函数y =120x 2(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( C )A .40 m /sB .20 m /sC .10 m /sD .5 m /s9.(2014·安徽)某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y(元)关于x 的函数关系式为y =__a(1+x)2___.10.多边形的对角线条数d 与边数n 之间的关系式为__d =12n 2-32n___,自变量n 的取值范围是__n ≥3且为整数___;当d =35时,多边形的边数n =__10___.11.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为10米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成面积为45平方米的花圃,AB 的长为多少米?解:(1)S =x(24-3x),即S =-3x 2+24x (2)当S =45时,-3x 2+24x =45,解得x 1=3,x 2=5,当x =3时,24-3x =15>10,不合题意,舍去;当x =5时,24-3x =9<10,符合题意,故AB 的长为5米12.已知二次函数y=x2-2x-2,当x=2时,y=__-2___;当x=__3或-1___时,函数值为1.13.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩余的四方框的面积为y(m2),则y与x之间的函数关系式为__y=16-x2(0<x<4)___,它是__二次___函数.14.设y=y1-y2,y1与x成正比例,y2与x2成正比例,则y与x的函数关系是( C) A.正比例函数B.一次函数C.二次函数D.以上都不正确15.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为( A)A.6厘米B.12厘米C.24厘米D.36厘米16.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.设底面的宽为x,抽屉的体积为y时,求y与x之间的函数关系式.(材质及其厚度等暂忽略不计)解:根据题意得y=20x(90-x),整理得y=-20x2+1800x17.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时,平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x之间的函数关系式,并注明x的取值范围.解:降低x元后,所销售的件数是(500+100x),则y=(13.5-2.5-x)(500+100x),即y=-100x2+600x+5500(0<x≤11)18.一块矩形的草坪,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2.(1)求y与x的函数关系式;(2)若使草坪的面积增加32 m2,求长和宽都增加多少米?解:(1)y=x2+14x(x≥0)(2)当y=32时,x2+14x=32,x1=2,x2=-16(舍去),即长和宽都增加2 m19.如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向B 以2 mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4 mm /s 的速度移动(不与点C 重合).如果P ,Q 分别从A ,B 同时出发,设运动的时间为x s ,四边形APQC 的面积为y mm 2.(1)求y 与x 之间函数关系式;(2)求自变量x 的取值范围;(3)四边形APQC 的面积能否等于172 mm 2?若能,求出运动的时间;若不能,说明理由.解:(1)由运动可知,AP =2x ,BQ =4x ,则y =12BC·AB -12BQ·BP =12×24×12-12×4x(12-2x),即y =4x 2-24x +144(2)0<x <6 (3)当x =172时,4x 2-24x +144=172,解得x 1=7,x 2=-1.又∵0<x <6,∴四边形APQC 的面积不能等于172 mm 2。
人教版九年级上册数学第21章《一元二次方程》讲义第2讲一元二次方程应用(有答案)1、了解一元二次方程根的判别式概念,能用判别式判定根的状况,并会用判别式求一元二次方程中契合题意的参数取值范围。
〔1〕∆=ac b 42-〔2〕根的判别式定理及其逆定理:关于一元二次方程02=++c bx ax 〔0≠a 〕①、当⎩⎨⎧≥∆≠时00a ⇔方程有实数根; 当⎩⎨⎧>∆≠时00a ⇔方程有两个不相等的实数根; 当⎩⎨⎧=∆≠时00a ⇔方程有两个相等的实数根; ②当⎩⎨⎧<∆≠时00a ⇔方程无实数根; 从左到右为根的判别式定理;从右到左为根的判别式逆定理。
2、罕见的效果类型〔1〕应用根的判别式定理,不解方程,判别一元二次方程根的状况〔2〕方程中根的状况,如何由根的判别式的逆定理确定参数的取值范围 〔3〕运用判别式,证明一元二次方程根的状况①先计算出判别式〔关键步骤〕;②用配方法将判别式恒等变形;③判别判别式的符号;④总结出结论.〔4〕分类讨论思想的运用:假设方程给出的时未指明是二次方程,前面也未指明两个根,那一定要对方程停止分类讨论,假设二次系数为0,方程有能够是一元一次方程;假设二次项系数不为0,一元二次方程能够会有两个实数根或无实数根。
〔5〕一元二次方程根的判别式常结合三角形、四边形、不等式〔组〕等知识综合命题,解答时要在片面剖析的前提下,留意合理运用代数式的变形技巧〔6〕一元二次方程根的判别式与整数解的综合 知识点二:根与系数的关系1、假设12,x x 是一元二次方程20ax bx c ++= (0a ≠)的两根,依据韦达定理,2、提示:应用根与系数的关系解题时,一元二次方程必需有实数根。
3、应用韦达定理求一些重要代数式(2212x x +、1211x x +、12x x |-|)的值: 解题小窍门:当一元二次方程的标题中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。
第二局部 考点精讲精练考点1、根的判别式运用例1、关于x 的一元二次方程3x 2+4x-5=0,以下说法正确的选项是〔 〕A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定例2、假设关于x 的一元二次方程x 2+2x-m=0有实数根,那么m 的取值范围是〔 〕 A .m≥-1 B .m≤-1 C .m >1 D .m <1例3、方程ax 2+bx+c=0〔a≠0〕中,,那么该方程〔 〕A .一定没有实数根B .一定有两个不相等的实数根C .一定又两个相等的实数根D .只要一个实数根例4、假定关于x 的一元二次方程kx 2+4x+3=0有实数根,那么k 的非负整数值是 .例5、关于x 的方程xa -2=1+x 有一个根,那么a 的值为 . 例6、a 取什么值时,方程a 〔a-2〕x=4〔a-2〕 ①有独一的解?②无解?③有有数多解?④是正数解?举一反三:1、假设关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,那么k 的取值范围是〔 〕A .k <1B .k≠0C .k <1且k≠0D .k >12、以下方程中没有实数根的是〔〕A.x2+x-1=0 B.x2+8x+1=0 C.x2+x+2=0 D.x2-6x+2=03、关于x的方程〔a-5〕x2-4x-1=0有实数根,那么a满足_______.4、假定关于x的方程x2-k|x|+4=0有四个不同的解,那么k的取值范围是.5、:关于x的方程x2+2mx+m2﹣1=0〔1〕不解方程,判别方程根的状况;〔2〕假定方程有一个根为3,求m的值.6、a,b,c是三个两两不同的奇质数,方程有两个相等的实数根.〔1〕求a的最小值;〔2〕当a到达最小时,解这个方程.考点2、根与系数的关系例1、假定关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程能够是〔〕A、x2+3x-2=0 B、x2+3x+2=0 C、x2-3x+2=0 D、x2-2x+3=0例2、α,β是一元二次方程x2-5x-2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.-1 B.9 C.23 D.27例3、假定方程x2+px+q=0的两个根是-2和3,那么p+q=〔〕A.-6B.-7C.-8D.-9例4、假定关于未知数x的方程x2+〔m+2〕x+m+5=0的两根都是正数,那么m的取值范围是.例5、关于x的方程x2-〔m+5〕x+3〔m+2〕=0.〔1〕求证:无论m取何实数值,方程总有两个实数根;〔2〕假设Rt△ABC的斜边长为5,两条直角边长恰恰是这个方程的两个根.求△ABC 的面积.举一反三:1、关于x的一元二次方程x2-kx-4=0的一个根为2,那么另一根是〔〕A.4 B.1 C.2 D.-22、设a,b是方程x2+x-2021=0的两个根,那么a2+2a+b的值为〔〕A. 2020B. 2010C. 2021D. 20213、假定方程x2+〔m2-1〕x+m=0的两根互为相反数,那么m= .4、设α,β是一元二次方程x2+3x-7=0的两个根,那么α2+4α+β=.5、关于x的一元二次方程x2+2〔2一m〕x+3-6m=0.〔1〕求证:无论m取何实数,方程总有实数根;〔2〕假定方程的两个实数根x l和x2满足x l+x2=m,求m的值.6、关于x的一元二次方程x2+〔a+1〕x+a2-3=0的两个实数根的平方和为4,求a的值.考点3、配方法的运用例1、P=2x2+4y+13,Q=x2-y2+6x-1,那么代数式P,Q的大小关系是〔〕A.P≥Q B.P≤Q C.P>Q D.P<Q例2、a2+10a+b2-4b+29=0,那么a+b的值是〔〕A.-1 B.-3 C.-2 D.0例3、x2+y2-2x-4y+5=0,分式的值为.例4、a2b2+a2+b2+1=4ab,那么a= ,b= .例5、阅读以下资料,解答效果:例:设y=x2+6x-1,求y的最小值.【解析】y=x2+6x-1=x2+2•3•x+32-32-1 =〔x+3〕2-10∵〔x+3〕2≥0∴〔x+3〕2-10≥-10即y的最小值是-10.效果:〔1〕设y=x2-4x+5,求y的最小值.〔2〕:a2+2a+b2-4b+5=0,求ab的值.例6、我们在学习一元二次方程的解法时,了解到配方法.〝配方法〞是处置数学效果的一种重要方法.请应用以上提示处置下题:求证:〔1〕不论m取任何实数,代数式4m2-4〔m+1〕+9的值总是正数〔2〕当m为何值时,此代数式的值最小,并求出这个最小值.举一反三:1、假定a,b都是有理数,且a2-2ab+2b2+4b+4=0,那么ab等于〔〕A.4 B.8 C.-8 D.-42、实数x,y满足,那么x-y= .3、假定a,b都是有理数,且a2-2ab+2b2+4a+8=0,那么= .4、,求的值.5、a、b是等腰△ABC的边且满足a2+b2-8a-4b+20=0,求等腰△ABC的周长.6、阅读资料:把形如ax2+bx+c的二次三项式〔或其一局部〕配成完全平方式的方法叫做配方法.配方法的基本方式是完全平方公式的逆写,即a2±2ab+b2=〔a±b〕2.例如:x2-2x+4=x2-2x+1+3=〔x-1〕2+3是x2-2x+4的一种方式的配方,x2-2x+4=x2-4x+4+2x=〔x-2〕2+2x是x2-2x+4的另一种方式的配方…请依据阅读资料处置以下效果:〔1〕对比下面的例子,写出x2-4x+1的两种不同方式的配方;〔2〕x2+y2-4x+6y+13=0,求2x-y的值;〔3〕a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.第三局部课堂小测1、关于x的一元二次方程x2+3x-1=0的根的状况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定2、假定方程8x2+2kx+k-1=0的两个实数根是x1,x2且满足x12+x22=1,那么k的值为〔〕A.-2或6 B.-2 C.6 D.43、关于x的方程x2-〔a2-2a-15〕x+a-1=0两个根是互为相反数,那么a的值为______.4、关于x的方程mx2-2〔3m-1〕x+9m-1=0有实数根,那么m的取值范围是。