一元一次方程导学案
- 格式:doc
- 大小:261.50 KB
- 文档页数:24
解一元一次方程-----去括号与去分母一.学习目标:知识技能:掌握去分母解方程的方法和过程数学思考:通过归纳一元一次方程解法的一般步骤,体会解方程的程序化的思想方法及转化化归的思想方法问题解决:通过自主探究合作交流,总结归纳出去分母解一元一次方程的方法和注意事项,及总结出解一元一次方程的基本步骤,会灵活的...解带分母的一元一次方程;情感态度价值观:通过学生自学与小组合作探究知识的过程,培养学生的自主学习、归纳总结的能力和与他人合作交流的能力二.教学重点:1、去分母解一元一次方程的方法2、解一元一次方程的一般步骤.教学难点:如何正确去分母三.知识链接:1去分母的依据是什么2.在去分母时我们应该注意哪些问题?四.学法指导:自主学习,小组研学,师生研讨五.学习内容(一)激情导入:上一节课我们学习了去括号解一元一次方程,同学们看这个方程应该怎样解呢 ?312+x =41-x (板书课题)(二)自主学习学习教材95页(问题2)——97页内容,解决下面的问题1、如何把方程中的分母去掉?去分母的依据是什么?2、归纳出解 一元一次方程的一般步骤。
3、在去分母解一元一次方程时,应注意哪些问题?(三)小组研学:针对上述问题,有疑惑或学不会的地方,组内交流探讨(四)师生研讨:以解方程 312+x =41-x 为例,师生共同解决上面的问题,明确解题过程和解题方法六.达标检测1、下列方程的解法对不对?如果不对,错在哪里?应怎样改正?解方程:12231=+--x x 去分母,得 4x-1-3x+6=1移项,合并同类项,得 x=42.解方程 (1)143276--=+x x(2) 354625=++-x x 七.学习小结八.学习反思完成了本节课的学习任务,你有什么收获?解带分母的方程关健是去分母,我们应该根据我们所学的知识把方程正确的变形,把方程转化成x=a 的形式,这种化归的方法与思想你们掌握了吗,希望同学们能运用这种方法灵活的去解方程。
最新新人教版七年级数学第三章导学案3、1、1一元一次方程(1)班级姓名__小组__评价__学习目标1、了解什么是方程,什么事一元一次方程。
2、体会字母表示数的优越性。
重点:知道什么是方程,一元一次方程难点:找等关系列方程使用说明及学法指导:先自学课本78 合并同类项与移项班级姓名__小组__评价__教学目标1、通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题的优越性、2、掌握合并同类项解“ax+bx=c”类型的一元一次方程的方法,能熟练求解一元一次方程,并判别解得合理性、3、通过学生间的相互交流、沟通,培养他们的协作意识。
重点:1建立列方程解决实际问题的思想方法。
2、学会合并同类项,会解“ax+bx=c”类型的一元一次方程。
难点:1、分析实际问题中的已知量和未知量,找出相等关系,列出方程。
2、使学生逐步建立列方程解决实际问题的思想方法使用说明:1、阅读课本P88892、限时20分钟完成本导学案。
然后小组讨论。
一、导学书中88页问题1:(1)如何列方程?分哪些步骤?设未知数:设前年购买计算机x台、则去年购买计算机_____台,今年购买计算机______台、找相等关系:__________________________________________________列方程:___________________________________________________(2)怎样解这个方程?x+2x+4x=140合并同类项,得 _____x=140系数化为1,得x=_____(3)本题还有不同的未知数的设法吗?试试看二、合作探究1、解方程7x-2、5x+3x-1、5x=-154-632、练习:解下列方程:(1)23x-5x=9 (2)-3x+0、5x=10 (3)0、28y-0、13y=3 (4)3、小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是多少岁?三、总结反思小组讨论:本节课你学了什么?有哪些收获?四、作业:课本P93习题3、2第 1、4题、第六课时3、2 解一元一次方程(一)合并同类项与移项班级姓名__小组__评价__教学目标1、会通过移项、合并同类项解一元一次方程、2、学会探索数列中的规律,建立等量关系;通过探究实际问题与一元一次方程的关系,感受数学的应用价值、3、通过学生间的相互交流、沟通,培养他们的协作意识、重点:利用方程解决数学中的数列问题、难点:使学生逐步建立列方程解决实际问题的思想方法、使用说明:独立完成学案,然后小组展示、讨论、一、导学1、解下列方程:(1)2x-8=3x (2)6x-7=4x-5(2)(4)2、有一数列,按一定的规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?解析:观察这些数,考虑它们前后之间的关系,从中发现规律、这些数的规律:(1)符号正负_____;(2)后者的绝对值是前者的_____倍、如果设这三个相邻数中的第1个数为 x,那么第2个数就是______,第3个数就是_______、根据这三个数的和是_______,得方程:解这个方程;因此这三个数分别为;【点评】解数列题的关键是找到数列间的关系、二、合作探究列方程解下列应用题:1、再一次足球比赛中,某队共赛了五场,保持着不败纪录、规则规定,胜一场积3分,平一场记1分,负一场记0分。
5.1 认识一元一次方程学习目标:1.在对实际问题情境的分析过程中感受方程模型的意义.2.借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法.3.使学生在分析实际问题情境的活动中体会数学与现实的密切联系.环节一:阅读章前图请一位同学阅读章前图中关于“丟番图”的故事.(大约1分钟)丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平.坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》(The Greek Anthology)第126 题内容2:回答以下3个问题.(大约4分钟)(1)你能找到题中的等量关系,列出方程吗?(2)你对方程有什么认识?(3)列方程解决实际问题的关键是什么?环节二:情境引入课本130页到131页的填空(1)如果设小彬的年龄为x 岁,那么“乘2 再减5”就是________,因此可以得到方程________.(2)小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约5 cm,大约几周后树苗长高到1 m?如果设x 周后树苗长高到1 m,那么可以得到方程________.(3)甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每小时比原计划多行走1 km,因此提前12 min 到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km,可以得到方程________.(4)根据第六次全国人口普查统计数据,截至2010 年11 月1 日0 时,全国每10 万人中具有大学文化程度的人数为8 930 人,与2000 年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000 年第五次全国人口普查时每10 万人中约有x 人具有大学文化程度,那么可以得到方程___________.m,长和宽之差为25 m,这个操场的长与(5)某长方形操场的面积是5 8502宽分别是多少米?如果设这个操场的宽为x m,那么长为(x+25)m.由此可得到方程_______.环节三:归纳一元一次方程的定义,了解一元一次方程的解的含义(1) 由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流.(2) 方程2x −5=21,40+5x =100,(1+147.30%)x =8 930有什么共同点?书中给具有这样特点的方程下了定义:在一个方程中,只含有一个未知数,且未知数的次数都是 1,这样的方程叫做一元一次方程.判断下列各式是不是一元一次方程,是的打“√”,不是的打“×”.(1) −2+5=3 ( )(2)3x −1=0 ( )(3) y =3 ( )(4) x +y =2 ( )方程的解的含义:使方程左、右两边的值相等的未知数的值,叫做方程的解. 完成教材第131页随堂练习第2题.x = 2 是下列方程的解吗?(1)3x +(10−x )=20 (2)2x 2+6=7x.环节四:达标检测内容1:完成教材第131页随堂练习第1题.根据题意,列出方程:(1)在一卷公元前 1600 年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于 19.你能求出问题中的“它”吗?(5)2510x x -+= ( ) (6)10xy -= ( ) (7)2 m n - ( ) (8)2πS r = ( )(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3 分,平一场得1 分,负一场得0 分.甲队与乙队一共比赛了10 场,甲队保持了不败记录,一共得了22 分.甲队胜了多少场?平了多少场?内容2:达标练习(1)如果5x m−2=8是一元一次方程,那么m = .(2)下列各式中,是方程的是(只填序号)①2x=1;②5−4=1;③7m−n+1;④3(x+y)=4.(3)下列各式中,是一元一次方程的是(只填序号)①x−3y=1;②x2+2x+3=0;③x=7;④x2−y=0.(4)若a的20%加上100等于x,则可列出方程 .本节课你的收获,你的疑惑有哪些?作业与拓展学习设计1.习题5.1.2.思考:还记得小华和小彬猜年龄的问题吗?你能帮小彬解开那个年龄之谜吗?你能解方程5x=3x +4吗?。
第三章 一元一次方程第一节 认识一元一次方程(一)【学习目标】1、了解一元一次方程的定义;2、会列简单方程解决实际问题。
【学习方法】自主探究与合作交流相结合.【学习重难点】重点:一元一次方程的概念.难点:列一元一次方程.【学习过程】模块一 预习反馈二、学习准备1、等式的概念:含有 的式子,叫做等式.2、代数式的概念:用 把 或 连接而成的式子叫做代数式,单独的 也是代数式.3、方程的概念:含有 的等式叫做方程.4、使方程左右两边的值相等的 ,叫做方程的解.5、一元一次方程的概念:在一个方程中,只含有 ,并且 这样的方程叫一元一次方程.(1)阅读教材:第1节 《认识一元一次方程》二、教材精读7、理解一元一次方程和方程的解的概念(1)情景剧:小明在公园里认识了新朋友小彬小明:小彬,我能猜出你的年龄。
小彬:不信。
小明:你的年龄乘2减5得数是多少? 小彬:21小明:你今年13岁。
小彬心里嘀咕:他怎么知道我的年龄是13岁的呢?如果设小彬的年龄为X 岁,那么“乘2再减5”就是 ,所以得到等式 .归纳:在小学我们已经知道,像这样含有未知数的等式叫做 .在一个方程中,只含有 ,并且这样的方程叫一元一次方程.使方程左右两边的值相等的 ,叫做方程的解. 求方程的解的过程叫做解方程。
补充:方程分类()()⎪⎩⎪⎨⎧=+011如:一元一次方程分母不含未知数整式方程x 如:分母含有未知数分式方程方程(2)x=1是( )(A )方程的解 (B )方程 (C )解方程 (4)代数式实践练习:练习1:已知关于X 的方程2X+a=0的解是X=2,则a 的值为 ( )(A )1个 (B )2个 (C )3个 (D )4个 ()()()()()()()()385127326012350324-33128427231__的是________,其中是一元一次方程程的是_______练习2、下列各式是方2>=+≠+=--=-=+=-x x x x x n m x x ;;;;;;;注意:理解定义时一定要注意:(1)一元一次方程是特殊的等式,它不是代数式,也不是不等式,也不是分式.(2)这个等式含有未知数,并且未知数的指数为1.三、教材拓展8、例1 .0422的值及方程的解是一元一次方程,求若m m xm =+-解:根据一元一次方程的定义,可得m-2= ,所以m=再把m= 代入原方程,可得 ,解出x=实践练习:()()()()()4个D个 C个 B个 A有( )其中是一元一次方程的,,,,,下列各方程:321.23812⑥12⑤53241④032③1②1①142x x x x x x x x y x =-=+=-=---==+()()______5312=-=+-a x a a 是一元一次方程,则若模块二 合作探究9、思考下列情境中的问题,列出方程。
一元一次方程导学案【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?等式性质导学案【学习目标】1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。
七年级数学(上)《一元一次方程》导Array学案班级:姓名:学号:初中趣味数学小故事在中国古典神话小说《西游记》里,说到唐僧和他的徒弟孙悟空、猪八戒、沙和尚去西天取经,在平顶山莲花洞消灭了想吃唐僧肉的妖怪金角大王和银角大王。
然后师徒们继续赶路,又遇上一座巍峨险峻的大山。
一面赶路,一面观景,不觉天色已晚。
故事发展到这里,小说中写道:……师徒们玩着山景,信步行时,早不觉红轮西坠。
正是:十里长亭无客走,九重天上观星辰。
八河船只皆收港,七千州县尽关门。
六宫五府回官宰,四海三江罢钓纶。
两座楼头钟鼓响,一轮明月满乾坤。
这首诗从十、九、八、七,说到六、五、四、三、两、一,星月点缀夜色,收工了,下班了,关门了,路上没人了,取经赶路的也该找个地方休息了。
为了取经,跋山涉水已经苦不堪言,降妖伏魔更是险象环生,害得猪八戒想回家,唐僧心里直打鼓。
幸好有孙悟空不断给一行人鼓劲,看看沿途深山老林幽静风光,放松放松。
小说里这首写景诗,也正是在紧张情节中夹进一点轻松花絮,稍稍缓一口气。
诗中嵌进全部十个数字,而且从大往小,倒过来数,成为别具一格的“倒数诗”,更增加了趣味。
《西游记》是明代吴承恩著的,问世已有400多年。
按照我们现在数学里的习惯,用阿拉伯数字把诗中的各个数写出来,顺次排成一串,成为10 9 8 7 6 5 4 3 2 1\现在做一个数学小游戏:用上面写出的十个数,不打乱顺序,添加适当的数学符号,组成十个算式,使计算结果分别等于10、9、8、7、6、5、4、3、2、1。
要组成其中任意一个算式,是很容易的。
要组成全套十个,就要动动脑筋。
如果再使组成十个算式的手法有变化,就更有趣了。
可以组成很多满足条件的算式,下面是其中的一组。
10+9-8-7+6+5-4-3+2×1=10;(10+98+76)×5÷4÷(3+2)+1=9;(10+9+8-7)×6÷5÷4+3-2+1=8;(109-87)÷(6+5)+4+3-2×1=7;(10+9+8-7-6)×5-43-21=6;(10+9+8+7+6)÷5-4÷(3-2)+1=5;10×9-87+65-43-21=4;(109-8+7)÷6-54÷3+2+1=3;(109+87-6)÷5-4-32×1=2;(10×9-87)÷(6×54-321)=1。
3.1 从算式到方程《3.1.1 一元一次方程》教案【教学目标】1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)【教学过程】一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0,解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程【教学反思】本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.第三章一元一次方程3.1从算式到方程《3.1.1一元一次方程》同步练习能力提升1.下列说法中错误的是( )A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,则可列方程x-1=52.某市电力部门呼吁广大市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空出26个座位.下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-263.若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A.-1B.0C.1D.4.已知方程(a-2)x|a|-1=1是关于x的一元一次方程,则a= .5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场”游戏时,观察好友“咖啡思语”和“雨薇”的信息发现:“咖啡思语”的金币比“雨薇”的金币的4倍还多3个.“咖啡思语”的金币数如图所示,则“雨薇”有多少个金币?如果设“雨薇”有x个金币,那么可列方程为.8.由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元?下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.已知关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.若设这四个班捐款的总和为x元,你能列出方程吗?并检验x=636是不是所列方程的解.★12.已知关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2 由题意,得|a|-1=1,所以|a|=2,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.第三章 一元一次方程3.1 从算式到方程《3.1.1 一元一次方程》导学案【学习目标】:1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性, 提高解决实际问题的能力.2.掌握方程、一元一次方程的定义以及解的概念,学会判断某个数值是不是 一元一次方程的解.3.初步学会如何寻找问题中的等量关系,并列出方程.【重点】:掌握一元一次方程的概念,能够根据具体问题中的数量关系列一元一次方程.【难点】:找出具体问题中的等量关系,列一元一次方程.【自主学习】一、知识链接回忆小学学过的有关方程的知识回答下列问题:1.含有 的 叫做方程.2.判断下列各式哪些是方程:(1)5x +3y -6x =37( ) (2)4x -7( )(3)5x ≥ 3( ) (4)6x ²+x -2=0( )(5)1+2=3( ) (6)x5-m =11( ) 二、新知预习1.根据要求列出式子.(1)x 的2倍与3的差是6;(2)正方形的周长为24cm,请写出它的边长a与周长的关系式.2.观察上面所列的两个式子,议一议它们有什么共同特征.【课堂探究】一、要点探究探究点1:方程及一元一次方程的概念合作探究一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?(1)上述问题中涉及到了哪些量?①路程 ______________;②速度 ________________; 快车每小时比慢车多走_____km.③时间 ________________. 相同的时间,快车比慢车多走了_____km.快车走了______h,故AB之间的路程为_______km.算式:____________________________.(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间为 h;慢车行完AB全程所用时间为 h;两车所用的时间关系为:快车比慢车早到1h即:()-()=1把文字用符号替换为 .(3)如果用y表示客车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(4)如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(5)刚才列的方程都有什么特点?①每个方程中,各含有_______个未知数;②每个方程中未知数的次数均为_____;③每个方程中等号两边的式子都是________.要点归纳:只含有 个未知数(元),未知数的次数都是 ,等号两边都是 ,这样的方程叫做一元一次方程. 典例精析例1 若关于x 的方程2x |n |-1-9=0是一元一次方程,则n 的值为 .【变式题】加了限制条件,需进行取舍方程 (m +1) x |m |+1= 0是关于x 的一元一次方程,则m = .易错提醒:一元一次方程中求字母的值,需谨记两个条件:未知数的次数为__________,系数不为________.针对训练下列哪些是一元一次方程?(1)2x +1; (2)2m +15=3;(3)3x -5=5x +4; (4)x 2 +2x -6=0;(5)-3x +1.8=3y ; (6)3a +9>15;(7)61 x =1.探究点2:列方程例2 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.方法归纳:列出方程的一般步骤:1.设未知数;2.找等量关系;3.列方程.针对训练:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇,可列方程为 ;2.六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.设这个小队有x人,可列方程为 .探究点3:方程的解思考:对于方程4x =24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解?方法总结:判断一个数值是不是方程的解的步骤:1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边=右边,则是方程的解,反之,则不是.针对训练检验x = 3是不是方程 2x-3 = 5x-15的解.5.已知方程 (m-2) x|m|-1+3 = m-5是关于x的一元一次方程,求m的值,并写出其方程.。
一元一次方程复习导学案一、课前诊断 实践1:判断下列各等式哪些是一元一次方程,哪些不是一元一次方程,并说明理由。
(1)3-2=1( ) (2)3x+y=2y+x ( ) (3)2x-4=0( ) (4)0.5ab ( ) 理由:_____________ 理由:___________ 理由:____________ 理由:__________举一反三1:是关于x 的一元一次方程, 求k 的值。
解:∵原方程为一元一次方程, 又∵k-1≠____∴ =_______ ∴k ≠____ ∴∴k=____ 变式1: 是关于x 的一元一次方程, 则k =____。
分析:次数_____________系数___________________变式2:是关于x 的一元一次方程, 则k =____。
分析:次数_____________系数____________________变式3:是关于x 的一元一次方程, 则k =____。
分析:次数____________系数____________________ 解决类似问题需要注意什么?实践2:解:去分母________________ 去括号_______________ 移项_________________ 合并同类项_____________ 系数化一__________ 举一反三2:实践3:等式的性质 下列判断错误的是( )A .若b a =,则33-=-bc acB .若b a =,则1122+=+c bc a C .若2=x ,则x x 22= D .若bx ax =,则b a = 二、课堂小检测 (1)选择题1.在方程23=-y x ,021=-+xx ,2121=x ,0322=--x x 中一元一次方程的个数为( )A .1个B .2个C .3个D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x 4.下列两个方程的解相同的是( )A .方程635=+x 与方程42=xB .方程13+=x x 与方程142-=x xC .方程021=+x 与方程021=+x D .方程5)25(36=--x x 与3156=-x x 5、下列等式变形正确的是( ) A.如果ab s =,那么asb =; B.如果x-6=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y6.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场。
第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程学习目标1.理解一元一次方程的概念.2.理解方程的解及解方程的概念,学会检验一个数值是不是方程的解的方法.3.进一步体会找等量关系,会用方程表示简单实际问题. 重点难点1.一元一次方程及方程的解的概念.2.验证一个数是不是一个方程的解.3.理解题意,寻求数量间的等量关系并列出方程. 学习过程第一环节 自主学习1.判断下列是不是方程,是打“√”,不是打“×”: (1)-2+5=3( × ) (2) x >3( × ) (3)2x 2-5x +1=0( √ ) (4) 2a +b ( × ) (5) x =4( √ )2.根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为48 cm 的铁丝围成一个正方形,正方形的边长为多少? 解:设正方形的边长为x cm ,列方程得: 4x =48 .(2)某校女生人数占全体学生人数的52%,比男生多80人,这个学校有多少学生? 解:设这个学校学生人数为x ,则女生人数为 0.52x ,男生数为 0.48x ,依题意得方程: 0.52x -0.48x =80 .(3)练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?解:设小明买了x 本练习本,列方程得: 10-0.8x =4.4 .第二环节 合作探究 1.一元一次方程:都含有 一 个未知数(元),未知数的次数都是 1 ,等号两边都是整式,这样的方程叫作一元一次方程.2.判断下列各式是不是一元一次方程,是打“√”,不是打“×”: (1)5x =0 ( √ ) (2)1+3x ( × ) (3)y 2=4+y ( × ) (4)x +y =5 ( × )(5) 3m +2=1-m ( √ )(6)1x+1=0( × ) 3.x 为自然数,当x 取0,1,2,3,4,5,6时.把这些值分别代入方程x +92=6的左边得:特别强调:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解 .做一做,展示你的才能例检验2和-3是否为方程2x+3=3x+1的解.解:(1)当x=2时,左边=2×2+3 =7 ,右边=3×2+1 =7 ,因为左边=右边(填“=”或“≠”),所以x=2 是方程的解(填“是”或“不是”);(2)当x=-3时,左边=2×(-3)+3 =-3 ,右边=3×(-3)+1 =-8 ,因为左边≠右边(填“=”或“≠”),所以x=-3 不是方程的解(填“是”或“不是”).4.判断下列t的值是不是方程2t+1=7-t的解:(1) t=-2;(2)t=2.解:(1)不是;(2)是.第三环节课堂检测基础闯关1.x=2是下列方程( C )的解.A.5-x=2B.3x-1=4-2xC.3-(x-1)=2x-2D.x-4=5x-22.在下列方程中,是一元一次方程的是( B )A.x-3=y+2B.x2=0C.-3x+2D.-3x2=03.超市搞促销活动,某种书包原价每个x元,第一次降价打八折,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( B )A.0.08x-10=90B.0.8x-10=90C.90-0.8x=10D.x-0.8x-10=904.x=3和x=-6中,x=-6 是方程x-3(x+2)=6的解.5.若x=3是方程2x-10=4a的解,则a=-1 .6.某文艺团体为“希望工程”募捐组织了一场义演,共售出1 000张演出票,已知成人票40元/张,学生票25元/张,共筹得票款3.4万元,设成人票售出x张,根据题意可列方程40x+25(1 000-x)=34 000 .拓展提升1. x k-1+21=0是关于x的一元一次方程,则k= 2 .2.x|k|+21=0是关于x的一元一次方程,则k=±1 .3.(k-1)x|k|+21=0是关于x的一元一次方程,则k=-1 .4.(k+2)x2+kx+21=0是关于x的一元一次方程,则k=-2 .第四环节课后小结3.1.2 等式的性质学习目标1.掌握等式的性质.2.会运用等式的性质解简单的一元一次方程. 重点难点1.探索并理解等式的基本性质.2.能利用等式的性质进行等式变形. 学习过程第一环节 自主学习 下列各式中,哪些是等式,哪些是一元一次方程? (1)4-1=3;(2)6x -2=10;(3)y =0; (4)3a +4;(5)am +bm =(a +b )m ;(6)6x -1>y ;(7)2x 2+5 x =0;(8)S =12(a +b )h .解:等式有:(1)(2)(3)(5)(7)(8);一元一次方程有:(2)(3).第二环节 合作探究1.等式的性质1:等式的两边加(或减) 同一个数(或式子) ,结果仍 相等 .即,如果a =b ,那么a ±c= b ±C.2.请说明下列等式是怎样变形的.(1)将等式x -5=2的两边 加5 ,得到x =7,根据是 等式的性质1 ; (2)将等式x +6=8的两边 减6 ,得到x =2,根据是 等式的性质1 . 3.等式的性质2:等式的两边乘同一个 数 或除以同一个 不为0的数 ,结果仍 相等 ,即如果a =b ,那么ac = bc ;如果a =b (c ≠ 0),那么a c = b c.温馨提示:等式两边除以同一个数时,这个数不能为 0 .4.请说明下列等式是怎样变形的.(1)将等式4 x =12的两边 除以4 ,得到x =3,根据是 等式的性质2 ; (2)将等式12x =7的两边 乘2 ,得到x =14,根据是 等式的性质2 .做一做,展示你的才能例 利用等式的性质解下列方程:(1) x +5=23;(2)-7x =56; (3)-12x +4=5.解:(1)两边减5,得x +5-5=23-5, 于是x =18.(2)两边除以-7,得-7x -7=56-7,于是x =8.(3)两边减4,得-12x +4-4=5-4,化简,得-12x =1,两边乘-2,得x =-2. 温馨提示:解以x 为未知数的方程,就是把方程逐步转化为 x =a (a 为常数) 的形式, 等式 的性质是转化的重要依据.第三环节 课堂检测基础闯关1.下列变形中,正确的是( D )A.若2a =3,则a =23 B.若-2x =1,则x =-2C.若5m =4,则m =-1D.若6a =2b ,则3a =b 2.下列变形正确的是( D )①由-3+2x =5,得2x =5-3;②由3y =-4,得y =-34;③由x -3=2x ,得-3=x ;④由3=x +2,得x =3-2.A.①②B.①④C.②③D.③④3.若m -2=n -2,则m =n ,这是根据 等式的性质1 ,在等式的两边 加2 .4.若3x =-13,则x =-19,这种变形是在等式的两边 除以3 ,其依据是 等式的性质2 .5.解方程2x -4=1时,先在方程的两边 加4 ,得到 2x =5 ,然后在方程的两边 除以2 ,得到x = 52.6.利用等式的性质解方程:3x =-2x +35.解:两边同加2x ,得3x +2x =-2x +35+2x , 即5x =35,两边同除以5,得 x =7. 拓展提升1.运用等式性质的变形,正确的是( B ) A.如果a =b ,那么a +c =b -c B.如果a c =bc ,那么a =bC.如果a =b ,那么a c =bcD.如果a =3,那么a 2=3a 22.若x -1=2 017-y ,则x +y = 2 018 .第四环节 课后小结3.2 解一元一次方程(一) 合并同类项与移项第1课时 合并同类项学习目标1.掌握合并同类项解“ax +bx =c ”类型的一元一次方程的方法.2.能熟练求解一元一次方程. 重点难点1.学会合并同类项,会解“ax +bx =c ”类型的一元一次方程.2.学会列方程解决实际问题的思想方法. 学习过程第一环节 自主学习1.方程5x -6x =3的解是( C ) A..x =2 B..x =3 C..x =-3 D..x =-22.若-x +3x =7-1,则x = 3 .3.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍.设前年购买计算机x 台,则去年购买计算机 2x 台,今年购买计算机 4x 台,列方程得 x +2x +4x =140 ,解得x = 20 ,所以前年这个学校购买了 20 台计算机.第二环节 合作探究 1.将方程中的同类项进行 合并 ,把以x 为未知数的一元一次方程变形为 ax =b (a ≠0,a ,b 为已知数)的形式,然后利用 等式的性质2 ,方程两边 同时除以a ,从而得到x =ba.温馨提示:解方程中“合并同类项”这一变形的依据是 乘法的分配律 ,“系数化为1”的依据是 等式的性质2 .2.解下列方程:(1)9x -5x =4-8;(2)4x -6x -x =-15; (3)7x -2.5x +3x -1.5x =-15×4-6×3. 解:(1)合并同类项,得4x =-4, 系数化为1,得x =-1.(2) 合并同类项,得-3x -15, 系数化为1,得x =5.(3)合并同类项,得6x =-78, 系数化为1,得x =-13. 做一做,展示你的才能例 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1 701,这三个数各是多少?解:设所求三个数分别是x ,-3x ,9x . 由三个数的和是-1 701,得 x -3x +9x =-1 701,合并同类项,得7x =-1 701, 系数化为1,得x =-243. 所以-3x =729,9x =-2 187.所以这三个数是-243,729,-2 187.第三环节 课堂检测基础闯关1.解下列方程时,既要合并含未知数的项,又要合并常数项的是( B ) A.5x +2x =7 B.3x -2x =1+5 C.-x -4x =-1 D.5x =3+22.下列解为x =2的方程是( C ) A.7x -3x =-4 B.x =-1+1 C.3x +x =5+3 D.-2x =43.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A.25台B.50台C.75台D.100台 4.方程-4x -11x =9+6的解为 x =-1 .5.有一列数,按一定规律排列成 2,-6,18,-54,162,-486,…,其中三个相邻的数的和是1 134,则这三个数分别是 162,-486,1 458 .6.解下列方程:(1)16x -2.5x -7.5x =9+3;(2)12x -25x =-3+1. 解:(1)合并同类项,得6x =12,系数化为1,得x =2. (2)合并同类项,得110x =-2,系数化为1,得x =-20.拓展提升甲乙两人骑摩托车同时从相距70千米的两地相向而行,甲的速度是40千米/时,乙的速度为30千米/时,问:经过几小时两人相距35千米?解:设经过x 小时,两人相距35千米.①相遇前:40x +30x =70-35,解得x =0.5; ②相遇后:40x +30x =70+35,解得x =1.5. 答:经过0.5小时或1.5小时两人相距35千米.第四环节 课后小结第2课时移项学习目标1.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.2.体会解方程中的化归思想.重点难点1.会利用移项与合并同类项解一元一次方程.2.会列一元一次方程解决实际问题.学习过程第一环节自主学习1.解下列方程(1)-7x+2x=4-9; (2)9x-x-5x=9.解:(1)合并同类项,得-5x=-5,系数化为1,得x=1.(2)合并同类项,得3x=9,系数化为1,得x=3.2.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?解:设这个班有x名学生.每人分3本,共分出3x本,加上剩余的20本,这批书共(3x +20)本.每人分4本,需要4x本,减去缺的25本,这批书共4x-25本.根据这批书的总数不变,可列方程得3x+20=4x-25.解得x=45.所以这个班有45人.第二环节合作探究1.把等式一边的某项变号后移到另一边,叫作移项.温馨提示:移项的依据是等式的性质1 ,移项要改变符号.2.解下列方程:(1)3x+7=32-2x;(2)7x+1.37=15x-0.23.解:(1)移项,得3x+2x=32-7,合并同类项,得5x=25,系数化为1,得x=5.(2)移项,得7x-15x=-0.23-1.37,合并同类项,得-8x=-1.6,系数化为1,得x=0.2,温馨提示:(1)在解方程移项时,习惯上把含有未知数的项放在等号的左边,常数项放在等号的右边.(2)移项要变号.做一做,展示你的才能例某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t,如用新工艺,则废水排量要比环保限制的最大量少100 t,新旧工艺的废水排量之比为2∶5,两种工艺的废水排量各是多少?温馨提示:因为新、旧工艺的废水排量之比为2∶5,所以可设它们的废水排量分别为2x t ,5x t ,则用旧工艺的废水排量表示环保限制的最大量为 (5x -200) t ,用新工艺的废水排量表示环保限制的最大量为 (2x +100) t.解:设新、旧工艺的废水排量分别为2x t 、5x t ,依题意得 5x -200=2x +100 ,移项,得5x -2x =100+200 ,合并同类项,得 3x =300 ,系数化为1,得 x =100 .则2x = 200 ,5x = 500 .答:新、旧工艺的废水排量分别为 200 t 、 500 t.第三环节 课堂检测 基础闯关1.下列方程变形中的移项正确的是( A ) A.由5x =x -3得5x -x =-3 B.由7+x =3得x =3+7C.由2x +3-x =7得2x +x =7-3D.由2x -3=x +6得2x +x =6+32.解方程4x -2=3-x 时,正确的解答顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③两边都除以5,得x =1. A.①②③ B.③②① C.②①③ D.③①②3.有一篮苹果平均分给几个人.若每人分2个,则还余下2个苹果;若每人分3个,则还少7个苹果.设有x 个人分苹果,则可列方程为( D )A.3x +2=2x +7B.2x +2=3x +7C.3x -2=2x -7D.2x +2=3x -74.若式子x -5与2x -1的值相等,则x 的值是 -4 .5.某船顺流航行的速度为23 ,逆流航行的速度为19 ,则水流的速度为 2 .6.解下列方程:(1)4x +5=3x +3-2x ;(2)34x -2=3-14x . 解:(1) 移项,得 4x -3x +2x =3-5, 合并同类项,得 3x =-2, 系数化为1,得x =-23.(2)移项,得34x +14x =3+2,合并同类项,得 x =5. 拓展提升1.已知14a x +1b 4与9a 2x -1b 4是同类项,则x = 2 .2.如果4m -5的值与3m -9的值互为相反数,则m = 2 .第四环节课后小结3.3 解一元一次方程(二) 去括号与去分母第1课时 去括号学习目标掌握含有括号的一元一次方程的解法. 重点难点1.掌握用去括号的方法解一元一次方程.2.会列方程解应用题,建立方程思想. 学习过程第一环节 自主学习1.去括号:(1)2x -(x +10)= 2x -x -10 ; (2)5x +2(x -1)= 5x +2x -2 .2.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15万kW·h ,这个工厂去年上半年每月平均用电是多少?解:设上半年每月平均用电x kW·h ,则下半年每月平均用电 (x -2 000) kW·h ; 上半年共用电 6x kW·h ,下半年共用电 6(x -2 000) kW·h. 根据全年用电15万kW·h ,列方程得 6x +6(x -2 000)=150 000 .去括号,得 6x +6x -12 000=150 000 , 移项,得 6x +6x =150 000+12 000 , 合并同类项,得 12x =162 000 , 系数化为1,得 x =135 00 .答:这个工厂去年上半年每月平均用电是 135 00 kW·h.第二环节 合作探究 1.解方程时的去括号和有理数运算中的去括号类似,都是运用 乘法的分配律 ,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号 相同 ,括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号 相反 .2.解方程:(1)2x -(x +10)=5x +2(x -1); (2)3x -7(x -1)=3-2(x +3).解:(1)去括号得 2x -x -10=5x +2x -2 . 移项,得 2x -x -5x -2x =-2+10 . 合并同类项,得 -6x =8 .系数化为1,得 x =-43.(2)去括号,得 3x -7x +7=3-2x -6 . 移项,得 3x -7x +2x =3-6-7 . 合并同类项,得 -2x =-10 . 系数化为1,得 x =5 .温馨提示:解含有括号的一元一次方程的步骤:(1) 去括号 ;(2) 移项 ;(3) 合并同类项 ;(4) 系数化为1 .做一做,展示你的才能例 一艘船从甲码头到乙码头顺流行驶,用了2 h ;从乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 ,求船在静水中的平均速度.温馨提示:(1)顺水的速度= 静水速度 + 水流速度 ; (2)逆水的速度= 静水速度 - 水流速度 ;(3)顺水的速度 × 顺流时间 = 逆流速度 × 逆流时间.解:设船在静水中的平均速度为x ,则顺流速度为 2(x +3) ,逆流速度为 (x -3) ,由题意得: 2(x +3)=2.5(x -3) ,去括号,得 2x +6=2.5x -7.5 , 移项,得 2x -2.5x =-7.5-6 , 合并同类项,得 -0.5x =-13.5 , 系数化为1,得 x =27 .答:船在静水中的平均速度为 27 .第三环节 课堂检测基础闯关1.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是( D ) A.2x -3-3x +4=5 B.2x -6-3x -4=5 C.2x -3-3x -12=5 D.2x -6-3x +12=52.若2(a +3)的值与4互为相反数,则a 的值为( C ) A.-1B.-72C.-5D.123.一架飞机在两城间飞行,顺风航行要5.5小时,逆风航行要6小时,风速为24千米/时,设飞机无风时的速度为每小时x 千米,则下列方程正确是( C )A.5.5(x -24)=6(x +24)B.x -245.5=x +246C.5.5(x +24)=6(x -24)D.2x 5.5+6=x 5.5-24 4.当x = 10 时,式子3(x -2)与2(2+x )的值相等.5.某市按如下规定收取每月煤气费:用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分按每月1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气 100 立方米.6.解下列方程:(1)7x +2(3x -3)=20; (2)(x +1)-2(x -1)=1-3x .解:(1)去括号得7x +6x -6=20, 移项、合并同类项得13x =26, 系数化为1,得x =2.(2)去括号得x +1-2x +2=1-3x , 移项,合并同类项得2x =-2, 系数化为1,得:x =-1. 拓展提升1.设P =2y -2,Q =2y +3且3P -Q =1,则y 的值是( B ) A.0.4 B.2.5 C.-0.4 D.-2.52.解方程:43⎣⎡⎦⎤32(x2-1)-3-2x =3. 解:去括号,得2(x2-1)-4-2x =3,x -2-4-2x =3,移项合并同类项,得-x =9, 系数化为1,得x =-9.第四环节 课后小结第2课时 去分母学习目标1.掌握含有分母的一元一次方程的解法.2.归纳解一元一次方程的步骤,体会转化思想的方法. 重点难点1.掌握去分母的方法,完善解一元一次方程的一般步骤.2.会列方程解决实际问题,提高分析问题和解决问题的能力. 学习过程第一环节 自主学习 1.解方程:(1)7x =6x -4;(2)y +1=12y ;(3)8-2()x -7=x -(x -4).解:(1)移项,得 7x -6x =-4 , 合并同类项,得 x =-4 . (2)移项,得 y -12y =-1 ,合并同类项,得 12y =-1 ,系数化为1,得 y =-2 .(3)去括号,得 8-2x +14=x -x +4 移项,得 -2x -x +x =4-8-14 , 合并同类项,得 -2x =-18 , 系数化为1,得 x =9 .2.英国伦敦博物馆保存着一部极其珍贵的文物——纸莎草文书,其中有如下一道著名的末知数的问题:一个数,它的三分之二、它的一半、它的七分之一、它的全部,加起来总共是33.设这个数为x ,可得方程 23x +12x +17x +x =33 .第二环节 合作探究1.去分母的方法:依据等式的性质2,方程两边各项都乘以所有分母的 最小公倍数 将分母去掉.2.解方程: x 2-x +63=1.温馨提示:先确定各分母的最小公倍数是 6 ,然后方程两边同乘以 6 ,注意等号右边的1不要漏乘.解:去分母,得 3x -2(x +6)=6 , 去括号,得 3x -2x -12=6 , 移项,得 3x -2x =6+12 , 合并同类项,得 x =18 .3.解一元一次方程的一般步骤是:(1)去分母;(2) 去括号 ;(3) 移项 ;(4)合并同类项;(5)系数化为1.做一做,展示你的才能例 解下列方程: (1)x +12-1=2+2-x 4;(2)3x +x -12=3-2x -13.解:(1)去分母,得 2(x +1)-4=8+(2-x ),去括号,得 2x +2-4=8+2-x , 移项,得 2x +x =8+2-2+4, 合并同类项,得 3x =12, 系数化为1,得 x =4.(2)去分母,得 18x +3(x -1)=18-2(2x -1), 去括号,得 18x +3x -3=18-4x +2, 移项,得 18x +3x +4x =18+2+3, 合并同类项,得 25x =23, 系数化为1,得x =2325.第三环节 课堂检测基础闯关1.解方程3y -14-1=2y +76,为了去分母应将方程两边同乘以( B )A.10B.12C.24D.62.在解方程x -12=1-2x +33时,去分母正确的是( C )A.3(x -1)=1-2(2+3x )B.3(x -1)=1+2(2x +3)C.3(x -1)=6-2(2x +3)D.3(x -1)=6+2(2x +3)3.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( A )A.x 28=x24-3B.x 28=x24+3 C.x +226=x -226+3D.x -226=x +226-3 4.当x = 43 时,式子x +2与式子 8-x 2的值相等.5.当x = 5 时,式子x -14的值比2-x3的值大2.6.解下列方程: (1)x -32-4x +15=1.(2)x 2-5x +116=1+2x -43. 解:(1)去分母,得5x -15-8x -2=10, 移项合并同类项得-3x =27, 系数化为1,得x =-9.(2)去分母,得3x -5x -11=6+4x -8, 移项合并同类项,得-6x =9, 系数化为1,得x =-1.5. 拓展提升1.若关于x 的一元一次方程2x -k 3-x -3k2=1的解是x =-1,则k 的值是( B )A.27B.1C.-1311D.02.设a ,b ,c ,d 为有理数,现规定一种新的运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2 x +132 1=1的x 的值为 -10 .第四环节 课后小结3.4实际问题与一元一次方程第1课时产品配套问题与工程问题学习目标1.掌握产品配套问题、工程问题,能熟练地利用相等关系列方程.2.能利用一元一次方程解决产品配套问题和工程问题.重点难点根据题意找准等量关系,列一元一次方程解决产品配套问题和工程问题.学习过程第一环节自主学习问题:某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x名工人生产螺母,则(22-x) 人生产螺钉,每天生产螺母2000x个,每天生产螺钉 1 200(22-x) 个.根据螺母的个数是螺钉个数的2倍,列出方程2 000x=2×1 200(22-x) ,解得x=12 ,22-x=10 ,即应安排12 名工人生产螺母,10 名工人生产螺钉.第二环节合作探究1.解决配套问题时,关键是明确配套的物品之间的数量关系,它是列方程的依据.2.某服装车间有工人54人,每人每天可加工上衣8件,或裤子10条,应该怎样分配人数,才能使每天生产的上衣和裤子配套?设有x人做上衣,则做裤子的人数为(54-x) 人,根据题意,可列方程为8x=10(54-x) .3.解决工程问题时,常把总工作量看作1,其基本关系为:工作量=工作效率×工作时间,或工作量=人均效率×人数×时间,或各部分工作量之和等于工作总量.做一做,展示你的才能例整理一批图书,由一个人做要40 h完成.现计划由一部分人先做4 h,再增加2人和他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?温馨提示:如果把总工作量设为1,由一个人做要40 h完成,即一个人1 h能完成全部工作的140,x个人先做4 h完成的工作量为4x40,增加2人后再做8 h完成的工作量为8(x+2)40 ,这两个工作量之和等于总工作量. 解:设应先安排x人先做4 h,根据题意得:4x40+8(x+2)40 =1 .解方程,得4x+8(x+2)=40,4x+8x+16=40,12x=24,x =2.答:应先安排 2 人先做4 h.4.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( D )A.x 40+x 40+50=1B.440+x 40+50=1C.440+x50=1D.440+x 40+x50=1 第三环节 课堂检测基础闯关1.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( C )A.2×1 000(26-x )=800xB.1 000(13-x )=800xC.1 000(26-x )=2×800xD.1 000(26-x )=800x2.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( C )A.x +12050-x 50+6=3B.x 50-x 50+6=3C.x 50-x +12050+6=3D.x +12050+6-x 50=3 3.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40 h 完成.现在该小组全体同学一起先做8 h 后,有2名同学因故离开,剩下的同学再做4 h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为8x 40+4(x -2)40=1 .4.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套,则安排 80 人生产茶杯可使每天生产的瓷器配套.5.将一批工业最新动态信息输入管理储存网络,甲独做需6 h ,乙独做需4 h ,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需115h 才能完成工作.6.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?解:设x 人生产镜片,则(60-x )人生产镜架. 由题意得:200x =2×50×(60-x ), 解得x =20,则60-x =40.答:20人生产镜片,40人生产镜架,才能使每天生产的产品配套. 拓展提升在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.解:(1)设七年级(2)班有男生有x人,则女生有(x+2)人,由题意得:x+x+2=50,解得:x=24,则女生人数为:24+2=26(人),答:七年级(2)班有男生有24人,有女生26人;(2)男生剪筒底的数量:24×120=2 880(个),女生剪筒身的数量:26×40=1 040(个),因为一个筒身配两个筒底,1 880∶1 040≠2∶1,所以原计划男生负责箭筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援y人,由题意得:120(24-y)=(26+y)×40×2,解得:y=4,答:男生应向女生支援4人时,才能使每小时剪出的筒身与筒底相同.第四环节课后小结第2课时销售中的盈亏问题与球赛积分问题学习目标1.理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系.2.结合球赛积分表,掌握从图表中获取信息的方法,培养观察与推理能力.3.能利用一元一次方程解决商品销售中的盈亏问题和球赛积分问题.重点难点设未知数,找等量关系,并会列出方程解决实际问题.学习过程第一环节自主学习1.某商品的进价是200元,售价是260元,则商品的利润是60 元,利润率是30 %.2.某商品进价是50元,利润率为20% ,则商品的利润是10 元.元,根据“进价+利润=售价”列方程,得x+0.2x=60,解得x=50.即商品的进价为50 元.第二环节合作探究1. 进价+利润=售价;利润=进价×利润率;利润率=商品利润商品进价×100%;售价=进价+利润=进价+进价×利润率=进价×(1+利润率).2.折扣问题:商品打几折,就是按原标价的百分之几十出售.3.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的进价为x元,根据题意,下面所列的方程正确的是( B )A.x·40%×80%=240B.x(1+40%)×80%=240C.240×40%×80%=xD.x·40%=240×80%4.球赛积分问题:比赛总场数=胜场数+负场数+平场数;比赛总积分=胜场积分+负场积分+平场积分.5.一足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分.勇士队在这一轮中只负了2场,那么这个队胜了 5 场.做一做,展示你的才能例一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?解:设盈利25%的那件衣服的进价为x元,则它的商品利润是0.25x元,根据“商品售价=商品进价+商品利润”,列方程为:x+0.25x=60 ,解得:x=48 .类似地,设另一件衣服的进价为y元,则它的利润是-0.25y元,列方程是:y-0.25y=60 ,解得:y=80 .两件衣服的进价是x+y=128 元,而两件衣服的总售价是120 元,所以进价>售价(填<、>或=),由此可知,卖出这两件衣服总的盈亏情况是亏损8元.第三环节课堂检测基础闯关1.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程( D )A.3x+9-x=19B.2(9-x)+x=19C.x(9-x)=19D.3(9-x)+x=192.肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是( D )A.(1+50%)x-x=8B.50%x·80%-x=8C.(1+50%)x·80%=8D.(1+50%)x·80%-x=83.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是( A )A.150元B.80元C.100元D.120元4.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1 200元,盈利20%,乙种茶叶卖出1 200元,亏损20%,则此人在这次交易中是( D )A.盈利50元B.盈利100元C.亏损150元D.亏损100元5.某市中学生足球联赛规定:每队胜一场得3分,平一场得1分,负一场得0分,希望之星队前14场保持不败,共得34分,该队共平了 4 场.6.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150-x)元,依题意得:50%x+60%(150-x)=80,解得:x=100,则《中华上下五千年》的标价为150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.拓展提升AC米兰足球队在已赛过的20场比赛中,输了30%,平局占25%,该队还要赛若干场球,球迷发现,即使该队以后每场都没有踢赢,它也能保持30%胜场数,则该球队参赛场数共有多少场?解:设该球队参赛场数共有x场,由题意得30%x=20×(1-30%-25%),解得:x=30.答:该球队参赛场数共有30场.第四环节课后小结第3课时分段计费问题学习目标1.掌握分段计费问题,能熟练地利用相等关系列方程.2.能利用一元一次方程解决分段计费问题.重点难点根据题意找准等量关系,列一元一次方程解决分段计费问题.学习过程第一环节自主学习1.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,下列情况买卡购物合算的是( D )A.购900元B.购500元C.购1 200元D.购1 000元2.某市出租车收费标准是:起步价7元(即行驶距离不超过3 km应付车费7元)超过3 km 以后,每增加1 km加收1.2元(不足1 km按1 km收费),某人乘出租车行驶了8.6 km,则应付车费14.2 元.第二环节合作探究1.优化方案问题可按下列步骤进行:(1)设未知数;(2)列式:列出各种方案的式子;(3)比较:可代入数值进行比较,也可将表示各方案的式子相减进行比较;(4)做出判断:根据以上的比较结果,确定最优方案.温馨提示:列方程解应用题的基本步骤:审题、设元、找出等量关系、列方程、解方程、检验和答.2.某校准备为毕业班学生制作一批纪念册,并且每人1册.甲公司提出:收设计费1 500元,另每册收取材料费5元;乙公司提出:不收设计费,每册收取材料费8元.张老师经过计算,发现两家公司收费一样,则该校今年毕业生有500 人.做一做,展示你的才能例某市移动通信公司推出两种手机卡,采用的收费标准见下表:(1)妈妈每月的通话时间累计一般在60分左右,爸爸每月的通话时间累计一般在200分左右,请你帮助他们分别选一种比较合算的手机卡,并通过计算说明你的理由.(2)想一想,通话在多少分钟时,两种标准所付话费相同?解:(1)妈妈用A卡每月的费用为:18+0.12×60=18+7.2=25.2(元),妈妈用B卡每月的费用为60×0.3=18(元),∵25.2>18,∴妈妈用B卡比较合算.爸爸用A卡每月的费用为18+0.12×200=18+24=42(元),爸爸用B卡每月的费用为0.3×200=60(元).∵42<60,∴爸爸用A卡比较合算.答:妈妈用B卡合算,爸爸用A卡比较合算,因为这样省钱.(2)设通话在x分钟时,两种标准所付话费相同,根据题意得18+0.12x=0.3x,解得x=100.答:通话100分钟时,两种话费相同.。
§5.9 一元一次方程导学案(附单元检测题)学习目标1.了解什么是方程,知道什么是一元一次方程。
2.充分体会字母表示数的优越性。
重点:知道什么一元一次方程。
难点:找出等量关系列出方程使用说明及学法指导:先自学课本78—79页内容,独立完成学案,然后小组讨论交流、展示。
一、导学:1、根据条件列出式子①比a大6的数:;②m的一半与8的差:;③y的3倍减去5:;④a的5倍与b的2倍的商:;2、根据条件列出等式:①比x大7的数等于8:;②y的一半与9的差为6:;③x的2倍比10大10:;④比a的3倍小5的数等于a与b的和:;二、合作探究:观察:上述四个等式有什么共同特点:;归纳:含有______的__________叫做方程。
探究:例1 根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为24cm的铁丝围成一个正方形,正方形的边长为多少?解:设正方形的边长为x cm,列方程得:。
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设x月后这台计算机的使用时间达到规定的检修时间2450小时;列方程得:。
(3)某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?解:设这个学校学生数为x,则女生数为,男生数为,依题意得方程:。
观察:观察方程:4x=24, 1700+150x=2450, 0.52x-(1-0.52)x=80,它们有什么共同特点?归纳:含有 未知数(元),并且未知数的次数都是 的方程叫做一元一次方程。
分析 中的 ,利用其中的 列出 ,是用数学解决实际问题的一种方法。
三、试一试:1、判断下列是不是一元一次方程,是打“√”,不是打“×”:①3+x =5;( ) ② 132=+-x ;( ) ③y x -=+6132; ( ) ④02=y ; ( ) ⑤1182->-x ; ( ) ⑥3+4x =8x ;( )2、环形跑道一周600米,沿跑道跑x 周可跑3000米,可列方程是:四、课堂检测:根据下列条件列出方程。
3.1.1 一元一次方程一、导学学习目标1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程;2.理解什么是一元一次方程;3.理解什么是方程的解及解方程,学会检验一个数的值是不是方程的解.学习重点找等量关系,会用方程表示简单的实际问题学习难点能验证一个数是否是一个方程的解自主学习请大家观察左边的这些式子,看看它们有什么共同的特征?1.象这种用(符号)来表示相等关系的式子,叫等式2.象这样含有的等式叫做方程。
3.你能举出一些方程的例子吗?二、探究问题1:阅读并解答下列问题:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为xcm,列方程得:(2)一台计算机已使用了1700 h,预计每月使用150 h,经过多少个月这台计算机使用的时间达到规定的检修时间2450 h.解:设x月后这台计算机的使用时间达到2450 h,那么在x月里这台计算机使用了列方程得:(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少人?解:设这个学校的学生数为x,那么女生数为 ,男生数为 .列方程得 .观察有哪些共同特征?你可以归纳出一元一次方程的定义吗?问题2:已知方程:2x-3=5x-15,把X=3代入方程的左边,2X-3=把X=3代入方程的右边5x-15=左边右边(相等或不相等)已知方程:2x-3=5x-15,把X=4代入方程的左边,2X-3= 把X=4代入方程的右边5x-15= 左边 右边(相等或不相等) 所以,X=4叫做方程2x-3=5x-15的解.使方程 叫方程的解.叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程等号左右两边是否相等.三、检测1.下列各式中,哪些是方程,哪些是一元一次方程?(1)5x=0 (2)1+3x (3)y²=4+y (4)xy=5 (5)X X21= (6)3m+2=1-m (7) 23+2x=5 (8)x2+2x-6=0 (9) 3a+9>02根据下列条件,列出方程(1)X 的2倍与3的差是5.(2)a 的三分之一与2的和为7.3.请你判断下列给定的t 的值中,哪个是方程2t +1=7-t 的解?1 )t =-2 (2) t =2 (3)t=1 四、拓展(一)课堂小结(二)知识延伸第一关 : 0211=+-x k 是一元一次方程,则k=____第二关 : 021=+x k是一元一次方程,则k=____第三关 : 0211=+-x k k )(是一元一次方程,则k =____第四关 : 02122=+++kx k x )(是一元一次方程,则k =____。
一元一次方程导学案
瑞格中学七年级数学上导学案
——3.4实际问题与一元一次方程(4)
科学知识与技能:掌控一元一次方程的数学分析,熟识用一元一次方程求解应用题的基本步骤过程与方法:①经历把实际问题模型化后的过程,体会方程思想的促进作用。
②经历把实际问题抽象为方程的过程,发展用方程方法分析问题,解
然问题的能力。
情感态度:通过具体情境引入本节课(电话计费问题),激发学生的探究欲望,通过具体问题的解决,使学生感受数学的魅力和作用。
重点:进一步体会一元一次方程与实际的密切联系,扩散数学建模思想,培育学生运用一元一次方程分析和化解实际问题的问题。
难点:在电话计费问题中,能理解并准确地划分时间t的取值范围。
教学方法:独立自主自学、小组讨论、教师指导、展现成果,小结提升
一、创设情境,引入新课
信息社会,人们沟通交流方式多样化,移动电话已经很普及,挑选经济实惠的收费方式很存有现实意义。
二、合作交流,解决问题
方式二的收费为
(2)一个月内通话多少分钟,两种移动通讯方式费用相同?
(3)若老师一个月通话约80分钟或者500分钟,恳请你给他加个建议,应当挑选哪种移动通讯方式不划算一些?恳请表明理由.
(4)如何根据通话时间选择不同的计费方式使电话费比较便宜?。
第一课时 3.1.1一元一次方程(1)班级 姓名__ 小组__评价__ 学习目标1. 了解什么是方程,什么是一元一次方程。
2. 体会字母表示数的优越性。
重点:知道什么是方程,一元一次方程 难点:找等关系列方程使用说明及学法指导:先自学课本78—81页内容,独立完成学案,然后小组讨论交流。
一. 导学1. 书中问题用算术方法解决应怎样列算式:2.设X 千米表示AB 的路程:AB 的路程是x 千米,客车的速度为70千米每小时则要行驶__小时,卡车速度为60千米每小时,则卡车要行驶__小时。
又知道 所以可列方程为: 3.什么是方程?4.什么是一元一次方程?二、合作探究1.判断下列式子是否是方程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=112.下列式子哪些是一元一次方程?不是一元一次方程的,要说明理由. (1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5) x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是一元一次方程,求m 的值;(2)已知关于x 的方程mx n-1+2=5是一元一次方程,则m=__,n=__.4、根据下列条件列出方程:(1)某数的5倍加上3,等于该数的7倍减去5; (2)某数的3倍减去9,等于该数的三分之二加6;(3)某数的8倍比该数的5倍大12;(4)某数的一半加上4,比该数的3倍小21.(5)某班有x 名学生,要求平均每人展出4枚邮票,实际展出的邮票量比要求数多了15枚,问该班共展出多少枚邮票?三、学习小结 说说你的收获与困惑四、作业习题3.1第1、5题。
第二课时 3.1.1 一元一次方程(2)班级 姓名__ 小组__评价__学习目标1. 根据实际问题中的数量关系,设未知数,列出一元一次方程。
2. 知道方程的解和解方程是两个不同的概念。
第三章 一元一次方程《3.1.1 一元一次方程》导学案NO :34一、学习目标1. 初步学习如何寻找问题中的相等关系,列出方程,了解方程的概念; 2.在对实际问题情景的分析过程中感受方程模型的意义。
二、自主学习1、请同学们阅读P78 至P79,然后用算术方法解此问题,列算式为 ; 然后用设未知数列方程的数学思想来解决此问题,设A,B 两地的路程为x 千米,可列方程为: 像上面含有未知数的等式,叫 (读三遍)。
2、自学P79,根据下列问题,设未知数并列出方程.(1)用一根长20cm 的铁丝围成一个正方形,正方形的边长是多少?分析:设正方形的边长为x (cm ),那么周长为 (cm ),列方程: . (2)某校女生占全体学生数的61℅,比男生多61个,这个学校有学生多少个?分析:设这个学校有学生x 个人,则女生数为 ,男生数为 ,列方程是 ; (3)一台计算机已使用1200小时,预计每月再使用123小时,经过多少月这台计算机的使用时间达到规定的检修时间2612小时?(自主分析并列出方程)像上面(1)、(2)、(3)所列的方程,只含有一个 数,并且未知数的次数都是 ,这样的方程叫做 元 次方程(读三遍)。
注意:“ 一元”是指一个未知数;“一次”是指未知数的指数是一次(理解)。
上面的分析过程归纳如下:(1)分析实际问题中的 关系,利用 关系列出方程(一元一次方程),是用数学解决实际问题的一种方法。
(2)列方程经历的几个步骤 A 、设 数;B 、找出题中的 关系; C 、列出含有未知数的等式——( )。
3、阅读P80,理解列方程是解决实际问题的一种重要方法,利用方程能够求出未知数。
当x =6时,4x 值是24。
这时,方程4x =24等号左右两边相等,所以x =6,叫做方程4x =24 的解;同样,当x=10时,2x+3=23,这时方程2x+3=23等号两边 相等,所以,x=10叫做方程2x+3=23的 ;像这样,解方程就是求出使方程中等号左右两边 的未知数的值,这个值就是方程的 (读三遍)。
《一元一次方程》导学案《《一元一次方程》导学案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习目标:1、通过处理实际问题,让学生体验从算术方法到代数方法是一进步.2、初步学会寻找问题中的等量关系,列出方程,了解方程的概念。
3、理解方程、一元一次方程、方程的解等概念。
4、掌握检验某个值是不是方程的解的方法。
5、体验估算方法寻求方程的解的过程,培养学生求实的态度。
教学重、难点:1、了解方程、一元一次方程、方程的解等概念。
2、寻找问题中的等量关系,并列出方程课堂合作探究一.自主学习:1、_________叫做方程。
2、____________________________叫做一元一次方程3、_____________________________叫做方程的解。
二.自学合作探究:_____________________________________________是方程。
_______________________________是一元一次方程2、例题:根据下列问题,设未知数并列出方程(不必求解)(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?3、方程x=3是下列哪个方程的解?()A、3x+9=0B、x=10-4xC、x(x-2)=3D、2x-7=12三、巩固提高:1、甲班、乙班共有学生90名,甲班比乙班多2人,设乙班有x 人,根据题意列方程为__________________2、、某数的3倍比它的一半大2,若设某数为y,则列方程为__________________4、根据下列问题,设未知数并列出方程(不必求解)(1)环形跑道400m ,沿跑道多少周,可以跑3 000m ?(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,9元钱买了两种铅笔共20支,两种铅笔各买了多少只?(3)一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底?5、x=1 000和2 000中哪一个是方程0.52x-(1-0.52)x=80的解?6、请写出一个解为4的一元一次方程__________(答案不唯一)《一元一次方程》导学案这篇文章共2418字。
一元一次方程导学案丽星中学八年级数学导学案设计小组负责人:小组长:年月日预习笔记课题:从实际问题到方程可以用尝试、检验的方法找出方程②的解,即只要将x=1,2,3,4,5, …代入方程②的左右两边,看哪个数能使两边的值相等.这样得到 x =是方程的解.【三】分组合作1、练习:检验下列各括号内的数是不是它前面方程的解(1)x-3(x+2)=6+x (x=3,x= -4)(2)44x+64=328 (x=5,x=6 )2、根据题意设未知数,并列出方程(不必求解):(1)、某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?(2)、小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本利和为3243元.请你帮小明算一算这种储蓄的年利率、检验下列方程后面大括号内所列各数是否为相应方程的解:(2) 2(y-2)-9(1-y)=3(4y-1),{-10,10}.4、小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了1.60元.你猜原来每本价格是多少?”你能列出方程吗?预习笔记学习目标1、使学生会列一元一次方程2、会判断一个数是不是某个方程的解重点:会列一元一次方程解决一些简单的应用题难点:列一元一次方程思考题:5x-1=2x+7 (x=?)如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办?【一】预习交流。
1、列出下列代数式(1)一本笔记本1.2元,x本需要________钱。
(2)一支铅笔a元,一支钢笔b元,小强买2支铅笔和3支钢笔一共需要____________元钱。
(3)长方形的宽为a,长比宽长3,则该长方形的面积为___________.(4)x辆44座的汽车加上2辆32座的汽车最多可以乘坐________人。
一元一次方程导学案【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?等式性质导学案【学习目标】1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。
【学习难点】利用等式的基本性质解简单的方程。
课前自主学习(查阅教材和相关资料,完成下列内容) 考点一.等式的基本性质11.等式两边 (或减)同一个数(或式子),结果仍 ;2.可以用数学语言表述为:如果a=b ,那么a b= ; 3.用数字验证等式的基本性质1:如① ,② 。
考点二.等式的基本性质21.等式两边乘 ,或除以同一个 ,结果仍相等;2.可以用数学语言表述为: 如果a=b ,那么ac= ; 如果a=b(c ≠0),那么ba= . 3.用数字验证的基本性质2:如① ,② 。
学练提升问题一.等式基本性质考查例1:利用等式基本性质解下列方程(1) x+7=26; (2) -5x=20; (3) -31x-5=4. 【规律总结】【同步测控】1.利用等式基本性质解下列方程并检验:(1) x-5=6; (2) 0.3x=45; (3) 2-41x=3; (4) 5x+4=0(1)加法交换律; (2)乘法交换律;(3)分配率; (4)加法结合律问题三、运用等式的基本性质解实际问题:例2.2001年1~9月我国城镇居民可支配收入为5109元,比上年同期增长8.3%,上年同期收入为多少元?【规律总结】【同步测控】1.种一批树苗,每人种10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗.有多少人种树?2.一辆汽车已行驶了12000km,计划每月再行使800km,几个月后这辆汽车讲形势20800km?3.圆环形状如图所示,它的面积是200cm2,外沿大圆的半径是10cm,内沿小圆的半径是多少?【学习目标】1.初步学会用合并同类项解一元一次方程;2.会用移项解简单的一元一次方程;【学习重点】会用移项、合并同类项解简单的一元一次方程。
【学习难点】移项中的变号问题。
课前自主学习(查阅教材和相关资料,完成下列内容) 考点一.同类项概念的考查:1.含有相同的 ,并且相同字母的 也相同的单项式,叫做同类项。
2.请你举例说明什么是同类项。
考点二.合并同类项的考查:1.合并同类项时,把 相加减,字母和字母的指数 .2.合并同类项:(1) 2x-5x; (2) -3x+0.5x; (3) 2x +23x -32x考点三.利用合并同类项解方程:例1.解方程7x-2.5x+3x-1.5x=-15×4-6×3. 解:【规律总结】【同步测控】1.通过合并同类项解下列方程:(1) 5x-2x=9; (2)2x +23x =7;(3) -3x+0.5x=10; (4) 7x-4.5x=2.5×3-5.考点四.移项的考查 例2.解方程:4(x-23)=2. 解法1:(1)根据等式性质____,两边同_______,得:x-23=12) (2) 根据等式性质____,两边都加_________,即x-23+23=12+23,也就是x=12+23(3)得x=76. 解法2:(1)利用乘法分配律,去掉括号,得:4x-_______________=2, (2) 两边同加_________,即4x-38+38=2+38,得4x=143,(3)两边同除以_____________, (4) 得x=76. 上面解法1中第二步,相当于把原方程左边的-23变为+23移到右边,这样就可以通过合并同类项解方程. 像这样把等式一边的某项变号后移到另一边,就叫做移项.【规律总结】【同步测控】 1.移项(1)x-5=11; (2) 2x+5=x-2; (3) 0.5x-3=x+2x-7.【重要思想】2.利用移项解方程:(1)6x-7=4x -5 ; (2)12x-6 =34x ;(3)3x+5=4x+1 ; (4)9-3y=5y+5;【规律总结】【学习目标】1.进一步学习用合并同类项解一元一次方程;2.学习分析问题找到相等关系,列出方程解决简单的实际问题;【学习重点】分析问题找到相等关系并列出方程。
【学习难点】找到相等关系并列出方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.合并同类项的考查:合并同类项时,把相加减,字母和字母的指数 .考点二.移项的考查移项要 .考点三.根据实际问题列一元一次方程:例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了_______________(即____)台.题目中的相等关系为:三年共购买计算机140台,即:前年购买量+去年购买量+今年购买量=140 列方程:________________________如何解这个方程呢?我的思路是: 2x表示2×x,4x表示4×x,x表示1×x.根据分配律,x+2x+4x=(_________________________)x=7x.这样就可以把含x的项合并为一项(合并同类项),合并时要注意x的系数是1,不是0.解:【规律总结】列方程解应用题的一般步骤是:(1)“设”:用字母(例如x)表示问题的___ ;(2)“找”:看清题意,分析题中及其关系,找出用来列方程的_ _____;(3)“列”:用字母的代数式表示相关的量,根据___ 列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。
【同步测控】1.小帅种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?问题1.规律性问题例 2.有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个数的和是-1701,这三个数各是多少?分析:(1)从符号和绝对值来看,这列数有什么规律?(2)如果设其中一个数为x,那么后面与他相邻的数是 ;(3)本题的相等关系是: ;(4)可以列方程为: .解:【规律总结】【同步测控】2.配制一种混凝土,水泥、沙、石子、水的质量比是1:3:10:4,要配制这种混凝土360千克,各种原料分别需要多少千克?【规律总结】问题2、移动电话收费问题(1)一个月内在本地通话200分和350分,按方式一需缴费多少元?按方式二呢?(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?【规律总结】【同步测控】3.某乡改种玉米为优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?4.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可在这家服装店按8折购物.什么情况下买卡购物合算?【学习目标】1.初步学习通过去括号解一元一次方程;2.学习分析问题找到相等关系,列出方程解决简单的实际问题; 【学习重点】利用去括号法则解一元一次方程。
【学习难点】找到相等关系并列出方程。
课前自主学习(查阅教材和相关资料,完成下列内容) 考点一.去括号法则的考查:1.括号前面是"+"的,去括号后,括号里边各项都 ;2.括号前面是"-"的,去括号后,括号里边各项都 . 考点二.移项的考查 移项要 .考点三.列方程解实际问题的一般步骤第一步: 第二部: 第三步: 第四步: 第五步: 学练提升问题一:节能问题例1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000吨,全年用电15万伏.这个工厂去年上半年每月平均用电多少度?分析:(1)设上半年每月用电x 度,则下半年每月平均用电 度;上半年共用电 度,下半年共用电 度;(2)相等关系:(3)列一元一次方程:6x+6(x-2000)=150 000 解这个方程: 去括号 移项1因此,个工厂去年上半年每月平均用电13500度. 【方法总结】请你用其他列方程方法再试试.问题二、用去括号解一元一次方程的考查 例2.解方程3x-7(x-1)=3-2(x+3)【方法总结】【同步测控】 1.解下列方程:(1) 4x+3(2x-3)=12-(x+4); (2) 6(21x-4)+2x=7-(31x-1);(3) 2(x+8)=3(x-1) ; (4) 2(10-0.5x)=-(1.5x+2).2.两个村共有834人,较大的村的人数比另一个村的2倍少3,两村各有多少人?【规律总结】【1.了解一元一次方程解法的一般步骤;2.掌握用去分母的方法解一元一次方程;【学习重点】利用去分母解一元一次方程。