[推荐学习]2018-2019学年九年级数学上册 第一章 特殊平行四边形 1 菱形的性质与判定《菱形
- 格式:doc
- 大小:239.57 KB
- 文档页数:7
第一章特殊的平行四边形一、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分.(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等.3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形.(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形.(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意: 平行线间的距离处处相等。
5、平行四边形的面积: S平行四边形=底边长×高=ah 二、菱形1、菱形的定义:有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等.(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形.(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形.(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4、菱形的面积: S菱形=底边长×高=两条对角线乘积的一半三、矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。
1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC 平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案一、选择题1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD 的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.考点:矩形的性质.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=O B=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.考点:1.矩形的性质;2.等边三角形的判定与性质.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.考点:矩形的性质.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE= 30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.二、填空题12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.考点:勾股定理的逆定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理的逆定理,即可完成.三、解答题15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥B D,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD是解题的关键.。
九年级数学上册:第一章特殊平行四边形1.菱形的性质与判定2.矩形的性质与判定3.正方形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
※矩形的定义:有一个角是直角的平行四边形叫矩形。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※多边形内角和:n边形的内角和等于(n-2)·180°※多边形的外角和都等于360°※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。
※中心对称图形上的每一对对应点所连成的线段被对称中心平分。
四种特殊四边形的性质四种特殊四边形常用的判定方法:面积公式: S 平行四边形=底边长×高=ah S 矩形=长×宽=ab S菱形=底边长×高=两条对角线乘积的一半2221对角线边长正==S。
1.1.1菱形的性质学习目标了解菱形的基本性质,掌握其特征.学习难点掌握菱形的性质.教学过程一、复习平行四边形有何特征?如何识别一个四边形是平行四边形?在学生思考、交流的过程中,老师适时进行指导.二、创设问题情境,导入新知出示可伸缩的衣帽架实物.老师在演示的过程中提问:图中的基本图形你熟悉吗?学生大多回答是平行四边形,让一个同学用尺量出这个平行四边形的邻边的长度(发现邻边相等这个特性)接着老师告诉学生,这种邻边相等的平行四边形,与一个角是直角的平行四边形一样也是一种特殊的平行四边形,这是今天我们要研究的课题.教师板书:菱形.那究竟什么是菱形呢?学生在思考、交流中,老师适时地进行指导,把正确的定义板书在黑板上:一组邻边相等的平行四边形叫做菱形.这里的“平行四边形”不能写成“四边形”.“一组邻边相等的四边形,不一定是菱形”.这点务必加以强调.如果要用四边形下菱形的定义就应该是“四边都相等的四边形是菱形”.三、学生动手操作1.画一个△ABC,取BC的中点M,把△ABC绕着M,旋转180°后得一个△A′B′C′,△A′B′C′与△ABC 拼成一个怎样的图形?(平行四边形)那么菱形也可以看作什么样的三角形通过绕着那一边的中点旋转180°后与原三角形拼成的?2.画一个等腰△ABC,取底边BC中点M,把△ABC绕着M旋转180•°后的三角形与原三角形拼成一个怎样的图形?(菱形)要说明它菱形,就应讲出根据来.•请一个同学说出根据:“它是邻边相等的平行四边形”.如图所示.3.观察图,思考:(1)图中有哪些三角形是等腰三角形?(2)图中有哪些直角三角形?在学生交流的基础教师板书:(1)△ABC,△A′BC,△ACA′,△ABA′都是等腰三角形.(2)△ACM,△CMA′,△ABM,△BMA′都是直角三角形.让学生想一想后继续操作.菱形是中心对称图形,这点大家是不会怀疑的,刚才的操作已经说明了这一点,•那么菱形是不是轴对称图形呢?•大家都知道菱形可以把等腰三角形绕着底边中点旋转180°后所得的三角形与原三角形拼成的.由于等腰三角形是轴对称图形,•所以我们也可以判断出菱形也是轴对称图形.请大家想一想:(1)直角△ACM,直角△CMA′,直角△ABM,直角△BMA′的形状、大小是否相同?(2)如何用剪刀的办法,得到一个菱形的纸片呢?如图所示.请大家按如下步骤操作:(1)将一张矩形纸对折再对折;(2)用尺在折后的矩形的一角上画一条直线;(3)用剪刀沿着这条线剪下,打开.你发现这是一个什么样的图形.(•如果在另一角画直线剪下的是两个等腰三角形要拼起来才可完成上面的四边形,究竟在哪一角画线,请思考后再动手.)根据以上的操作与思考,你发现菱形它有哪些性质吗?教师让学生用语言进行表达出来,用边、角、对角线的顺序来阐明.教师板书:菱形性质:(边):对边平行、四边都相等.(角):对角相等.(对角线):对角线互相垂直平分,且平分各内角.由于菱形是平行四边形,所以它具有平行四边形的一切性质,上述的对边平行、对边相等、对角相等、对角线互相平分,就是平行四边形的性质,而邻边相等、对角线互相垂直,是它与平行四边形不同的特殊性质.上述的菱形性质是两种性质的总和.同时菱形还是轴对称图形,它的对称轴有两条,是两条对角线所在的直线,它是中心对称图形,其对称中心,就是它两条对角线的交点.四、范例分析,加深理解例2 在菱形ABCD中,BAD=2∠B.如图所示.试说明△ABC是等边三角形.学生观察图形并对照条件,进行思考、交流.师生共同分析:要说明△ABC是等边三角形,可以从以下几条入手:(1)说明AB=BC=AC;(2)说明∠BAC=∠ACB=∠ABC;(3)说明△ABC中,有两个角都等于60°.从第一条途径出发:我们知道四边形ABCD是菱形,即可获得AB=BC,•现在只差AB=AC或BC=AC.要知道CB=AC,就要说明∠ABC=∠CAB;要知道BA=AC,就要说明∠ABC=∠ACB.由于AD∥BC,即可得到∠DAB+∠ABC=180°,故3∠ABC=180°,∠ABC=60°.那么∠BAD=120°.由于菱形对角线平分内角.故∠BAC=60°,即∠BAC=∠ABC=60°.那么AB=AC.这样就可以得到△ABC是等边三角形.从第二条途径出发:就要从三个角入手,上面分析已得到:∠BAC=∠ABC,由于BA=BC,故∠BAC=∠BCA.那么∠BAC=∠ABC=∠BCA.这样△ABC是等边三角形就可获得说明,从第三条途径出发,•第一条途径分析中已获得了.解:由于四边形ABCD是菱形,所以AB=BC,AD∥BC.即∠B+∠BAD=180°,∠BAC=∠BAC.又∠BAD=2∠ABC.所以3∠ABC=180°,即∠ABC=60°.因为∠BAC+∠BCA+∠ABC=180°,故∠BAC+∠BCA=120°.那么2∠BAC=120°.即∠BAC=60°,∠BCA=60°.因此三角形ABC为等边三角形.也可以说△ABC是一个角等于60°的等腰三角形,所以△ABC为等边三角形.五、随堂练习,巩固新知教材随堂练习六、全课小结,提高认识1.菱形有哪些特征?它与矩形的特征有何异同点?2.如何识别一个四边形是菱形?1.1.2菱形的判定学习目标1.经历菱形的判定定理的发现过程。
第一章《特殊平行四边形》《菱形的性质与判定》(第1课时)【教学目标】1.知识与技能(1).理解菱形的概念,了解它与平行四边形之间的关系.(2).经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。
3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形的性质定理的证明【教学难点】菱形的性质定理的证明【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、导入新课导语:在我们现实生活中,平行四边形的形象无处不在,请同学们观察下列图片中的平行四边形.这些平行四边形的邻边相等,像这样的平行四边形叫菱形。
二、探究新知1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
菱形在生活中随处可见,你能举出一些生活中菱形的例子吗?与同伴交流。
(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?(菱形的对边平行且相等,对角相等,对角线互相平分。
中心对称图形)(2)你认为菱形还具有哪些特殊的性质?与同伴交流。
2.活动内容1:请同学们用你手中的菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)结合手中的折纸得到的菱形ABCD,找出图中相等的角和线段。
由折纸过程和对称轴的性质可得相等的角有:∠1=∠2;∠3=∠4;∠5=∠6;∠7=∠8;相等的线段有:AB=BC=CD=DA.处理方式:让学生利用课前准备的菱形纸片进行折叠,折叠的过程中,让学生回顾轴对称图形的意义及轴对称图形的性质,从而发现菱形的“特殊”性质,感受折纸过程对性质的初步验证.设计意图:通过折纸这一过程,引导学生发现菱形的对称性,即菱形不只是中心对称图形,还是轴对称图形,在操作过程中验证菱形的特殊性质,鼓励学生通过多种方法验证发现的结论.。
活用菱形性质 解决计算问题菱形是一种特殊的平行四边形,它具有四边相等,对角线互相垂直并平分一组对角等性质,和菱形有关的计算问题主要设计以下几个方面。
一.应用性质求周长例1 (云南)菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .5解析:菱形的两条对角线长分别是6和8,对角线的一半分别是3和4,它们和菱形的斜边组成直角三角形,根据勾股定理得斜边为5,所以菱形的周长为20.故应选B.例2 (山东临沂)如图1,菱形ABCD 中,∠B=60°,AB=2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .32B .33C .34D .3 解析:本题考查了菱形的有关性质、勾股定理、等腰三角形、等边三角形以及三角形全等等知识,题目不是很难,但综合性较强.连接AC.因为四边形ABCD 是菱形,所以AB=BC.又因为∠B=60°,所以△ABC 是等边三角形。
因为E 是BC 的中点,所以AE⊥BC。
同理,AF⊥CD.易证得△ABE≌△ADE,所以AE=AF 。
因为AB∥CD,∠B=60°,所以∠C=120°。
又因为CE=CF ,所以∠CEF=30°,所以∠AEF=60°,所以△AEF 是等边三角形。
由勾股定理得AE=3,所以△AEF 的周长为33.故应选B.二。
应用性质求面积例3 (湖南长沙)如图2,在□ABCD 中,BC=2AB=4,点E 、F 分别是BC 、AD 的中点。
(1)求证:△ABE≌△CDF;(2)当四边形AECF 为菱形时,求出该菱形的面积。
分析:本题主要考查菱形的性质和面积的计算。
(1)两三角形全等的条件由平行四边形的性质和中点定义提供. (2) 若四边形AECF 为菱形,则AE=EC=BE=AB ,于是△ABE 为边长为2的等边三角形,根据等边三角形的性质和勾股定理计算△ABE 的高,从而求得菱形的面积。
2018-2019学年数学北师大版九年级上册1.3 正方形的性质与判定(2)同步训练一、选择题1.如图,正方形ABCD的对角线AC、BD相交于点O,OA=3,则此正方形的面积为()A. 3B. 12C. 18D. 362.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角3.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B. 2 C. +1 D. 2 +14.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A. 7B. 8C. 7D. 75.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3,P是AC上一动点,则PB+PE的最小值是().A.5B.5C.6D.6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是().A. B. 2 C. D.7.如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A. AM⊥FCB. BF⊥CFC. BE=CED. FM=MC8.有3个正方形如图所示放置,直角三角形部分的面积依次记为A,B,则A:B等于()A.1:B.1:2C.2:3D.4:99.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是( )A.3B.2C.3D.310.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF,EG分别交BC,DC于点M,N,若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为( )A. B. C. D.二、填空题11.如图,已知P是正方形ABCD外一点,且PA=3,PB=4 ,则PC的最大值是________;12.如图,正方形ABCD中,点E,F分别在BC,CD上,三角形AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②AG=2GC,③BE+DF=EF,④S△CEF=2S△ABE正确的有________(只填序号).13.在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE和PC的长度之和最小可达到________14.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE 的中点,连接PG,则PG的长为________.15.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG=________.16.在正方形ABCD中,点E为对角线BD上一点,EF⊥AE交BC于点F,且F为BC的中点,若AB=4,则EF=________.三、解答题17.如图,在正方形ABCD中,点E是AD边上的一点,AF⊥BE于F,CG⊥BE于G.(1)若∠FAE=20°,求∠DCG的度数;(2)猜想:AF,FG,CG三者之间的数量关系,并证明你的猜想.18.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.19.如图,正方形ABCD的边长为10 cm,点E,F,G,H分别从点A,B,C,D出发,以2 cm/s的速度同时分别向点B,C,D,A运动.(1)在运动的过程中,四边形EFGH是何种四边形?请说明理由.(2)运动多少秒后,四边形EFGH的面积为52cm2?20.如图,正方形ABCD的边长为6,点E是边AB上一点,点P是对角线BD上一点,且PE⊥PC.(1)求证:PC=PE;(2)若BE=2,求PB的长.21.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.(1)求证:四边形ABCD是正方形;(2)求证:三角形ECF的周长是四边形ABCD周长的一半;(3)若EC=FC=1,求AB的长度.答案解析部分一、选择题1.【答案】C【考点】正方形的性质【解析】【解答】解:∵正方形ABCD 的对角线AC 、BD 相交于点O ,OA=3,∴AB=BC ,OA=OC ,∴AB= ,∴正方形的面积=, 故选C .【分析】根据正方形的性质和正方形的面积解答即可.2.【答案】A【考点】菱形的性质,矩形的性质【解析】【解答】解:矩形的对角线互相平分、相等,菱形的对角线互相平分、垂直、对角线平分一组对角,∴矩形具有而菱形不具有的性质是对角线相等,故答案为:A .【分析】从矩形和菱形的对角线的性质去解答此题。
1.1.2 菱形的判定1.下列命题中正确的是( )A.对角线相等的四边形是菱形 B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形 D.对角线互相垂直的平行四边形是菱形2. 已知一个平行四边形的一条边长为3,两条对角线的长分别为4和25,则这个四边形是( ) A.菱形 B.长方形 C.正方形 D.以上都不对3. 已知四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,这个条件是( ) A.AB=CD B.AB=BC C.AD=BC D.AC=BD4. 若菱形两条对角线的长分别为6和8,则这个菱形的边长为( )A.5 B.16 C.12 D.105. 如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6. 小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是( )A.小明、小亮都正确 B.小明正确,小亮错误C.小明错误,小亮正确 D.小明、小亮都错误7. 如图,下列条件之一能使▱ABCD是菱形的是( )①AC⊥BD;②∠BAD=90°;③AB=BC;④BD平分∠ABC.A.①③B.②③C.③④D.①③④8. 用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形9. 如图,下列条件能判定四边形ABCD为菱形的有( )AB=BC=CD=DA;②AC,BD互相垂直平分;③平行四边形ABCD,且AC⊥BD;④平行四边形ABCD,且AC=BD.A.1个 B.2个 C.3个 D.4个10. 若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A.长方形 B.对角线相等的梯形C.对角线相等的四边形 D.对角线互相垂直的四边形11. 如图,在▱ABCD中,∵∠1=∠2,∴BC=DC.∴▱ABCD是菱形.(请在横线上填上理由)12. 如图,菱形ABCD的周长是8 cm,AB的长是____ cm.13. 已知四边形ABCD,AB=CD,AD=BC.添加一个条件,则四边形ABCD是菱形.14. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____.(只填写序号)15. 如图,在菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长是____.16. 如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.17. 某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角形ABC与AFE按如图①所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.参考答案:1---10 DABAB BDBCC11. 有一组邻边相等的平行四边形是菱形12. 213. AB=BC14. ③15. 2816. 解:∵四边形ABCD是菱形,∴AC⊥BD且BO=DO.在Rt△AOB中,∵AB=5,AO=4,由勾股定理,得BO=3,∴BD=617. (1)∵α+∠EAC=90°,∠NAF+∠EAC=90°,∴α=∠NAF.又∵∠B=∠F,AB=AF,∴△ABM≌△AFN,∴AM=AN(2)四边形ABPF是菱形.理由:∵α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠B=∠F=60°,∴∠B+∠BAF=60°+120°=180°,∠F+∠BAF=60°+120°=180°.∴AF∥BC,AB∥EF.∴四边形ABPF 是平行四边形.又∵AB=AF,∴四边形ABPF是菱形。
判别菱形的思路菱形是特殊的平行四边形,一般情况下,判别一个四边形是菱形,要先判别其为平行四边形,再判别其有一组邻边相等或两条对角线互相垂直.具体来说,判别四边形是菱形主要有以下几种思路。
一、先说明四边形是平行四边形,再说明它有一组邻边相等例1 如图1,已知,在△ABC中,AB=AC,M是BC的中点,MG⊥BA,MD⊥AC,GF⊥AC,DE⊥AB,垂足分别为G、D、F、E,GF与DE相交于H,试说明:四边形HGMD是菱形。
分析:利用菱形的定义,先说明四边形HGMD是平行四边形,再说明Rt△BGM≌Rt△CDM,得GM=DM,就可以说明四边形HGMD是菱形了.解:因为MD⊥AC,GF⊥AC,所以MD∥GF.同理MG∥DE.所以四边形HGMD为平行四边形.由AB=AC,则∠B=∠C。
又BM=MC,所以Rt△BGM≌Rt△CDM,所以MG=MD,所以四边形HGMD是菱形.二、说明四条边都相等例2 a,b,c,d是四边形ABCD的四边,若a4+b4+c4+d4=4abcd。
试说明:四边形ABCD 是菱形.解:因为a4+b4+c4+d4=4abcd,所以a4-2a2b2+b4+c4-2c2d2+d4+2a2b2+2c2d2-4abcd=0,即(a2-b2)2+(c2-d2)2+2(ab-cd)2=0。
由非负数性质,得a2-b2=0,c2-d2=0,ab-cd=0.所以a2=b2,c2=d2,ab=cd。
所以a=b=c。
所以四边形ABCD是菱形。
三、先说明四边形是平行四边形,再说明对角线互相垂直例3 已知:如图2, ABCD的对角线AC的垂直平分线与AD、BC、AC分别相交于E、F、O.试说明:四边形AFCE是菱形。
分析:在四边形AFCE中,已有对角线EF⊥AC,要说明四边形AFCE是菱形,只需说明四边形AFCE是平行四边形即可.解:因为四边形ABCD是平行四边形,所以AD∥BC,所以∠EAO=∠FCO,∠AEO=∠CFO。
第一章特殊平行四边形1.菱形的性质与判定2.矩形的性质与判定3.正方形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
※矩形的定义:有一个角是直角的平行四边形叫矩形。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※多边形内角和:n边形的内角和等于(n-2)·180°※多边形的外角和都等于360°※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。
※中心对称图形上的每一对对应点所连成的线段被对称中心平分。
四种特殊四边形的性质边角对角线对称性平行四边对边平行且相等对角相等互相平分中心对称形矩形 对边平行且相等 四个角都是直角 互相平分且相等轴对称中心对称菱形对边平行四条边相等对角相等 互相垂直平分且每条对角线平分对角 轴对称中心对称 正方形对边平行四条边相等四个角都是直角 互相垂直平分且相等,每条对角线平分对角 轴对称中心对称四种特殊四边形常用的判定方法:平行四边形①两组对边分别平行的四边形 ②两组对边分别相等的四边形 ③一组对边平行且相等的四边形 ④两组对角分别相等的四边形 ⑤对角线互相平分的四边形矩形①有一个角是直角的平行四边形 ②有三个角是直角的四边形 ③对角线相等的平行四边形菱形①有一组邻边相等的平行四边形 ②四条边都相等的四边形 ③对角线互相垂直的平行四边形 ④对角线垂直且平分的四边形 正方形①有一个角是直角一组邻边相等的平行四边形 ②一组邻边相等的矩形 ③一个角是直角的菱形 ④对角线垂直且相等的平行四边形面积公式: S 平行四边形=底边长×高=ah S 矩形=长×宽=ab S 菱形=底边长×高=两条对角线乘积的一半 2221对角线边长正==S。
菱形
【巩固练习】
一.选择题
1.下列命题中,正确的是( )
A.两邻边相等的四边形是菱形
B.一条对角线平分一个内角的平行四边形是菱形
C.对角线垂直且一组邻边相等的四边形是菱形
D.对角线垂直的四边形是菱形
2. 菱形的周长为高的8倍,则它的一组邻角是()
A.30°和150° B.45°和135° C.60°和120° D.80°和100°
3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()
A.6 cm,8 cm B.3 cm,4 cm C.12 cm,16 cm D.24 cm,32 cm
4.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()
A.108° B.72° C.90° D.100°
5.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()
A.B.C.5 D.4
6. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面
积是()
A. B.2 C.3 D.
二.填空题
7.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.
8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.
9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______cm2.
10.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.
11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂
足为H,则点O到边AB的距离OH=.
12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点
P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.
三.解答题
13.如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过
A作AM∥FC交BC于点M,连接EM.
求证:(1)四边形AMCF是菱形;
(2)△ACB≌△MCE.
14.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
【答案与解析】
一.选择题
1.【答案】B;
2.【答案】A;
【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.
3.【答案】C;
【解析】设两条对角线的长为6k,8k.所以有(3k)2+(4k)2=102,∴k=2,所以两条对角线的长为12 ,16.
4.【答案】B;
【解析】连接PA
∵四边形ABCD是菱形,
∴∠ADP=∠CDP=∠ADC=36°,BD所在直线是菱形的对称轴,
∴PA=PC,
∵AD的垂直平分线交对角线BD于点P,
∴PA=PD,
∴PD=PC,
∴∠PCD=∠CDP=36°,
∴∠CPB=∠PCD+∠CDP=72°;
故选:B.
5.【答案】A.
【解析】∵四边形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=,
∴,
∴DH=,
故选A.
6.【答案】A;
【解析】菱形的高分别是和,阴影部分面积=两个菱形面积-△ABD面积-
△DEF面积-△BGF面积=.
二.填空题
7.【答案】.;
【解析】∵AECF为菱形,∴∠FCO=∠ECO,
由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,
∴∠FCO=∠ECO=∠BCE=30°,
在Rt△EBC中,EC=2EB,又EC=AE,
AB=AE+EB=3,∴EB=1,EC=2,∴BC=.
8.【答案】5;
【解析】菱形四条边相等.
9.【答案】;
【解析】由题意∠A=60°,DE=.
10.【答案】5;;;
【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为.
11.【答案】;
【解析】.
12.【答案】;
【解析】由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE的长,然后分别从①当OP=OE时,②当OE=PE时,③
当OP=EP时去分析求解即可求得答案.
三.解答题
13.【解析】
证明:(1)∵△ACF是等边三角形,
∴∠FAC=∠ACF=60°,AC=CF=AF,
∵∠ACB=60°,
∴∠ACB=∠FAC,
∴AF∥BC,
∵AM∥FC,
∴四边形AMCF是平行四边形,
∵AM∥FC,∠ACB=∠ACF=60°,
∴∠AMC=60°,
又∵∠ACB=60°,
∴△AMC是等边三角形,
∴AM=MC,
∴四边形AMCF是菱形;
(2)∵△BCE是等边三角形,
∴BC=EC,
在△ABC和△MEC中
∵,
∴△ABC≌△MEC(SAS).
14.【解析】
(1)证明:∵在平行四边形ABCD中,AB=CD,
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=BC,AF=DF=AD,
∴BE=DF.
∴△ABE≌△CDF.
(2)解:∵四边形AECF为菱形时,
∴AE=EC.
又∵点E是边BC的中点,
∴BE=EC,即BE=AE.
又BC=2AB=4,
∴AB=BC=BE,
∴AB=BE=AE,即△ABE为等边三角形,
▱ABCD的BC边上的高可由勾股定理算得为,
∴菱形AECF的面积为2.
15.【解析】
解:(1)∵AE+CF=2=CD=DF+CF
∴AE=DF,DE=CF,
∵AB=BD
∴∠A=∠ADB=60°
在△BDE与△BCF中
∴△BDE≌△BCF
(2)由(1)得BE=BF,∠EBD=∠CBF
∴∠EBF=∠EBD+∠DBF=∠DBF+∠CBF=∠CBD=60°
∴△BEF是等边三角形
(3)∵≤△BEF的边长<2
∴
∴。