函数导数三角向量测试
- 格式:doc
- 大小:223.50 KB
- 文档页数:4
平面向量:1. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为__________2.若AB →·BC →+AB →2=0,则△ABC 必定是________三角形3.在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC →=a ,BD →=b ,则用a 、b 表示AF →等于4.若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为______5..若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →=0,实数x 为______6.(文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( )A .最大值为8B .最小值为2C .是定值6D .与P 的位置有关7.(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →|的最小值是_________8.如图所示,点P 是函数y =2sin(ωx +φ)(x ∈R ,ω>0)的图象的最高点,M ,N 是该图象与x 轴的交点,若PM →·PN →=0,则ω的值为________9如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF →=12AD →,AK →=λAC →,则λ的值为________ 10.(文)设i 、j 是平面直角坐标系(坐标原点为O )内分别与x 轴、y 轴正方向相同的两个单位向量,且OA →=-2i +j ,OB →=4i +3j ,则△OAB 的面积等于________.(理)三角形ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,能得出三角形ABC 一定是锐角三角形的条件是________(只写序号)①sin A +cos A =15②AB →·BC →<0 ③b =3,c =33,B =30° ④tan A +tan B +tan C >0.11.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,向量m =(-1,1),n =(cos B cos C ,sin B sin C -32),且m ⊥n . (1)求A 的大小;(2)现在给出下列三个条件:①a =1;②2c -(3+1)b =0;③B =45°,试从中选择两个条件以确定△ABC ,求出所确定的△ABC 的面积.1.若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( ) A .11f k k ⎛⎫<⎪⎝⎭ B .111f k k ⎛⎫>⎪-⎝⎭ C .1111f k k ⎛⎫< ⎪--⎝⎭ D . 111k f k k ⎛⎫> ⎪--⎝⎭ 2.对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D . 点(2,8)在曲线()y f x =上 3.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞ C .(,1)(1,0)-∞-- D .(0,1)(1,)+∞4.设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是_________________5.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .6.曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 7.设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围. 8.已知函数32211()(21)()32f x x a x a a x =-+++. (Ⅰ)若()f x 在1x =处取得极大值,求实数a 的值;(Ⅱ)若m ∀∈R ,直线y kx m =+都不是曲线()y f x =的切线,求k 的取值范围; (Ⅲ)若1a >-,求()f x 在区间[0,1]上的最大值.1.已知等比数列{}n a 的首项为1,若1234,2,a a a ,成等差数列,则数列1{}na 的前5项和为 。
导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x >0时,x >sin x >x −12x 2.②余弦函数:cos x ≥1−12x 2.③正切函数:当x ∈0,π2时,sin x <x <tan x . ④数值域:sin x ∈-1,1,cos x ∈ -1,1 .3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x -ax ,a ∈R ,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x >2x ;(2)若函数g x =f x -x cos x 在区间0,+∞ 内有唯一的零点,求a 的取值范围.2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)2已知函数f x =sin x-x-ae x,其中a为实数,e是自然对数的底数.(1)若a=-1,证明:f x ≥0;(2)若f x 在0,π上有唯一的极值点,求实数a的取值范围.3已知函数f x =e x,g x =sin x+cos x.(1)求证:f x ≥x+1;(2)若x≥0,问f x +g x -2-ax≥0a∈R是否恒成立?若恒成立,求a的取值范围;若不恒成立,请说明理由4已知函数f(x)=e x+cos x-a(a∈R).(1)讨论f(x)在[-π,+∞)上的单调性;(2)当x∈[0,+∞)时,e x+sin x≥ax+1恒成立,求a的取值范围.5已知函数f x =a sin x,其中a>0.(1)若f x ≤x在0,+∞上恒成立,求a的取值范围;(2)证明:∀x∈0,+∞,有2e x>x+1 xln x+1+sin x.6已知函数f x =ae x+4sin x-5x.(1)若a=4,判断f x 在0,+∞上的单调性;(2)设函数p x =3sin x-2x+2,若关于x的方程f x =p x 有唯一的实根,求a的取值范围.7已知函数f x =e x,g x =2-sin x-cos x.(1)求证:当x∈0,+∞,x>sin x;(2)若x∈0,+∞,f x >g x +ax恒成立,求实数a的取值范围.8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2 ,都有f (x )≥0,求整数k 的最大值.9已知函数f (x )=(x -1)e x +ax +1.(1)若f (x )有两个极值点,求a 的取值范围;(2)若x ≥0,f (x )≥2sin x ,求a 的取值范围.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.11(2023全国新高考2卷)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f x =cos ax-ln1-x2,若x=0是f x 的极大值点,求a的取值范围.【跟踪训练】1已知函数f x =xe-x+a sin x,e是自然对数的底数,若x=0恰为f(x)的极值点.(1)求实数a的值;上零点的个数.(2)求f(x)在区间-∞,π42已知函数f x =2cos x+ln1+x-1.上零点和极值点的个数,并给出证明;(1)判断函数f x 在区间0,π2(2)若x≥0时,不等式f x <ax+1恒成立,求实数a的取值范围.3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立.(1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2 ,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.5已知函数f(x)=ax2-a(x sin x+cos x)+cos x+a(x>0).(1)当a=1时,(I)求(π,f(π))处的切线方程;(II)判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a的取值范围.6已知f(x)=ax2-cos x-x sin x+a(a∈R).(1)当a=14时,求y=f(x)在[-π,π]内的单调区间;(2)若对任意的x∈R时,f(x)≥2恒成立,求实数a的取值范围.7已知函数f(x)=e x-a-x-cos x,x∈(-π,π)其中e=2.71828⋯为自然对数的底数.(1)当a=0时,证明:f x ≥0;(2)当a=1时,求函数y=f x 零点个数.8已知函数f x =x-1e x+ax+1.(1)若a=-e,求f x 的极值;(2)若x≥0,f x ≥2sin x,求a的取值范围.9已知函数f x =2sin x-ln1+x0<x<π.(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.11已知函数f x =ln x+sin x. (1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.12已知函数f(x)=12ax2-(a-2)x-2ln x.(1)当a=2时,证明:f x >sin x.(2)讨论f x 的单调性.13(1)证明:当x<1时,x+1≤e x≤11-x;(2)是否存在正数a,使得f x =2e x+a sin x-ax2-a+2x在R上单调递增,若存在,求出a的取值范围;若不存在,请说明理由.导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x>0时,x>sin x>x−12x2. ②余弦函数:cos x≥1−12x2.③正切函数:当x∈0,π2时,sin x<x<tan x. ④数值域:sin x∈-1,1,cos x∈-1,1.3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x-ax,a∈R,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x>2x;(2)若函数g x =f x -x cos x在区间0,+∞内有唯一的零点,求a的取值范围.【答案】(1)答案见解析;(2)a≥1【详解】(1)因为f x =e x-ax,所以f x =e x-a,当a≤0时,f x =e x-a>0,则f x =e x-ax在R上单调递增,当a>0时,令f x =e x-a>0得x>ln a,令f x =e x-a<0得x<ln a,所以函数f x 的增区间为(ln a,+∞),减区间为(-∞,ln a),令F x =e x-2x,则F x =e x-2,令F x =e x-2>0得x>ln2,令F x =e x-2<0得x<ln2,所以函数F x 的增区间为(ln2,+∞),减区间为(-∞,ln2),所以当x=ln2时,F x 取得最小值为F ln2=e ln2-2ln2=2-2ln2>0,所以e x>2x,得证;(2)由(1)知,g x =e x-a-x cos x,因为函数g x 在区间0,+∞内有唯一的零点,所以方程a=e x-x cos x在区间0,+∞内有唯一解,令h(x)=e x-x cos x,x≥0,则函数h(x)=e x -x cos x与y=a在0,+∞上只有一个交点,记m x =e x-x-1,(x≥0),则m x =e x-1≥0,所以m x 在0,+∞上单调递增,所以m x =e x-x-1≥e0-1=0,即e x≥x+1,故h (x)=e x-cos x+x sin x≥1-cos x+x(1+sin x)≥0,所以h(x)=e x-x cos x在0,+∞上单调递增,又h(0)=1,如图:要使方程a=e x-x cos x在区间0,+∞内有唯一解,则a≥1.所以a的取值范围是a≥1.2已知函数f x =sin x -x -ae x ,其中a 为实数,e 是自然对数的底数.(1)若a =-1,证明:f x ≥0;(2)若f x 在0,π 上有唯一的极值点,求实数a 的取值范围.【解析】(1)证明:a =-1时,f x =sin x -x +e x ,令g x =e x -x ,则g x =e x -1,当x <0时,g x <0,g x 在-∞,0 上为减函数,当x >0时,g x >0,g x 在0,+∞ 上为增函数,函数g x 的极小值也是最小值为g 0 =1,所以g x ≥g 0 =1,而-sin x ≤1,所以e x -x ≥-sin x ,即f x ≥0.(2)f x 在0,π 上有唯一的极值点等价于f x =cos x -1-ae x =0在0,π 上有唯一的变号零点,f x =0等价于a =cos x -1e x ,设h x =cos x -1e x,x ∈0,π ,h x =-sin x -cos x +1e x =1-2sin x +π4 e x,因为x ∈0,π ,所以x +π4∈π4,5π4 ,当0<x <π2时,x +π4∈π4,3π4 ,sin x +π4 >22,h x <0,h x 在0,π2 上为减函数,当π2<x <π时,x +π4∈3π4,5π4 ,sin x +π4 22,h x 0,h x 在π2,π 上为增函数,所以函数h x 的极小值也是最小值为h π2 =-1e π2,又h 0 =0,h π =-2e π,所以当-2e π≤a <0时,方程a =cos x -1e x 在0,π 上有唯一的变号零点,所以a 的取值范围是-2e π,0.3已知函数f x =e x ,g x =sin x +cos x .(1)求证:f x ≥x +1;(2)若x ≥0,问f x +g x -2-ax ≥0a ∈R 是否恒成立?若恒成立,求a 的取值范围;若不恒成立,请说明理由【答案】(1)证明见解析;(2)a ≤2【详解】(1)令F x =e x -x -1,F x =e x -1,当x ∈-∞,0 ,F x <0,所以此时F x 单调递减;当x ∈0,+∞ ,F x >0,所以此时F x 单调递增;即当x =0时,F x 取得极小值也是最小值F 0 =0,所以F x ≥0,得证;(2)设h x =f x +g x -2-ax ,即证h x =e x +sin x +cos x -2-ax ≥0在0,+∞ 上恒成立,易得h x =e x +cos x -sin x -a ,当x =0时,若h 0 =2-a ≥0⇒a ≤2,下面证明:当a ≤2时,h x =e x +sin x +cos x -2-ax ≥0,在0,+∞ 上恒成立,因为h x =e x +cos x -sin x -a ,设u x =h x ,令v x =x -sin x ,v x =1-cos x ≥0,所以v x 在0,+∞ 上是单调递增函,所以v x ≥v 0 =0,又因为1-cos x ≥0,则u x =e x -sin x -cos x ≥x +1-sin x -cos x =x -sin x +1-cos x ≥0所以h x 在0,+∞ 上是单调递增函数,所以h x ≥h 0 =2-a ≥0,所以h x 在0,+∞ 上是严格增函数,若a >2时,h 0 <0,即h x 在x =0右侧附近单调递减,此时必存在h x 0 <h 0 =0,不满足f x +g x -2-ax ≥0a ∈R 恒成立,故当a ≤2时,不等式恒成立.4已知函数f (x )=e x +cos x -a (a ∈R ).(1)讨论f (x )在[-π,+∞)上的单调性;(2)当x ∈[0,+∞)时,e x +sin x ≥ax +1恒成立,求a 的取值范围.【答案】(1)f (x )在[-π,+∞)上的单调递增;(2)(-∞,2]【详解】(1)f (x )=e x -sin x ,当-π≤x ≤0时,e x >0,sin x <0,∴f (x )=e x -sin x >0,当x >0时,e x >1,sin x ≤1,∴f (x )=e x -sin x >0,即:f (x )>0在[-π,+∞)上恒成立,所以f (x )在[-π,+∞)上的单调递增.(2)方法一:由e x +sin x ≥ax +1得:e x +sin x -ax -1≥0当x =0时,e x +sin x -ax -1≥0恒成立,符合题意令g (x )=e x +sin x -ax -1,x >0g (x )=e x +cos x -a =f (x ),由(1)得:g (x )在(0,+∞)上的单调递增,∴g (x )>2-a ,①当a ≤2时,g (x )>2-a ≥0,所以g (x )在(0,+∞)上的单调递增,所以g (x )>g (0)=0,符合题意②当a >2时,g (0)=2-a <0,g (ln (2+a ))=2+cos (ln (2+a ))>0,∴存在x 0∈(0,ln (2+a )),使得g (x 0)=0,当0<x <x 0时,g (x )<g (x 0)=0;所以g (x )在(0,x 0)上的单调递减,当0<x <x 0时,g (x )<g (0)=0,这不符合题意综上,a 的取值范围是(-∞,2].方法二:令h (x )=e x +sin x ,s (x )=ax +1,x ≥0则h (0)=s (0)=1,符合题意h(x )=e x +cos x =f (x )+a ,f (x )=e x -sin x 由(1)得:f (x )>0在(0,+∞)上恒成立,h (x )在(0,+∞)上单调递增所以,h (x )>h (0)>0,所以h (x )在(0,+∞)上单调递增,其图象是下凸的,如图: ∵h (0)=2,所以,曲线h (x )在点(0,1)处的切线方程为:y =2x +1,要使得h (x )≥s (x )在[0,+∞)上恒成立,只需a ≤2所以,a 的取值范围是(-∞,2].5已知函数f x =a sin x ,其中a >0.(1)若f x ≤x 在0,+∞ 上恒成立,求a 的取值范围;(2)证明:∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x .【答案】(1)0,1 ;(2)证明见解析【详解】(1)令h x =x -a sin x ,x ∈0,+∞ ,则h x =1-a cos x ,当a ∈0,1 时,h x >0,h x 单调递增,所以h x ≥h 0 =0,当a ∈1,+∞ 时,令m x =h x =1-a cos x ,则m x =a sin x ,所以对∀x ∈0,π2 ,m x >0,则h x 在0,π2 上单调递增,又因为h 0 =1-a <0,h π2 =1>0,所以由零点存在定理可知,∃x 0∈0,π2使得h x 0 =0,所以当x ∈0,x 0 时,h x <0,h x 单调递减,h x <h 0 =0,与题意矛盾,综上所述,a ∈0,1 .(2)由(1)知,当a =1时,sin x ≤x ,∀x ∈0,+∞ . 先证ln x +1 ≤x ,x ∈0,+∞ ,令φx =x -ln x +1 ,则φ x =1-1x +1≥0,所以φx 单调递增,φx >φ0 =0,即ln x +1 ≤x . 所以当x ∈0,+∞ 时,ln x +1 +sin x ≤2x ,x +1x ln x +1 +sin x ≤2x 2+1 .要证∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x ,只需证e x >x 2+1. 令g x =x 2+1 e -x -1,x ∈0,+∞ ,则g x =2x -x 2-1 e -x =-x -1 2e -x ≤0.所以g x 在0,+∞ 上单调递减,所以g x <g 0 =0,即e x >x 2+1.综上可得∀x ∈0,+∞ ,有2e x >x +1xln x +1 +sin x .6已知函数f x =ae x +4sin x -5x .(1)若a =4,判断f x 在0,+∞ 上的单调性;(2)设函数p x =3sin x -2x +2,若关于x 的方程f x =p x 有唯一的实根,求a 的取值范围.【答案】(1)函数f x 在0,+∞ 上单调递增.(2)a ≤0或a =2【详解】(1)当a =4时,f x =4e x +4sin x -5x ,f x =4e x +4cos x -5,令g x =f x =4e x +4cos x -5,则g x =4e x -4sin x .当x ∈0,+∞ 时,4e x ≥4(x =0时等号成立);-4sin x ≥-4(x =π2+2k π,k ∈Z 时等号成立),所以g x =4e x -4sin x >0,即函数f x =4e x +4cos x -5在0,+∞ 上递增,所以f x ≥f 0 =3>0,即函数f x 在0,+∞ 上单调递增.(2)方程f x =p x 即ae x +4sin x -5x =3sin x -2x +2有唯一的实根,则a =3x +2-sin x e x只有一个解,等价于直线y =a 与函数y =3x +2-sin x e x 的图象只有一个交点.令h x =3x +2-sin x ex ,则h x =sin x -cos x +1-3x e x ,因为e x >0,所以h x =sin x -cos x +1-3x e x 的符号由分子决定,令m x =sin x -cos x +1-3x ,则m x =cos x +sin x -3=22sin x +π4-3<0.所以m x =sin x -cos x +1-3x 在R 上递减,因为m 0 =0,所以当x ∈-∞,0 时,m x >m 0 =0;当x ∈0,+∞ 时,m x <m 0 =0.即当x ∈-∞,0 时,h x >0;当x ∈0,+∞ 时,h x <0.所以函数h x =3x +2-sin x e x 在-∞,0 上递增,在0,+∞ 上递减,当x 趋于-∞时,e x 趋于0且大于0,分子3x +2-sin x 趋于-∞,则3x +2-sin x e x趋于-∞;当x =0时,h max x =h 0 =2;当x 趋于+∞时,e x 趋于+∞,分子3x +2-sin x 也趋于+∞,令φx =e x-3x +2-sin x ,则φ x =e x -3+cos x ,当x >2时,φ x =e x -3+cos x >0,则x 趋于+∞时,e x 增长速率大于3x+2-sin x 的增长速率,故x 趋于+∞时,3x +2-sin x e x趋于0.画出函数h x =3x +2-sin x e x 的草图,并画出直线y =a ,要使直线y =a 与函数y =3x +2-sin x e x的图象只有一个交点.则a ≤0或a =2.所以当a ≤0或a =2时,方程f x =p x 有唯一的实根.7已知函数f x =e x ,g x =2-sin x -cos x .(1)求证:当x ∈0,+∞ ,x >sin x ;(2)若x ∈0,+∞ ,f x >g x +ax 恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)-∞,2 【详解】(1)证明:设F x =x -sin x ,x >0,则F x =1-cos x >0,所以F x 在区间0,+∞ 上单调递增,所以F x >F 0 =0,即x >sin x .(2)由f x >g x +ax 在区间0,+∞ 上恒成立,即e x +sin x +cos x -ax -2>0在区间0,+∞ 上恒成立,设φx =e x +sin x +cos x -ax -2,则φx >0在区间0,+∞ 上恒成立,而φ x =e x +cos x -sin x -a ,令m x =φ x ,则m x =e x -sin x -cos x ,设h x =e x -x -1,则h x =e x -1,当x >0时,h x >0,所以函数h x 在区间0,+∞ 上单调递增,故在区间0,+∞ 上,h x >h 0 =0,即在区间0,+∞ 上,e x >x +1,由(1)知:在区间0,+∞ 上,e x >x +1>sin x +cos x ,即m x =e x -sin x -cos x >0,所以在区间0,+∞ 上函数φ x 单调递增,当a ≤2时,φ 0 =2-a ≥0,故在区间0,+∞ 上函数φ x >0,所以函数φx 在区间0,+∞ 上单调递增,又φ0 =0,故φx >0,即函数f x >g x +ax 在区间0,+∞ 上恒成立.当a >2时,φ 0 =2-a ,φ ln a +2 =a +2+cos ln a +2 -sin ln a +2 -a =2-2sin ln a +2 -π4 >0,故在区间0,ln a +2 上函数φ x 存在零点x 0,即φ x 0 =0,又在区间0,+∞ 上函数φ x 单调递增,故在区间0,x 0 上函数φ x <φ x 0 =0,所以在区间0,x 0 上函数φx 单调递减,由φ0 =0,所以在区间0,x 0 上φx <φ0 =0,与题设矛盾.综上,a 的取值范围为-∞,2 .8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2,都有f (x )≥0,求整数k 的最大值.【答案】(1)证明见解析;(2)3【详解】(1)a =-1时,设g (x )=f (x )+2x =-sin x -ln (1+x )+2x ,则g (x )=-cos x -11+x +2,∵x >0∴x +1>1∴-1x +1∈(-1,0)∵cos x ∈[-1,1]∴-cos x -1x +1+2>0,即g (x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调增, 又g (0)=0∴g (x )>g (0)=0,即∀x >0,f (x )+2x >0;(2)a =1时,当k =4时,f (2)=sin2-ln3<0,所以k <4.下证k =3符合.k =3时,当x ∈0,32时,sin x >0,所以当a ≥1时,f (x )=a sin x -ln (1+x )≥sin x -ln (1+x ).记h (x )=sin x -ln (1+x ),则只需证h (x )=sin x -ln (1+x )≥0对x ∈0,32恒成立.h (x )=cos x -1x +1,令ϕ(x )=cos x -1x +1,则ϕ (x )=-sin x +1(x +1)2在0,π2 递减,又ϕ (0)=1>0,ϕ π2 =-1+1π2+1 2<0,所以存在x 1∈0,π2,使得ϕ x 1 =0,则x ∈0,x 1 ,ϕ x 1 >0,ϕ(x )在0,x 1 递增,x ∈x 1,π2 ,ϕ x 1 <0,ϕ(x )在x 1,π2 递减;又ϕ(0)=0,ϕπ2 =-1π2+1<0,所以存在x 2∈x 1,π2 使得ϕx 2 =0,且x ∈0,x 2 ,ϕ(x )>0,x ∈x 2,π2,ϕ(x )<0,所以h (x )在0,x 2 递增,在x 2,π2递减,又h (0)=0,h π2 =1-ln 1+π2 >0,所以h (x )≥0对x ∈0,π2 恒成立,因为0,32 ⊆0,π2,所以k =3符合.综上,整数k 的最大值为3.9已知函数f (x )=(x -1)e x +ax +1.(1)若f(x)有两个极值点,求a的取值范围;(2)若x≥0,f(x)≥2sin x,求a的取值范围.【答案】(1)0,1 e;(2)2,+∞.【详解】(1)由f(x)=(x-1)e x+ax+1,得f (x)=xe x+a,因为f(x)有两个极值点,则f (x)=0,即方程-a= xe x有两个不等实数根,令g(x)=xe x,则g (x)=(x+1)e x,知x<-1时,g (x)<0,g(x)单调递减,x>-1时,g (x)>0,g(x)单调递增,则x=-1时,g(x)取得极小值g(-1)=-1e,也即为最小值,且x<0时,g(x)<0,x→-∞时,g(x)→0,x>0时,g(x)>0,x→∞时,g(x)→+∞,故-1e<-a<0,即0<a<1e时,方程-a=xe x有两个实数根,不妨设为x1,x2x1<x2.可知x<x1时,f (x)>0,x1<x<x2时,f (x)< 0,x>x2时,f (x)>0,即x1,x2分别为f(x)的极大值和极小值点.所以f(x)有两个极值点时,a的取值范围是0,1 e.(2)令h(x)=(x-1)e x+ax-2sin x+1,原不等式即为h(x)≥0,可得h(0)=0,h (x)=xe x+a-2cos x,h (0)=a-2,令u(x)=h (x)=xe x+a-2cos x,则u (x)=(x+1)e x+2sin x,又设t(x)=(x+1)e x,则t (x)= (x+2)e x,x≥0时,t (x)>0,可知t(x)在0,+∞单调递增,若x∈0,π,有(x+1)e x>0,sin x>0,则u (x)>0;若x∈π,+∞,有(x+1)e x>(π+1)eπ>2,则u (x)>0,所以,x≥0,u (x)>0,则u(x)即h (x)单调递增,①当a-2≥0即a≥2时,h (x)≥h (0)≥0,则h(x)单调递增,所以,h(x)≥h(0)=0恒成立,则a≥2符合题意.②当a-2<0即a<2时,h (0)<0,h (3-a)=(3-a)e(3-a)+a-2cos(3-a)≥3-a+a-2cos(2-a)> 0,存在x0∈(0,3-a),使得h (x0)=0,当0<x<x0时,h (x)<0,则h(x)单调递减,所以h(x)<h(0)=0,与题意不符,综上所述,a的取值范围是2,+∞.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.【答案】(1)a=1;(2)证明见解析【详解】(1)f(x)的定义域为(0,+∞),f (x)=1-π2cosπ2x-a x,依题意得f (1)=1-a=0,得a=1,此时f (x)=1-π2cosπ2x-1x,当0<x<1时,0<π2x<π2,0<π2cosπ2x<π2,1x>1,故f (x)<0,f(x)在(0,1)内单调递减,当1<x<2时,π2<π2x<π,π2cosπ2x<0,1x<1,故f (x)>0,f(x)在(1,2)内单调递增,故f(x)在x=1处取得极小值,符合题意.综上所述:a=1.(2)由(1)知,f(x)=x-sinπ2x-ln x,不妨设0<x1<x2,当1≤x1<x2时,不等式x1+x2>2显然成立;当0<x1<1,x2≥2时,不等式x1+x2>2显然成立;当0<x1<1,0<x2<2时,由(1)知f(x)在(0,1)内单调递减,因为存在x 1≠x 2,使得f x 1 =f x 2 ,所以1<x 2<2,要证x 1+x 2>2,只要证x 1>2-x 2,因为1<x 2<2,所以0<2-x 2<1,又f (x )在(0,1)内单调递减,所以只要证f (x 1)<f (2-x 2),又f x 1 =f x 2 ,所以只要证f (x 2)<f (2-x 2),设F (x )=f (x )-f (2-x )(1<x <2),则F (x )=f (x )+f (2-x )=1-π2cos π2x -1x +1-π2cos π2(2-x ) -12-x =2-1x +12-x -π2cos π2x +cos π-π2x =2-1x +12-x -π2cos π2x -cos π2x =2-1x +12-x,令g (x )=2-1x +12-x(1<x <2),则g (x )=1x 2-1(2-x )2=4-4x x 2(2-x )2,因为1<x <2,所以g (x )<0,g (x )在(1,2)上为减函数,所以g (x )<g (1)=0,即F (x )<0,所以F (x )在(1,2)上为减函数,所以F (x )<F (1)=0,即f (x 2)<f (2-x 2).综上所述:x 1+x 2>2.11(2023全国新高考2卷)(1)证明:当0<x <1时,x -x 2<sin x <x ;(2)已知函数f x =cos ax -ln 1-x 2 ,若x =0是f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)-∞,-2 ∪2,+∞【详解】(1)构建F x =x -sin x ,x ∈0,1 ,则F x =1-cos x >0对∀x ∈0,1 恒成立,则F x 在0,1 上单调递增,可得F x >F 0 =0,所以x >sin x ,x ∈0,1 ;构建G x =sin x -x -x 2 =x 2-x +sin x ,x ∈0,1 ,则G x =2x -1+cos x ,x ∈0,1 ,构建g x =G x ,x ∈0,1 ,则g x =2-sin x >0对∀x ∈0,1 恒成立,则g x 在0,1 上单调递增,可得g x >g 0 =0,即G x >0对∀x ∈0,1 恒成立,则G x 在0,1 上单调递增,可得G x >G 0 =0,所以sin x >x -x 2,x ∈0,1 ;综上所述:x -x 2<sin x <x .(2)令1-x 2>0,解得-1<x <1,即函数f x 的定义域为-1,1 ,若a =0,则f x =1-ln 1-x 2 ,x ∈-1,1 ,因为y =-ln u 在定义域内单调递减,y =1-x 2在-1,0 上单调递增,在0,1 上单调递减,则f x =1-ln 1-x 2 在-1,0 上单调递减,在0,1 上单调递增,故x =0是f x 的极小值点,不合题意,所以a ≠0.当a ≠0时,令b =a >0因为f x =cos ax -ln 1-x 2 =cos a x -ln 1-x 2 =cos bx -ln 1-x 2 ,且f -x =cos -bx -ln 1--x 2 =cos bx -ln 1-x 2 =f x ,所以函数f x 在定义域内为偶函数,由题意可得:f x =-b sin bx -2x x 2-1,x ∈-1,1 ,(i )当0<b 2≤2时,取m =min 1b ,1 ,x ∈0,m ,则bx ∈0,1 ,由(1)可得fx =-b sin bx -2x x 2-1>-b 2x -2x x 2-1=x b 2x 2+2-b 2 1-x 2,且b 2x 2>0,2-b 2≥0,1-x 2>0,所以f x >x b 2x 2+2-b 21-x 2>0,即当x ∈0,m ⊆0,1 时,f x >0,则f x 在0,m 上单调递增,结合偶函数的对称性可知:f x 在-m ,0 上单调递减,所以x =0是f x 的极小值点,不合题意;(ⅱ)当b 2>2时,取x ∈0,1b ⊆0,1 ,则bx ∈0,1 ,由(1)可得f x =-b sin bx -2x x 2-1<-b bx -b 2x 2 -2x x 2-1=x 1-x2-b 3x 3+b 2x 2+b 3x +2-b 2 ,构建h x =-b 3x 3+b 2x 2+b 3x +2-b 2,x ∈0,1b ,则h x =-3b 3x 2+2b 2x +b 3,x ∈0,1b,且h 0 =b 3>0,h 1b=b 3-b >0,则hx >0对∀x ∈0,1b 恒成立,可知h x 在0,1b 上单调递增,且h 0 =2-b 2<0,h 1b=2>0,所以h x 在0,1b 内存在唯一的零点n ∈0,1b ,当x ∈0,n 时,则h x <0,且x >0,1-x 2>0,则f x <x1-x 2-b 3x 3+b 2x 2+b 3x +2-b 2 <0,即当x ∈0,n ⊆0,1 时,fx <0,则f x 在0,n 上单调递减,结合偶函数的对称性可知:f x 在-n ,0 上单调递增,所以x =0是f x 的极大值点,符合题意;综上所述:b 2>2,即a 2>2,解得a >2或a <-2,故a 的取值范围为-∞,-2 ∪2,+∞ .【跟踪训练】1已知函数f x =xe -x +a sin x ,e 是自然对数的底数,若x =0恰为f (x )的极值点.(1)求实数a 的值;(2)求f (x )在区间-∞,π4上零点的个数.【答案】(1)-1;(2)1【详解】(1)由题意得f x =1-xex+a cos x ,因为x =0为f (x )的极值点,故f (0)=1+a =0,∴a =-1,此时f x =1-x e x-cos x ,则x <0时,1-xe x >1,故f (x )>0,则f (x )在(-∞,0)上单调递增;由f x =1-x e x -cos x =1-x -e x cos x e x,令g x =1-x -e x cos x ,∴g x =-1-e x cos x -sin x ,当0<x <π4时,cos x -sin x >0,则g (x )<0,则g (x )在0,π4上单调递减,故g (x )<g (0)=0,即f(x )<0,故f (x )在0,π4 上单调递减,则x =0为f (x )的极大值点,符合题意,故a =-1.(2)由(1)知f x =xe -x -sin x ,f x =1-xex-cos x ,x <0时,f (x )>0,f (x )在(-∞,0)上单调递增,则f (x )<f (0)=0,故f x 在(-∞,0)上不存在零点;当0<x <π4时,f (x )<0,故f (x )在0,π4上单调递减,则f (x )<f (0)=0,故f x 在0,π4上不存在零点;当x =0时,f (0)=0,即x =0为f x 的零点,综合上述,f (x )在区间-∞,π4上零点的个数为1.2已知函数f x =2cos x +ln 1+x -1.(1)判断函数f x 在区间0,π2上零点和极值点的个数,并给出证明;(2)若x ≥0时,不等式f x <ax +1恒成立,求实数a 的取值范围.【答案】(1)函数f x 在区间0,π2上只有一个极值点和一个零点,证明见解析;(2)实数a 的取值范围是1,+∞【详解】(1)函数f x 在区间0,π2 上只有一个极值点和一个零点,证明如下,f x =-2sin x +1x +1,设t x =f x =-2sin x +1x +1,t x =-2cos x -1x +12,当x ∈0,π2 时,t x <0,所以f x 单调递减,又f 0 =1>0,f π2=-2+1π2+1=-2+2π+2<0,所以存在唯一的α∈0,π2 ,使得f α =0,所以当x ∈0,α 时,f x >0,当x ∈α,π2 时,f x <0,所以f x 在0,α 单调递增,在α,π2单调递减,所以α是f x 的一个极大值点,因为f 0 =2-1=1>0,f α >f 0 >0,f π2=ln 1+π2 -1<0,所以f x 在0,α 无零点,在α,π2上有唯一零点,所以函数f x 在区间0,π2 上只有一个极值点和一个零点;(2)由f x ≤ax +1,得2cos x +ln 1+x -ax -2≤0,令g x =2cos x +ln 1+x -ax -2,x >0 ,则g 0 =0,g x =-2sin x +11+x-a ,g 0 =1-a ,①若a ≥1,则-a ≤-1,当x ≥0时,-ax ≤-x ,令h x =ln x +1 -x ,则h x =1x +1-1=-xx +1,当x ≥0时,h x ≤0,所以h x 在0,+∞ 上单调递减,又h 0 =0,所以h x ≤h 0 ,所以ln x +1 -x ≤0,即ln x +1 ≤x ,又cos x ≤1,所以g x ≤2+x -x -2=0,即当x ≥0时,f x ≤ax +1恒成立,②若0≤a <1,因为当x ∈0,π2 时,g x 单调递减,且g 0 =1-a >0,g π2 =-2+11+π2-a <0,所以存在唯一的β∈0,π2,使得g β =0,当x ∈0,β 时,g x >0,g x 在0,β 上单调递增,不满足g x ≤0恒成立,③若a <0,因为g e 4-1 =2cos e 4-1 +ln e 4 -a e 4-1 -2=2-2cos e 4-1 -a e 4-1 >0不满足g x ≤0恒成立,综上所述,实数a 的取值范围是1,+∞ .3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立. (1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)【答案】(1)a =1;(2)证明见解析【详解】(1)因为f x -g x ≥0恒成立,所以xe x -a (ln x +x )≥1恒成立,令h (x )=xe x -a (ln x +x ),则h (x )=e x+xe x-a 1x +1 =(x +1)⋅xe x -ax(x >0),当a <0时,h (x )>0,所以h (x )在(0,+∞)上递增,当x→0时,xe x →0,ln x →-∞,所以h (x )→-∞,不合题意,当a =0时,h 12=e2<1,不合题意,当a >0时,令xe x -a =0,得a =xe x ,令p (x )=xe x ,则p (x )=(x +1)e x >0,所以p (x )=xe x 在(0,+∞)上递增,且p (0)=0,所以a =xe x 有唯一实根,即h (x )=0有唯一实根,设为x 0,即a =x 0e x 0,且x ∈(0,x 0)时,h (x )<0,x ∈x 0,+∞ 时,h(x )>0,所以h (x )在0,x 0 上为减函数,在x 0,+∞ 上为增函数,所以h (x )min =f x 0 =x 0e x 0-a ln x0+x 0 =a -a ln a ,所以只需a -a ln a ≥1,令t =1a ,则上式转化为ln t ≥t -1,设φ(t )=ln t -t +1,则φ (t )=1t -1=1-tt,当0<t <1时,φ (t )>0,当t >1时,φ (t )<0,所以φ(t )在(0,1)上递增,在(1,+∞)上递减,所以φ(t )≤φ(1)=0,所以ln t ≤t -1,所以ln t =t -1,得t =1,所以t =1a=1,得a =1,(2)证明:由(1)知,当a =1时,f x ≥g x 对任意x >0恒成立,所以∀x ∈0,+∞ ,xe x ≥x +ln x +1(当且仅当x =1时取等号),则x 3e x ≥x 3+x 2ln x +x 2(x >0),所以要证明x 3e x >x 2+3 ln x +2sin x ,只需证明x 3+x 2ln x +x 2>(x 2+3)ln x +2sin x (x >0),即证x 3+x 2>3ln x +2sin x (x >0),设t (x )=ln x -x +1,m (x )=sin x -x ,则由(1)可知ln x ≤x -1(x >0),m (x )=cos x -1≤0在(0,+∞)上恒成立,所以m (x )在(0,+∞)上递减,所以∀x ∈0,+∞ ,m (x )<m (0)=0,所以sin x <x (x >0),所以要证x 3+x 2>3ln x +2sin x (x >0),只要证x 3+x 2≥3(x -1)+2x (x >0),即x 3+x 2-5x +3≥0(x >0),令H (x )=x 3+x 2-5x +3,则H (x )=3x 2+2x -5=(3x +5)(x -1),当0<x <1时,H (x )<0,当x >1时,H (x )>0,所以H (x )在(0,1)上递减,在(1,+∞)上递增,所以当x ∈0,+∞ 时,H (x )≥H (1)=0,即x 3+x 2-5x +3≥0(x >0)恒成立,所以原命题成立.4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.【答案】(1)x =2π3+2k π(k ∈Z );(2)(0,2].【详解】(1)函数g (x )=12x +sin x ,求导得g (x )=12+cos x ,由g (x )=0,得cos x =-12,当-2π3+2k π<x<2π3+2k π(k ∈Z )时,cos x >-12,即g (x )>0,函数g (x )单调递增;当2π3+2k π<x <4π3+2k π(k ∈Z )时,cos x <-12,即g (x )<0,函数g (x )单调递减,因此函数g (x )在x =2π3+2k π(k ∈Z )处有极大值,所以函数g (x )的极大值点为x =2π3+2k π(k ∈Z ).(2)依题意,m >0,∀x ∈0,π2 ,不等式f (x )≥mx cos x ⇔x +sin x -mx cos x ≥0,当x =π2时,π2+1≥0成立,则m >0,当x ∈0,π2时,cos x >0,x +sin x -mx cos x ≥0⇔x +sin x cos x-mx ≥0,令h (x )=x +sin x cos x -mx ,x ∈0,π2 ,求导得h(x )=(1+cos x )cos x +(x +sin x )sin x cos 2x -m =cos x +x sin x +1cos 2x -m ,令φx =cos x +x sin x +1cos 2x -m ,x ∈0,π2 ,求导得φ (x )=x cos 2x +2x sin 2x +sin2x +2sin x cos 3x >0,因此φ(x )在0,π2 上单调递增,即有φx ≥φ0 =2-m ,而cos x +x sin x +1cos 2x ≥cos x +1cos 2x >1cos 2x,又函数y =1cos 2x在x ∈0,π2 上的值域是[1,+∞),则函数φ(x ),即h x 在0,π2 上的值域是2-m ,+∞ ,当0<m ≤2时,h (x )≥0,当且仅当m =0,x =0时取等号,于是函数h (x )在0,π2上单调递增,对x ∈0,π2 ,h (x )≥h (0)=0,因此0<m ≤2,当m >2时,存在x 0∈0,π2,使得h (x 0)=0,当x ∈(0,x 0)时,h (x )<0,函数h (x )在(0,x 0)上单调递减,当x ∈(0,x 0)时,h (x )<h (0)=0,不符合题意,所以m 的取值范围为(0,2].5已知函数f (x )=ax 2-a (x sin x +cos x )+cos x +a (x >0).(1)当a =1时,(I )求(π,f (π))处的切线方程;(II )判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a 的取值范围.【答案】(1)(I )y =3πx -2π2+1;(II )f x 单调递增,证明见解析;(2)a ≥1【详解】(1)当a =1时,f (x )=x 2-x sin x +1,可得f (x )=2x -sin x -x cos x .(I )f (π)=π2+1,f (π)=3π,所以在(π,f (π))处的切线方程为y -π2+1 =3πx -π ,即y =3πx -2π2+1.(II )f (x )=2x -sin x -x cos x =x -sin x +x (1-cos x ),设m (x )=x -sin x (x >0),则m (x )=1-cos x ≥0,m (x )单调递增,所以m (x )>m (0)=0,即x >sin x ,所以当x >0时,f (x )>0,f (x )单调递增.(2)设g (x )=f (x )-1=ax 2-a (x sin x +cos x )+cos x +a -1,由题意g (x )>0恒成立.①当a ≤0时,g π2=a π2π2-1 +a -1<0,g (x )>0不恒成立,不合题意;②当0<a <1时,设h (x )=g(x )=2ax -ax cos x -sin x ,h (0)=0,h (x )=2a -a cos x +ax sin x -cos x ,h (0)=a -1<0,h π2=2a +π2a >0,设r (x )=h (x ),x ∈0,π2,r (x )=2a sin x +ax cos x +sin x >0,h (x )单调递增,由零点存在定理得∃t ∈0,π2,使得h (t )=0.h (x )在(0,t )上h (x )<0,h (x )<h (0)=0,即g (x )<0,所以g (x )在(0,t )上单调递减,g (x )<g (0)=0,g (x )>0不恒成立,不合题意;③当a ≥1时,g(x )=2ax -ax cos x -sin x ,则g (x )x =2a -a cos x -sin x x =a (1-cos x )+a -sin x x,当x>0时,1-cos x ≥0,x >sin x ,即sin xx <1,则g (x )x >0,所以当x >0时,g (x )>0,g (x )单调递增.可得:g (x )>g (0)=0,即f (x )>1,所以a ≥1.综上,a 的取值范围为1,+∞ .6已知f (x )=ax 2-cos x -x sin x +a (a ∈R ).(1)当a =14时,求y =f (x )在[-π,π]内的单调区间;(2)若对任意的x ∈R 时,f (x )≥2恒成立,求实数a 的取值范围.【答案】(1)单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3 ;(2)[3,+∞).【详解】(1)当a =14时,f (x )=14x 2-cos x -x sin x +14,求导得f (x )=12x -x cos x =x 12-cos x ,而x ∈[-π,π],由cos x =12,得x =±π3,当x ∈-π3,π3 时,12-cos x <0,当x ∈π3,π ∪-π,-π3时,12-cos x >0,则当x >0时,若f (x )>0,则x ∈π3,π ;若f (x )<0,则x ∈0,π3,当x <0时,若f (x )>0,则x ∈-π3,0 ;若f (x )<0,则x ∈-π,-π3 ,所以函数y =f (x )在[-π,π]内的单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3.(2)因为f (-x )=a (-x )2-cos (-x )-(-x )sin (-x )+a =f (x ),于是函数f (x )=ax 2-cos x -x sin x +a (a ∈R )为偶函数,则f (x )≥2对任意x ∈R 恒成立,等价于对任意的x ∈[0,+∞),恒有f (x )≥2成立,求导得f (x )=2ax -x cos x =x (2a -cos x ),当x ∈[0,+∞)时,当2a ≥1,a ≥12成立时,2a -cos x ≥0恒成立,即f (x )≥0恒成立,函数f (x )在[0,+∞)内单调递增,则有f x min =f 0 =a -1,因此a -1≥2,解得a ≥3,则a ≥3;当2a <1,a <12时,函数y =cos x 在[0,π]上单调递减,且-1≤cos x ≤1,因此存在x 0>0,使得当x ∈(0,x 0)时,2a -cos x <0,f (x )<0,函数f (x )在(0,x 0)上递减,此时x ∈0,x 0 ,f x <f 0 =a -1<2,不符合题意,所以实数a 的取值范围为[3,+∞).7已知函数f (x )=e x -a -x -cos x ,x ∈(-π,π)其中e =2.71828⋯为自然对数的底数.(1)当a =0时,证明:f x ≥0;(2)当a =1时,求函数y =f x 零点个数.【答案】(1)证明见解析;(2)2.【详解】(1)当a =0时,f (x )=e x -x -cos x ,x ∈(-π,π),求导得f (x )=e x -1+sin x ,显然f (0)=0,当-π<x <0时,e x -1<0,sin x <0,则f (x )<0,当0<x <π时,e x -1>0,sin x >0,则f (x )>0,因此函数f (x )在(-π,0)上单调递减,在(0,π)上单调递增,则当x ∈(-π,π)时,f (x )≥f (0)=0,所以f x ≥0.(2)当a =1时,f (x )=e x -1-x -cos x ,x ∈(-π,π),求导得f (x )=e x -1-1+sin x ,当-π<x <0时,e x -1-1<0,sin x <0,则f (x )<0,当1<x <π时,e x -1-1>0,sin x >0,则f (x )>0,当0≤x ≤1时,函数y =e x -1-1,y =sin x 都递增,即函数f (x )在(0,1)上单调递增,而f (0)=e -1-1<0,f (1)=sin1>0,因此存在x 0∈(0,1),使得f (x 0)=0,当0≤x <x 0时,f (x )<0,当x 0<x ≤1时,f (x )>0,从而当-π<x <x 0时,f (x )<0,当x 0<x <π时,f (x )>0,即有函数f (x )在(-π,x 0)上单调递减,在(x 0,π)上单调递增,f (x 0)<f (0)=e -1-1<0,而f -π2 =e -π2-1+π2>0,f π2 =e π2-1-π2>e -π2>0,于是函数f (x )在(-π,x 0),(x 0,π)各存在一个零点,所以函数y =f x 零点个数是2.8已知函数f x =x -1 e x +ax +1.(1)若a =-e ,求f x 的极值;(2)若x ≥0,f x ≥2sin x ,求a 的取值范围.【答案】(1)f x 极小值=1-e ,无极大值.(2)2,+∞【详解】(1)当a =-e 时f x =x -1 e x -ex +1,则f x =xe x -e ,令g x =f x =xe x -e ,则g 1 =0,gx =x +1 ex,所以当x <-1时g x <0,g x 单调递减且g x <0,当x >-1时g x >0,g x 单调递增,所以当x <1时g x <0,即f x <0,当x >1时g x >0,即f x >0,所以f x 在-∞,1 上单调递减,在1,+∞ 上单调递增,所以f x 在x =1处取得极小值,即f x 极小值=f 1 =1-e ,无极大值.(2)令h x =f x -2sin x =x -1 e x +ax -2sin x +1,x ∈0,+∞ ,则原不等式即为h x ≥0,可得h 0 =0,h x =xe x +a -2cos x ,h 0 =a -2,令u x =h x =xe x +a -2cos x ,则u x =x +1 e x +2sin x ,令t x =x +1 e x ,x ∈0,+∞ ,则t x =x +2 e x >0,所以t x 在0,+∞ 上单调递增,则t x ≥t 0 =1,则x ∈0,π 时x +1 e x >0,sin x ≥0,所以u x >0,当x ∈π,+∞ 时x +1 e x ≥π+1 e π>2,所以u x >0,所以u x >0在0,+∞ 上恒成立,所以u x 即h x 在0,+∞ 上单调递增,当a -2≥0,即a ≥2时h x ≥h 0 ≥0,所以h x 单调递增,所以h x ≥h 0 =0恒成立,所以a ≥2符合题意,当a -2<0,即a <2时h 0 <0,h 3-a =3-a e 3-a+a -2cos 3-a ≥3-a +a -2cos 3-a >0,所以存在x 0∈0,3-a 使得h x 0 =0,当0<x <x 0时h x <0,则h x 单调递减,所以h x <h 0 =0,与题意不符,综上所述,a 的取值范围是2,+∞ .9已知函数f x =2sin x -ln 1+x 0<x <π .(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.【答案】(1)证明见解析;(2)2α>β,证明见解析【详解】(1)当π2<x <π时,由于y =2sin x 单调递减,y =ln 1+x 单调递增,所以f x 单调递减,又f π2=2-ln 1+π2 >0,f π =-ln 1+π <0,所以f x 只有一个零点(设为x 0),无极值点;当0<x <π2时,由f x =2sin x -ln 1+x 得f x =2cos x -1x +1,设g x =2cos x -1x +1,则g x =-2sin x +1x +1 2,由于y =-2sin x 和y =1x +12在0,π2 上均单调递减,所以g x 单调递减,又g 0 =1>0,g π2=-2+1π2+12<0,所以存在x 1∈0,π2,使得g x 1 =0,当0<x <x 1时,g x >0,g x 单调递增,即f x 单调递增,当x 1<x <π2时,g x <0,g x 单调递减,即f x 单调递减,又f π3=1-11+π3>0,f π2 =-1π2+1<0,所以当0<x <x 1时,f x >0恒成立,且存在x 2∈π3,π2 ,使得fx 2 =0,当0<x <x 2时,fx >0,f x 单调递增,当x 2<x <π2时,fx <0,f x 单调递减,所以x 2是f x 的极值点,又f 0 =0,f π2=2-ln 1+π2 >0,所以当0<x <π2时,f x >0恒成立,即函数f x 无零点;综上,函数f x 有唯一的极值点α(α=x 2),及唯一的零点β(β=x 0).(2)2α>β,证明如下:由(1)知α∈π3,π2,2α,β∈π2,π ,由于α为f x 的极值点,所以f α =2cos α-1α+1=0,即2cos α=11+α,所以f 2α =2sin2α-ln 1+2α =4sin αcos α-ln 1+2α =2sin α1+α-ln 1+2α ,设y =x -sin x 0<x <π2,则y =1-cos x >0,所以y =x -sin x 单调递增,所以x -sin x >0,即x >sin x ,所以f2α=2sinα1+α-ln1+2α<2α1+α-ln1+2α,令φ(x)=2x1+x-ln(1+2x)0<x<π2,则φ (x)=-2x21+x21+2x<0,所以φ(x)在0,π2上单调递减,所以φ(x)<φ(0)=0,所以f2α <0=fβ ,又f x在π2,π递减,所以2α>β.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.【答案】(1)a≥0;(2)0<a<1【详解】(1)由题得f x =2ax+1-1x,因为f x 在1,+∞上单调递增,所以f x =2ax+1-1x≥0在1,+∞上恒成立,即2a≥1x2-1x在1,+∞上恒成立,因为1x2-1x=1x-122-14≤0,所以a≥0.(2)因为g x =ax-sin x,则g x =a-cos x,注意到:g0 =0,g 0 =a-1,若a≥1,则g x =a-cos x≥0,所以g x 在0,π上单调递增,所以g x >g0 =0,g x 在0,π上不存在零点,若a≤-1,则g x =a-cos x≤0,所以g x 在0,π上单调递减,所以g x <g0 =0,g x 在0,π上不存在零点,若-1≤a≤0,显然g x =ax-sin x<0,在0,π上不存在零点,若0<a<1,显然存在t∈0,π,使得g t =0,且g x 在0,π上单调递增,注意到:g 0 =a-1<0,g π =a+1>0,所以g x 在0,t上小于零,在t,π上大于零,所以g x 在0,t上单调递减,在t,π上单调递增,注意到:g0 =0,g t <0,且gπ >0,所以存在唯一β∈t,π使得gβ =0,综上,所以0<a<1.11已知函数f x =ln x+sin x.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.【答案】(1)sin1;(2)f x 有1个零点,证明见解析【详解】(1)f(x)=ln x+sin x的定义域为0,+∞,故f (x)=1x+cos x,令g x =f (x)=1x+cos x,g x =-1 x2-sin x,当x∈1,e时,g x =-1x2-sin x<0,所以g x 在1,e上单调递减,且g1 =1+cos1>0,g e =1e +cos e<1e+cos2π3=1e-12<0,所以由零点存在定理可知,在区间[1,e]存在唯一的a,使g a =f a =0,又当x∈1,a时,g x =f x >0;当x∈a,e时,g x =f x <0;所以f x 在x∈1,a上单调递增,在x∈a,e上单调递减,又因为f1 =ln1+sin1=sin1,f e =ln e+sin e=1+sin e >f1 ,所以函数f(x)在区间[1,e]上的最小值为f1 =sin1.(2)f x 有1个零点,证明如下:因为f(x)=ln x+sin x,x∈0,+∞,若0<x≤1,f (x)=1x+cos x>0,所以f(x)在区间0,1上单调递增,又f1 =sin1>0,f1e=-1+sin1e<0,结合零点存在定理可知,。
周测答案 2020.10.241~8,BABCD BAB 9. ABD 10. ABD 11. ABC 12. AD13. 9 14. 5050 15. 16,1,22n n n +⎧=⎪⎨≥⎪⎩ 16. 5217. (1)因为()f x 是定义在[]4,4-上的奇函数,[]4,0x ∈-时,()143x xaf x =+, 所以()0010043=+=a f ,解得1a =-,所以[]4,0x ∈-时,()1143=-xx f x . 当[]0,4x ∈时,[]4,0-∈-x ,所以()114343---=-=-x xx x f x ,又()()f x f x -=-,所以()43xxf x -=-,()34xxf x =-,所以()f x 在[]0,4上的解析式为()34x x f x =-.(2)由(1)知,[]2,1x ∈--时,()1143=-x xf x ,所以()1123x x m f x -≤-可化为11114323x x x x m --≤-,整理得1121222323xxx x x m +⎛⎫⎛⎫≥+=+⋅ ⎪ ⎪⎝⎭⎝⎭,令()12223x xg x ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭,根据指数函数单调性可得,12x y ⎛⎫= ⎪⎝⎭与23xy ⎛⎫= ⎪⎝⎭都是减函数,所以()g x 也是减函数.因为[]2,1x ∈--时,不等式()1123x x m f x -≤-恒成立, 等价于()m g x ≥在[]2,1x ∈--上恒成立,所以,只需()()max 91724242m g x g ≥=-=+⨯=,所以实数m 的取值范围是17,2⎡⎫+∞⎪⎢⎣⎭.18. (1)由题意得,111122n n n a --⎛⎫== ⎪⎝⎭,1111221212nn n S -⎛⎫- ⎪⎝⎭==--,n S ,98,1n a -成等差数列∴1928n n S a -+=⨯,即121192224n n ---+=,∴3n =. (2)设n b =()111112222n n n n n n n n n S S a S S S S S S +++++-==-,∴12122311111112n n n n T b b b S S S S S S +⎡⎤⎛⎫⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦12231111111111122n n n S S S S S S S S ++⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎝⎭⎝⎭ 由(1)111S a ==,11121222n n n n S ++-=-=,111S ∴=,111221n n n S ++=- ()111111111221222222222122121212121nn n n n n n n n n n n T +++++++++-⎛⎫⨯---∴=-=-=== ⎪-----⎝⎭19. (1)由两角差的正弦公式,可得sin()sin cos cos sin sin sin sin sin A B A B A BA B A B --=++,又由正弦定理和余弦定理,可得sin cos cos sin sin sin A B A BA B-+22222222a c b b c a a b ac bc a b+-+-⋅-⋅=+2222()()2()()a b a b a b a b c a b c a b c-+--===++, 所以sin()sin sin A B a bA B c --=+(2)由(1)知()(sin sin )sin )sin()a b A B c A B A B -+==+-3sin sin sin 322B B B B π⎛⎫⎡⎤⎛⎫=++=+⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎭14cos 4sin 226B B B π⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭因为ABC 是锐角三角形,所以32A B ππ=+<,可得06B π<<,又由2A B π+>,可得32B B ππ++>,所以12B π>,所以463B πππ<+<,所以sin 262B π⎛⎫<+<⎪⎝⎭,可得c <<2c a b >-=. 所以实数c的取值范围是.20. 解:(1)因为n n S 2a 2=-,n 1n 1S 2a 2--=-所以n n n 1n n 1a S S 2a 2a --=-=-所以()n n 1a 2a 2n -=≥所以{}n a 成等比,首项11a S 2==,公比q 2=。
阶段性测试试卷一、选择题(共12题,每题5分,共60分) 1.函数y=ln(2-x-x 2)+的定义域是( )A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)2.与直线2x -6y +1=0垂直,且与曲线f(x)=x 3+3x 2-1相切的直线方程是( ) A .3x +y +2=0 B .3x -y +2=0 C .x +3y +2=0 D .x -3y -2=0 3.已知函数f(x)=sin(x ∈R),给出下面命题错误的是( )A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线x=对称D.函数f(x)在区间上是增函数4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.已知8b =5c ,C =2B ,则cos C =( ) A.725 B .-725 C .±725 D.24255.已知a=,b=0.3-2,c=lo 2,则a,b,c 的大小关系是( )A.a>b>cB.a>c>bC.c>b>aD.b>a>c 6.已知函数f(x)=是(-∞,+∞)上的减函数,则a 的取值范围是( )A.(0,3)B.(0,3]C.(0,2)D.(0,2]7.若定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则( ) A.f(2)<f<f(1) B.f(1)<f(2)<fC.f<f(2)<f(1) D.f(1)<f<f(2)8.已知函数()sin()f x x ωϕ=+(其中0ω>,||2πϕ<)图象相邻对称轴的距离为2π,一个对称中心为(,0)6π-, 为了得到()cos g x x ω=的图象,则只要将()f x 的图象( )A .向右平移6π个单位B .向右平移12π个单位C .向左平移6π个单位D .向左平移12π个单位 9.已知1sin cos ,4x x ⋅=-且34x ππ<<,则sin cos x x +的值是( )A .34-B .12-C .2D 210.已知40πα<<,434πβπ<<,13543sin(=+)απ,534sin(=+)βπ,则=+)βαcos(( ) A .6563- B .6533- C .6533 D .656311.将x x f 2sin 2)(=的图象向右平移6π个单位,再向下平移1个单位,得到函数)(x g y =的图象.若函数)(x g y =在区间),(b a 上含有20个零点,则a b -的最大值为( ) A .π10 B .π331 C .π332D .π11 12.设f(x),g(x)在[a ,b]上可导,且f′(x)>g′(x),则当a<x<b 时,有( )A .f(x)>g(x)B .f(x)<g(x)C .f(x)+g(a)>g(x)+f(a)D .f(x)+g(b)>g(x)+f(b)二、填空题(共6题,每题5分,共30分)13.已知角A,B,C 是三角形ABC 的内角,a,b,c 分别是其对边长,向量2(23sin,cos ),(cos ,2),222A A Am n ==- m n ⊥且32,cos a B ==,则b=________. 14.已知函数f(x)=2sin 6x πω⎛⎫+⎪⎝⎭(ω>0)的图象与y 轴交于P ,与x 轴的相邻两个交点记为A ,B ,若△PAB 的面 积等于π,则ω=________. 15.若1sin()63πα-=,则2cos(2)3πα+=________. 16.如图,在ABC ∆中,3sin,223ABC AB ∠==,点D 在线段AC 上,且432,3AD DC BD ==,则cos C = .17.()f x 是定义在R 上的偶函数,当0x <时,有()()0f x xf x +'<,且(4)0f -=,则不等式()0xf x >的解集 为 .18.已知函数sin()4y x πω=+(0ω>)是区间3[,]4ππ上的增函数,则ω的取值范围是 . 三、解答题(共5题,每题12分,共60分)19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A 3=0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.20.已知向量(3,cos ),(sin ,1)a x b x ωω==,函数()f x a b =,且最小正周期为4π. (1)求ω的值. (2)设6224,[,],(2),(2)235313f f πππαβπαβ∈-=+=-,求sin()αβ+的值. (3)若x ∈[-π,π],求函数f(x)的值域.21.已知函数23()sin 22f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()2A f =,ABC ∆的面积为a 的最小值.22.已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.(1)求函数f(x)的最小值.(2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.23.已知函数f(x)=ax2-(a+2)x+ln x.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.参考答案1.C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1). 2.A【解析】设切点坐标为(x 0,y 0),由f′(x)=3x 2+6x 得f′(x 0)=3x 02+6x 0=-3,解得x 0=-1, 即切点坐标为(-1,1).从而切线方程为y -1=-3(x +1),即3x +y +2=0,故选A. 3.C 【解析】f(x)=sin=-cos2x,故其最小正周期为π,故A 正确;易知函数f(x)是偶函数,B 正确;由函数f(x)=-cos2x 的图象可知,函数f(x)的图象关于直线x=不对称,C 错误;由函数f(x)的图象易知,函数f(x)在上是增函数,D 正确. 4.A【解析】由8b =5c ,C =2B 及正弦定理, 得8sin B =5sin C =10sin Bcos B ,∴cos B =45. 则cos C =cos 2B =2cos 2B -1=725. 5.D 【解析】0<a=<=1,b=0.3-2>(0.3)0=1,c=lo 2<0,所以b>a>c.6.D【解析】因为f(x)为(-∞,+∞)上的减函数, 所以解得0<a ≤2.7.D 【解析】由f(x+1)=-f(x)知f(x)的周期为2,所以f(2)=f(0),因为f(x)在[0,1]上单调递减,所以f(2)=f(0)>f >f(1).8.D 【解析】试题分析:由题设2222==⇒=⨯=ππωππT ,则)2sin()(ϕ+=x x f ,将(,0)6π-代入可得0)3sin(=+-ϕπ,所以3πϕ=,则)6(2sin )32sin()(ππ+=+=x x x f ,而()cos 2sin(2)2g x x x π==+sin 2()4x π=+,所以应选D.【易错点晴】三角函数的图象和性质是高中数学中重要的内容和考点.解答本题时要充分利用题设中提供的有关信息,先借助对称轴之间的距离为2π确定2=ω,再借助对称中心是)0,6(π建立方程)3sin(=+-ϕπ求出3πϕ=来.最后求出)6(2sin )32sin()(ππ+=+=x x x f ,再x x g 2cos )(=化为()cos 2g x x =sin(2)sin 2()24x x ππ=+=+,由于将即1264πππ=-,要想得到x x g 2cos )(=,只要将函数)(x f y =的图象向左平移12π个单位即可. 考点:三角函数的图象和性质及运用. 9.C 【解析】 试题分析:因34x ππ<<,故|sin ||cos |,0cos x x x ><,而21cos sin 21)cos (sin 2=+=+x x x x ,故sin cos x x +22-=.应选C.考点:同角的三角函数关系及运用. 10.B 【解析】 试题分析:因παππ<+<4343,故1312)43cos(-=+απ;又因πβππ<+<42,故54)4cos(-=+βπ,所以因=+++-=++-=+)]4()43cos[()cos()cos(βπαπβαπβα6533-,故应选B. 考点:三角变换及灵活运用.【易错点晴】三角变换是高中新教材中的重要内容之一,也是高考及各类考试的重要考点.解答这类问题时,首先要搞清角之间的关系,再选择运用所学的三角变换的公式.本题解答时,通过仔细的观察后能够发现)]4()43cos[()cos()cos(βπαπβαπβα+++-=++-=+是解答好本题的关键,也是能否解答好本题的切入点.从问题的求解过程中可以总结的规律是三角变换的精髓是变角.这也是解答三角变换题的经验和总结. 11.C 【解析】试题分析:由题设1)32sin(21)6(2sin 2)(--=--=ππx x x g ,因为该函数的最小正周期为π=T ,所以借助函数的图象可知至少要有十个周期,即3210ππ+≤-a b ,所以a b -的最大值为π332.应选C. 考点:正弦函数的图象和性质. 12.C【解析】设F(x)=f(x)-g(x),则F′(x)=f′(x)-g′(x)>0,即F(x)在[a ,b]上是增函数,从而当a<x<b 时,f(x)-g(x)>f(a)-g(a),即f(x)+g(a)>g(x)+f(a),故选C. 13.【解析】因为m ⊥n,所以m ·n=2sincos-2cos 2=0, 因为A ∈(0,π),所以cos ≠0, 所以tan=,=,A=. 由cosB=,得sinB==, 由正弦定理得=, 解得b=. 14.12【解析】令x =0,得y =1,即点P(0,1),又S △PAB =12·|AB|·|OP|=π, |AB|=2π, ∴f(x)的周期T =2|AB|=4π,∴ω=2T π=12.15.- 【解析】试题分析:因为sin =,则cos=-cos=2sin2-1=-.考点:诱导公式与二倍角公式. 16.79【解析】试题分析:22212144||||cos ABC 33999BD BA BC BD BA BC BA BC =+⇒=++⋅∠,因为21cos 12sin ,23ABC ABC ∠∠=-=所以216448||||339927BC BC BC =++⇒=,负舍;因而2221||232239||33AC AC =+-⨯⨯⨯=⇒=,故22223+327cos .239C -==⨯ 考点:向量数量积,二倍角公式,余弦定理【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解. 17.(-∞,-4)∪(0,4)【解析】因为[xf(x)]′=f(x)+xf ′(x),根据已知条件可知,x<0时,[xf(x)]′<0,所以F(x)=xf(x)在(-∞,0)上递减,又因为f(x)是R 上的偶函数,所以F(x)是R 上的奇函数,则F(x)在(0,+∞)上递减,因为f(-4)=0,f(x)为R 上的偶函数,所以f(4)=0,则F(-4)=F(4)=0,综合图象可知xf(x)>0的解集应为(-∞,-4)∪(0,4). 18.159(0,][,]434【解析】试题分析:由题设因0>ω且ππ≤≤x 43,则44434πωππωωππ+≤+≤+x ,结合正弦函数的图象可知240ππωπ≤+<或⎪⎪⎩⎪⎪⎨⎧≤+≥+ππωππωππ25423434,解之得410≤<ω或4935≤≤ω.故应填159(0,][,]434.考点:正弦函数的图象和性质及运用.【易错点晴】本题考查的是三角函数中正弦函数的图象和性质等有关知识及综合运用.本题是一道与单调性有关的逆向型的问题,具有一定的难度.解答时先依据题设条件求出44434πωππωωππ+≤+≤+x ,然后再借助函数在区间3[,]4ππ上单调递增这一条件,建立不等式求解.这里务必要借助正弦函数x y sin =的图象,分类建立不等式组240ππωπ≤+<和⎪⎪⎩⎪⎪⎨⎧≤+≥+ππωππωππ25423434辅,通过解这两个不等式组求出了参数ω的取值范围是159(0,][,]434. 19.(1)3π(2)12≤b<1【解析】(1)由已知得-cos(A +B)+cos Acos Bsin A cos B =0,即有sin Asin B=0.因为sin A≠0,所以sin B=0. 又cos B≠0,所以tan B .又0<B<π,所以B =3π. (2)由余弦定理,有b 2=a 2+c 2-2accos B. 因为a +c =1,cos B =12,有b 2=312a ⎛⎫- ⎪⎝⎭2+14.又0<a<1,于是有14≤b 2<1,即有12≤b<1. 20.(1)(2)(3)【解析】(1)由已知,易得f(x)=sin ωx+cos ωx =2sin,f(x)的最小正周期为4π,即T==4π,解得ω=. (2)由(1)知,f(x)=2sin, 则f=2sin=2sin α=, 所以sin α=,又α∈, 所以cos α=-. 同理f=2sin=2sin=2cos β=-,所以cos β=-,又β∈, 所以sin β=,所以sin(α+β)=sin αcos β+cos αsin β=-. (3)当x ∈时,-≤x+≤, 令t=x+,则t ∈,原函数可化为f(t)=2sint,t ∈. 当t=-时,f(t)min =-; 当t=时,f(t)max =2.所以,函数f(x)的值域为.21.(1)5[,]36k k ππππ++(k ∈Z );(2) 【解析】 试题分析:(1)借助题设条件运用正弦函数的图象和性质求解;(2)借助题设条件运用余弦定理和基本不等式求解. 试题解析:(1)3()2sin 2)22262f x x x x π=-+=-+, 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+,k Z ∈,∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).(2)∵())26Af A π=-+=∴1sin()62A π-=,∴3A π=. 又∵1sin 3323bc π=,∴12bc =, ∵222222cos 12a b c bc A b c bc bc =+-=+-≥=, ∴23a ≥.(当且仅当23b c ==时取“=”) ∴a 的最小值是23.考点:正弦函数的图象和性质、余弦定理、基本不等式等知识的综合运用. 22.(1)f(x)min =(2)a ∈(-∞,-5)∪(1,+∞)【解析】(1)函数f(x)的对称轴是x=a,当a ≤1时,f(x)min =f(2)=a 2+4a-3,当a>1时,f(x)min =f(0)=1+a 2, 所以f(x)min =(2)令=t(t ∈[0,]),则x=2-t 2,所以g(x)=h(t)=-t 2+t+,因为对称轴t=∈,所以g(x)max =h(t)max =2,由题意,要使对于∀x 1,x 2∈[0,2],f(x 1)>g(x 2)恒成立,只要f(x)min >g(x)max 即可,所以当a ≤1时,f(x)min =a 2+4a-3>2, 解得:a<-5,当a>1时,f(x)min =1+a 2>2,解得:a>1, 综上所述,a ∈(-∞,-5)∪(1,+∞). 23.(1)y =-2. (2)[1,+∞) (3)[0,8]【解析】(1)当a =1时,f(x)=x 2-3x +ln x ,f′(x)=2x -3+1x. 因为f′(1)=0,f(1)=-2. 所以切线方程是y =-2.(2)函数f(x)=ax 2-(a +2)x +ln x 的定义域是(0,+∞).当a>0时,f′(x)=2ax -(a +2)+1x=()2221ax a x x -++ (x>0),本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
滚动过关检测五 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |log 3(x -2)<0},N ={x |x ≥-2},集合M ∩N =( ) A .{x |-2≤x <2}B .{x |-2≤x <3} C .{x |2<x <3}D .{x |x <3}2.[2021·新高考Ⅰ卷]已知z =2-i ,则z ()z -+i =( ) A .6-2iB .4-2i C .6+2iD .4+2i3.[2022·山东春考]已知向量a =⎝ ⎛⎭⎪⎫cos 5π12,sin 5π12,b =⎝ ⎛⎭⎪⎫cos π12,sin π12,那么a ·b等于( )A.12B.32 C .1D .04.[2022·辽宁实验中学月考]已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D5.在等比数列{a n }中,a 1=1,a 2a 3=8,则a 4+a 5a 1+a 2=( ) A .8B .6 C .4D .26.[2022·福建三明模拟]在△ABC 中,点D 满足BC →=3BD →,点E 为线段AD 的中点,则向量CE →=( )A.13AB →+16AC →B.16AB →+13AC →C.16AB →-23AC →D.13AB →-56AC → 7.[2022·河北沧州模拟]已知非零向量a ,b 满足|b |=2|a |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A .45°B.135° C .60°D.120°8.定义在R 上的函数f (x )的图象是连续不断的曲线,且f (x )=f (-x )e 2x,当x >0时,f ′(x )>f (x )恒成立,则下列判断一定正确的是( )A .e 5f (2)<f (-3) B .f (2)<e 5f (-3) C .e 2f (-2)<f (3) D .f (-2)<e 5f (-3)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.[2022·江苏无锡一中月考]若复数z 满足z (1-2i)=10,则( ) A .|z |=2 5 B .z -2是纯虚数C .复数z 在复平面内对应的点在第三象限D .若复数z 在复平面内对应的点在角α的终边上,则sin α=5510.下列命题错误的是( )A .命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∃x ∈R ,x 2+1>3x ”B .函数“f (x )=cos ax -sin ax 的最小正周期为π”是“a =2”的必要不充分条件C .x 2+2x ≥ax 在x ∈[1,2]时有解⇔(x 2+2x )min ≥(ax )min 在x ∈[]1,2时成立D .“平面向量a 与b 的夹角是钝角”的充分必要条件是“a ·b <0”11.[2022·山东师范大学附中月考]定义在R 的奇函数f (x )满足f (x -3)=-f (x ),当x ∈(0,3)时f (x )=x 2-3x ,则以下结论正确的有( )A .f (x )的周期为6B .f (x )的图象关于⎝ ⎛⎭⎪⎫32,0对称C .f (2021)=2D .f (x )的图象关于x =32对称12.[2021·新高考Ⅰ卷]已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( )A .|OP 1→|=|OP 2→|B .|AP 1→|=|AP 2→| C.OA →·OP 3→=OP 1→·OP 2→D.OA →·OP 1→=OP 2→·OP 3→三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.[2022·天津静海一中月考]已知log a 12=m ,log a 3=n ,则a m +2n的值为________.14.[2022·辽宁抚顺模拟]设等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 8=15,则S 9=________.15.[2022·江苏响水中学月考]函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,已知A ,B 分别是最高点、最低点,且满足OA →⊥OB →(O 为坐标原点),则f (x )=________.16.[2022·北京101中学高三开学考试]△ABC 中,D 为AC 上的一点,满足AD →=13DC →.若P 为BD 上的一点,满足AP →=mAB →+nAC →()m >0,n >0,则mn 的最大值为________;4m +1n的最小值为________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)[2022·福建师大附中月考]已知向量a ,b 满足,||a =1,||b =2,且a 与b 不共线.(1)若向量a +k b 与k a +2b 为方向相反的向量,求实数k 的值; (2)若向量a 与b 的夹角为60°,求2a +b 与a -b 的夹角θ.18.(12分)[2022·山东日照模拟]向量m =(2sin x ,3),n =(cos x ,cos2x ),已知函数f (x )=m ·n ,(1)求函数f (x )的最小正周期和单调递减区间;(2)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其中a =7,若锐角A 满足f ⎝ ⎛⎭⎪⎫A 2-π6=3,且sin B +sin C =13314,求b +c 的值.b n是公差为1的等19.(12分)设{a n}是公比大于0的等比数列,其前n项和为S n,{}差数列,已知a2=2,a4=a3+4,a3=b3+b1.(1)求{a n}和{b n}的通项公式;(2)设数列{a n+b n}的前n项和为T n,求T n.20.(12分)[2022·山东泰安模拟]△ABC的内角A,B,C的对边分别为a,b,c,已知向量m=(c-a,sin B),n=(b-a,sin A+sin C),满足m∥n.(1)求C;(2)若6c+3b=3a,求sinA.21.(12分)[2022·湖北黄冈中学模拟]已知数列{a n }中,a 1=2,n (a n +1-a n )=a n +1.(1)求证:数列⎩⎨⎧⎭⎬⎫a n +1n 是常数数列; (2)令b n =(-1)na n ,S n 为数列{b n }的前n 项和,求使得S n ≤-99的n 的最小值.22.(12分)已知函数f (x )=ax 2+x -e x. (1)若a =12,讨论f (x )的单调性;(2)若f (x )≤1恒成立,求实数a 的取值范围.滚动过关检测五 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数1.答案:C解析:因为M ={x |log 3(x -2)<0}={x |2<x <3},N ={x |x ≥-2},所以M ∩N ={x |2<x <3}. 2.答案:C解析:因为z =2-i ,故z -=2+i ,故z ()z -+i =()2-i ()2+2i =6+2i. 3.答案:A解析:a =⎝ ⎛⎭⎪⎫cos 5π12,sin 5π12,b =⎝ ⎛⎭⎪⎫cos π12,sin π12,a ·b =cos 5π12cos π12+sin 5π12sinπ12=cos π3=12.4.答案:A解析:因为BC →+CD →=BD →=2a +4b =2(a +2b )=2AB →,所以A ,B ,D 三点共线. 5.答案:A解析:由题设,a 2a 3=a 21q 3=8,又a 1=1,可得q =2,∴a 4+a 5a 1+a 2=a 1q 3+a 1q 4a 1+a 1q =243=8.6.答案:D 解析:由E 为线段AD 的中点,则CE →=12(CA →+CD →),又D 满足BC →=3BD →,∴CD →=23CB →=23(AB →-AC →),∴CE →=12⎣⎢⎡⎦⎥⎤CA →+23AB →-AC →=13AB →-56AC →.7.答案:B解析:∵(a -b )⊥(3a +2b ),∴(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=3|a |2-|a |·|b |cos 〈a ,b 〉-2|b |2=0,又|b |=2|a |且|a |≠0, ∴3|a |2-2|a |2cos 〈a ,b 〉-4|a |2=-|a |2-2|a |2cos 〈a ,b 〉=0, ∴cos〈a ,b 〉=-22,又〈a ,b 〉∈[]0,π,∴〈a ,b 〉=3π4,即〈a ,b 〉=135°. 8.答案:B 解析:令g (x )=f xex,则g ′(x )=f ′x -f xex,∵x >0时,f ′(x )>f (x )恒成立,∴x >0时,g ′(x )>0,即g (x )单调递增,又f xex=f -xe-x,则g (-x )=g (x ),g (x )为偶函数.∴x <0时,g (x )单调递减.f 2e2=f -2e-2<f 3e3=f -3e-3,即f (2)<e 5f (-3)、f (3)>e 5f (-2)、e f (-3)>f (-2),∴A、C 、D 错误,B 正确.9.答案:AB解析:由题意z =101-2i =101+2i1-2i 1+2i=2+4i ,|z |=25,A 选项正确;z -2=4i ,B 选项正确;z 在复平面内对应点为(2,4),对应点在第一象限,C 选项错误;sin α=44+16=255,D 选项错误.10.答案:ACD解析:对A :命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ,故A 错误;对B :由函数f (x )=cos ax -sin ax =2cos ⎝ ⎛⎭⎪⎫ax +π4,则T =⎪⎪⎪⎪⎪⎪2πa =π,则a =±2,故B正确;对C :a =2时,x 2+2x ≥ax 在x ∈[1,2]上恒成立,而(x 2+2x )min =3<(2x )max =4,故C 错误;对D ,当“a ·b <0”时,平面向量a 与b 的夹角是钝角或平角,∴“平面向量a 与b 的夹角是钝角”的必要不充分条件是“a ·b <0”,故D 错误.11.答案:ACD解析:因为f (x )满足f (x -3)=-f (x ),所以f (x -6)=-f (x -3)=f (x ),故函数f (x )是周期为6的周期函数,故A 选项正确; 由于函数为R 的奇函数f (x )满足f (x -3)=-f (x ),所以f (x -3)=-f (x )=f (-x ),所以根据周期性得f (x +3)=f (-x ),所以f ⎝ ⎛⎭⎪⎫x +32=f ⎝ ⎛⎭⎪⎫32-x ,所以f (x )的图象关于x =32对称,故B 错误,D 正确;对于C 选项,结合周期性得f (2021)=f (336×6+5)=f (5)=f (-1)=-f (1)=-1+3=2,故正确.故选ACD. 12.答案:AC解析:A :OP 1→=(cos α,sin α),OP 2→=(cos β,-sin β),所以|OP 1→|=cos 2α+sin 2α=1,|OP 2→|=cos 2β+-sin β2=1,故|OP 1→|=|OP 2→|,正确;B :AP 1→=(cos α-1,sin α),AP 2→=(cos β-1,-sin β), 所以|AP 1→|=cos α-12+sin 2α=cos 2α-2cos α+1+sin 2α=21-cos α=4sin2α2=2|sin α2|, 同理|AP 2→|=cos β-12+sin 2β=2|sinβ2|,故|AP 1→|,|AP 2→|不一定相等,错误;C :由题意得:OA →·OP 3→=1×cos(α+β)+0×sin(α+β)=cos(α+β),OP 1→·OP 2→=cos α·cos β+sin α·(-sin β)=cos(α+β),正确;D :由题意得:OA →·OP 1→=1×cos α+0×sin α=cos α,OP 2→·OP 3→=cos β×cos(α+β)+(-sin β)×sin(α+β)=cos ()β+()α+β=cos ()α+2β,故一般来说OA →·OP 1→≠OP 2→·OP 3→,错误.故选AC. 13.答案:92解析:由题设,m +2n =log a 12+2log a 3=log a 92,∴a m +2n=a log a 92=92.14.答案:45解析:因为数列{a n }为等差数列,所以a 2+a 8=2a 5,又a 2+a 5+a 8=15,所以a 5=5,所以S 9=9()a 1+a 92=9a 5=45.15.答案:2sin ⎝⎛⎭⎪⎫π3x +π6解析:由图象知:3T 4=112-1=92,即T =6,则T =2πω=6,可得ω=π3,∴A ()1,A ,B 的横坐标为1+T2=1+3=4,即B (4,-A ),∵OA →⊥OB →,∴(1,A )·(4,-A )=0,则1×4-A 2=0,A >0,得A =2,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +φ,由五点作图法知:π3×1+φ=π2,得φ=π6,综上,函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +π6.16.答案:116 16解析:如图所示,由AD →=13DC →得AD →=14AC →,所以AP →=mAB →+4nAD →,所以m +4n =1(m >0,n >0),所以mn =14m ·(4n )≤14⎝ ⎛⎭⎪⎫m +4n 22=116,等号成立当且仅当m =12,n =18,所以mn 的最大值为116.因为4m +1n =⎝ ⎛⎭⎪⎫4m +1n (m +4n )=8+16n m +m n ≥16,等号成立当且仅当m =12,n =18,所以4m +1n的最小值为16.17.解析:(1)因为向量a +k b 与k a +2b 为方向相反的向量,所以存在实数λ<0,使得a +k b =λ()k a +2b ,且a 与b不共线,所以⎩⎪⎨⎪⎧1=kλk =2λ,解得:⎩⎪⎨⎪⎧λ=-22k =-2或⎩⎪⎨⎪⎧λ=22k =2(舍);所以实数k 的值为-2;(2)因为向量a 与b 的夹角为60°,|a |=1,|b |=2, 所以a ·b =|a |·|b |·cos60°=1×2×12=1,(2a +b )·(a -b )=2a 2-a ·b -b 2=2|a |2-a ·b -|b |2=2×12-1-22=-3, |2a +b |=2a +b2=4a 2+4a ·b +b 2=4+4+22=23,|a -b |=a -b2=a 2-2a ·b +b 2=1-2×1+22=3,所以cos θ=2a +b ·a -b |2a +b |·|a -b |=-323×3=-12,因为0°≤θ≤180°,所以θ=120°.18.解析:(1)f (x )=m ·n =2sin x cos x +3cos2x =sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (x )的最小正周期T =π;令π2+2k π≤2x +π3≤3π2+2k π(k ∈Z ),解得:π12+k π≤x ≤7π12+k π(k ∈Z ), ∴f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2-π6=2sin A =3得:sin A =32,又A 为锐角,∴A =π3; ∴asin A =b sin B =c sin C =732=1433,∴b +c =1433(sin B +sin C )=1433×13314=13.19.解析:(1)设{a n }的公比为q ,因为a 2=2,a 4=a 3+4,所以a 2q 2=a 2q +4,即2q 2=2q +4,所以q 2-q -2=0,因为q >0,所以q =2, 所以a n =a 2qn -2=2·2n -2=2n -1,所以a 3=b 3+b 1=4, 设{b n }的公差为d ,则d =1,所以⎩⎪⎨⎪⎧b 1+2d+b 1=4d =1,解得⎩⎪⎨⎪⎧b 1=1d =1,所以b n =1+(n -1)×1=n ;(2)因为a n =2n -1,所以a 1=20=1,所以a n +b n =2n -1+n ,所以T n =(20+22+…+2n -1)+(1+2+…+n )=1-2n1-2+n 1+n2=2n+n 2+n2-1,所以T n =2n+n 2+n2-1.20.解析:(1)因为m ∥n ,所以(c -a )(sin A +sin C )=(b -a )sin B ,由正弦定理得(c -a )(a +c )=(b -a )b ,所以a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =ab 2ab =12,因为C ∈(0,π),故C =π3.(2)由(1)知B =2π3-A ,由题设及正弦定理得6sin C +3sin ⎝ ⎛⎭⎪⎫2π3-A =3sin A , 即22+32cos A +12sin A =sin A ,可得sin ⎝⎛⎭⎪⎫A -π3=22.由于0<A <2π3,-π3<A -π3<π3,所以cos ⎝⎛⎭⎪⎫A -π3=22, 故sin A =sin ⎝ ⎛⎭⎪⎫A -π3+π3=sin ⎝ ⎛⎭⎪⎫A -π3cos π3+cos ⎝ ⎛⎭⎪⎫A -π3sin π3=22×12+22×32=6+24. 21.解析:(1)由n (a n +1-a n )=a n +1得:na n +1=(n +1)a n +1,即a n +1n +1=a n n +1n n +1∴a n +1n +1=a n n +1n -1n +1,即有a n +1+1n +1=a n +1n ,∴数列⎩⎨⎧⎭⎬⎫a n +1n 是常数数列; (2)由(1)知:a n +1n=a 1+1=3,∴a n =3n -1,∴b n =(-1)n(3n -1),即b n =⎩⎪⎨⎪⎧3n -1,n 为偶数-3n -1,n 为奇数,∴当n 为偶数时,S n =(-2+5)+(-8+11)+…+[]-3n -4+3n -1=3n2,显然S n ≤-99无解;当n 为奇数时,S n =S n +1-a n +1=3n +12-[]3n +1-1=-3n +12,令S n ≤-99,解得:n ≥1973,结合n 为奇数得:n 的最小值为67.22.解析:(1)当a =12时,f (x )=12x 2+x -e x,所以f ′(x )=x +1-e x,令g (x )=f ′(x )=x +1-e x,则g ′(x )=1-e x,所以当x >0时,g ′(x )<0,g (x )单调递减,当x <0时,g ′(x )>0,g (x )单调递增, 所以g (x )≤g (0)=0,即f ′(x )≤0, 所以函数f (x )为R 上的单调递减函数.(2)若f (x )≤1恒成立,即ax 2+x -e x≤1恒成立, 显然,当x =0时成立,当x ≠0时,不等式等价于a ≤e x -x +1x2恒成立, 令h (x )=e x-x +1x2, 则h ′(x )=x -2e x+1x 3,当h ′(x )>0时,得x <0或x >2,即函数h (x )在(-∞,0)和(2,+∞)上单调递增, 当h ′(x )<0时,得0<x <2,即函数h (x )在(0,2)上单调递减,由于x →-∞时,h (x )由正数趋近于0,当x =2时,h (2)min =e 2-14>0,所以函数h (x )的草图如图,所以a ≤⎝ ⎛⎭⎪⎫e x-x+1x 2min 恒成立,只需a ≤0,所以实数a 的取值范围是(-∞,0].。
高中数学三角函数专项练习题(含答案)一、填空题1.在ABC中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.2.在ABC中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.3.已知函数23tan ,,,2332()2,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 4.在平面直角坐标系中,对任意角α,设α的终边上异于原点的任意一点P 的坐标为(,)x y ,它与原点的距离是r .我们规定:比值,,r r xx y y分别叫做角α的正割、余割、余切,分别记作sec α,csc α,cot α,把sec ,csc ,cot y x y x y x ===分别叫做正割函数、余割函数、余切函数,则下列叙述正确的有___________(填上所有正确的序号) ①3cot14π=; ②sin csc 1αα⋅=;③sec y x =的定义域为{}|,Z x x k k π≠∈; ④22sec csc 4αα+;⑤2cot 1cot22cot ααα-=.5.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.6.在直角平面坐标系xOy 中,12,F F 分别是双曲线()22210yx b b-=>的左、右焦点,过点1F 作圆221x y +=的切线,与双曲线左、右两支分别交于点,A B ,若2||||F B AB =,则b 的值是_________.7.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号). 8.若向量x y ,满足2212x y +=,则21||2x x y ++的最大值是___________. 9.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+⎪⎝⎭,x ∈R D .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R12.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A B C .113D .1113.已知向量a ,b 夹角为3π,向量c 满足1b c -=且 a b a c b c ++=,则下列说法正确的是( ) A .2b c +<B .2a b +>C .1b <D .1a >14.已知函数()sin 22cos f x x x =-,下列说法错误的是( ) A .函数()f x 是周期函数 B .6x π=是函数()f x 图象的一条对称轴C .函数()f x 的增区间为()72,266k k k ππππ⎡⎤-+∈⎢⎥⎣⎦ZD .函数()f x 15.已知点1F ,2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C D 16.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则222b c bc+的取值范围为( )A .4359,1515⎛⎫ ⎪⎝⎭B .4315⎡⎫⎪⎢⎣⎭C .5915⎡⎫⎪⎢⎣⎭D .)⎡+∞⎣17.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1618.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A.1B C .1D .219.已知函数()2sin cos f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④20.设函数()xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.已知函数()cos f x x =.(1)若,αβ为锐角,()f αβ+= 4tan 3α=,求cos2α及tan()βα-的值;(2)函数()(2)3g x f x =-,若对任意x 都有2()(2)()2g x a g x a ≤+--恒成立,求实数a 的最大值;(3)已知3()()()=2f f f αβαβ+-+,,(0,)αβπ∈,求α及β的值.22.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD 上划出一个三角形地块APQ 种植草坪,两个三角形地块PAB 与QAD 种植花卉,一个三角形地块CPQ 设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P 在边BC 上,点Q 在边CD 上,记PAB α∠=.(1)当4PAQ π∠=时,求花卉种植面积S 关于α的函数表达式,并求S 的最小值;(2)考虑到小区道路的整体规划,要求PB DQ PQ +=,请探究PAQ ∠是否为定值,若是,求出此定值,若不是,请说明理由.23.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 25.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值;()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.26.已知函数()223sin 2cos 2f x x x x =++. (1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知函数()()233cos sin cos 02f x x x x ωωωω=+->的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心29.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域 (2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值30.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值【参考答案】一、填空题1.①③ 2.①③3.47,912ππ⎧⎫⎨⎬⎩⎭ 4.②④⑤5.[6.11 7.②③8 9.-710.⎡⎢⎣⎦二、单选题 11.D 12.A 13.A 14.B 15.C 16.C 17.C 18.D 19.B 20.C 三、解答题21.(1)72cos 2,tan()2511αβα=--=;(2)265-;(3)3παβ== 【解析】 【分析】(1)根据同角三角函数的关系和二倍角的余弦公式可求得cos2α的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解tan()βα-的值;(2)由余弦函数的有界性求得()g x 的值域,再将不等式分离参数,并令()1t g x =-,可得1a t t ≤+对[5,3]t ∈--恒成立.易知函数1y t t=+在[5,3]t ∈--单调递增,求出其最小值,则可得265a ≤-,从而求得a 的最大值; (3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成22(2coscos)sin 0222αβαβαβ+---+=,再结合,(0,)αβπ∈,即可求出α及β的值.【详解】 解:(1)4tan 3α=,且α为锐角, 4sin 5α∴=,3cos 5α=,22tan 24tan 21tan 7ααα==--则227cos 2cos sin 25ααα=-=-,又()cos()f αβαβ+=+=,αβ为锐角,sin()αβ∴+=,tan()2αβ+=-, tan()tan[()2]βααβα∴-=+-242()tan()tan 227241tan()tan 2111(2)()7αβααβα---+-===+++-⨯-; (2)()(2)3cos 23[4,2]g x f x x =-=-∈--,2()(2)()2g x a g x a ≤+--对任意x 恒成立,即2()2()2(()1)g x g x g x a -+≤-对任意x 恒成立, 令()1[5,3]t g x =-∈--,211t a t t t+∴≤=+对[5,3]t ∈--恒成立,又函数1y t t=+在[5,3]t ∈--单调递增,∴当5t =-时,min 126()5t t +=-,265a ∴≤-,则a 的最大值为265-; (3)3()()()2f f f αβαβ+-+=, 即3cos cos cos()2αβαβ+-+= , cos cos()22αβαβα+-=+coscossinsin2222αβαβαβαβ+-+-=-,cos cos()22αβαββ+-=-coscos+sinsin2222αβαβαβαβ+-+-=,cos cos 2coscos22αβαβαβ+-∴+=,又2cos()2cos12αβαβ++=-,232coscos2cos 12222αβαβαβ+-+∴-+=, 则24cos 4coscos10222αβαβαβ++--+=, 22(2coscos)1cos 0222αβαβαβ+---+-=, 即22(2coscos)sin 0222αβαβαβ+---+=,2cos cos 022sin 02αβαβαβ+-⎧-=⎪⎪∴⎨-⎪=⎪⎩,又0απ<<,0βπ<<, 3παβ∴==.【点睛】本题考查了同角三角函数间的关系,两角和与差的三角函数公式,二倍角余弦和正切公式,不等式恒成立问题,考查了运算能力和转化能力,属于综合性较强的题. 22.(1)S =⎝⎭花卉种植面积0,4πα⎡⎤∈⎢⎥⎣⎦];最小值为)100001 (2)PAQ ∠是定值,且4PAQ π∠=.【解析】 【分析】(1)根据三角函数定义及4PAQ π∠=,表示出,PB DQ ,进而求得,ABP ADQ S S ∆∆.即可用α表示出S 花卉种植面积,(2)设PAB QAD CP x CQ y αβ∠=∠===,,,,利用正切的和角公式求得()tan αβ+,由PB DQ PQ +=求得,x y 的等量关系.进而求得()tan αβ+的值,即可求得PAQ ∠的值. 【详解】(1)∵边长为1百米的正方形ABCD 中,PAB α∠=,4PAQ π∠=,∴100tan PB α=,100tan 100tan 244DQ πππαα⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∴ABP ADQ S S S ∆∆+=花卉种植面积1122AB BP AD DQ =⋅+⋅ 11100100tan 100100tan 224παα⎛⎫=⨯⨯+⨯⨯- ⎪⎝⎭()5000cos sin cos ααα==+⎝⎭,其中0,4πα⎡⎤∈⎢⎥⎣⎦ ∴当sin 214πα⎛⎫+= ⎪⎝⎭时,即8πα=时,S)100001=.(2)设PAB QAD CP x CQ y αβ∠=∠===,,,, 则100100BP x DQ y =-=-,, 在ABP ∆中,100tan 100x α-=,在ADQ ∆中,100tan 100yβ-=, ∴()()()20000100tan tan tan 1tan tan 100x y x y xyαβαβαβ-+++==-⋅+-,∵PB DQ PQ +=,∴100100x y -+-=100200xyx y +=+, ∴()20000100100100002002tan 1100001001002200xy xyxy xy xy αβ⎛⎫-⨯+-⎪⎝⎭+===⎛⎫-⨯+- ⎪⎝⎭, ∴4παβ+=,∴PAQ ∠是定值,且4PAQ π∠=.【点睛】本题考查了三角函数定义,三角形面积求法,正弦函数的图像与性质应用,正切和角公式的应用,属于中档题.23.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果.【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为在区间0上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤, 综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立. 所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立, 则a 最大值为2π,b 的最小值为1. 【点睛】 本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.24.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2 【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解.【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =, 从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭. (2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+ 4sin 203B π⎛⎫=+= ⎪⎝⎭ ∴2,3B k k Z ππ+=∈,∴:,62k B k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】 本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.25.(1)1m =;(2)13[,)8a ∈+∞ 【解析】【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max 1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决. 【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈ 令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---,①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍)综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立, 等价于12max 1()()24f x f x a -≤-, 2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=-∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞. 【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题.26.(1)T π=;2,63k k ⎛⎫++ ⎪⎝⎭ππππ(2)5; -2【解析】【分析】(1)根据二倍角公式和辅助角公式化简即可(2)由02x ⎡⎤∈⎢⎥⎣⎦,π求出26x π+的范围,再根据函数图像求最值即可 【详解】(1)()2sin 2cos 22cos 232sin 236f x x x x x x x ⎛⎫=++=++=++ ⎪⎝⎭π, 22T ππ==,令3222,2,62263x k k x k k ⎛⎫⎛⎫+∈++⇒∈++ ⎪ ⎪⎝⎭⎝⎭πππππππππ, 即单减区间为2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭; (2)由702,2666x t x ⎡⎤⎡⎤∈⇒=+∈⎢⎥⎢⎥⎣⎦⎣⎦,ππππ,当76πt =时,()f x 的最小值为:-2; 当2t π=时,()f x 的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】【分析】 (1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】(1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭, 解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈;(2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1- 【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】【分析】 (1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+. 于是()yg x =图象对应的解析式为()2sin()23x g x π=+. (2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z .所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】 本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.29.(1)1,0⎡⎤⎢⎥⎣⎦(2)265- 【解析】【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值.【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫- ⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭ 把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭ ()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩, 解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】 本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.30.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅= cosa b⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x += (2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.。
⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。
1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于A .)('0x fB .)('0x f -C .0'()f x -D .0'()f x -- 2.若13)()2(lim000=∆-∆+→∆x x f x x f x ,则)('0x f 等于 A .32 B .23C .3D .23.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为A .90°B .0°C .锐角D .钝角 4.对任意x ,有34)('x x f =,f(1)=-1,则此函数为A .4)(x x f =B .2)(4-=x x fC .1)(4+=x x fD .2)(4+=x x f 5.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000.A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4) 6.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是___. 7.已知曲线xx y 1+=,则==1|'x y _____________.8.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________.9.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P的切线与过这两点的割线平行,则P点的坐标为_____________.10.曲线3)(x x f =在点A 处的切线的斜率为3,求该曲线在A 点处的切线方程.11.在抛物线2x y =上求一点P ,使过点P 的切线和直线3x-y+1=0的夹角为4π.12.判断函数⎩⎨⎧<-≥=)0()0()(x x x x x f 在x=0处是否可导.13.求经过点(2,0)且与曲线xy 1相切的直线方程.同步练习X030131.函数y =f (x )在x =x 0处可导是它在x =x 0处连续的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在曲线y =2x 2-1的图象上取一点(1,1)及邻近一点(1+Δx ,1+Δy ),则xy∆∆ 等于 A .4Δx +2Δx 2 B .4+2Δx C .4Δx +Δx 2D .4+Δx3.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y -1=0,则A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在4.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设函数f (x )在x 0处可导,则0lim→h hh x f h x )()(00--+等于A .f ′(x 0)B .0C .2f ′(x 0)D .-2f ′(x 0)6.设f (x )=x (1+|x |),则f ′(0)等于A .0B .1C .-1D .不存在7.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___________. 8.曲线y =x 3在点P (2,8)处的切线方程是___________.9.曲线f (x )=x 2+3x 在点A (2,10)处的切线斜率k =___________. 10.两曲线y =x 2+1与y =3-x 2在交点处的两切线的夹角为___________. 11.设f (x )在点x 处可导,a 、b 为常数,则lim→∆x xx b x f x a x f ∆∆--∆+)()(=___________.12.已知函数f (x )=⎩⎨⎧>+≤++012x b ax x x x ,试确定a 、b 的值,使f (x )在x =0处可导.13.设f (x )=)()2)(1()()2)(1(n x x x n x x x +⋅⋅⋅++-⋅⋅⋅--,求f ′(1).14.利用导数的定义求函数y =|x |(x ≠0)的导数.同步练习X030211.物体运动方程为s=41t4-3,则t=5时的瞬时速率为A.5 m/s B.25 m/s C.125 m/s D.625 m/s 2.曲线y=x n(n∈N)在点P(2,)22n处切线斜率为20,那么n为A.7 B.6 C.5 D.43.函数f(x)=xxx的导数是A.81x(x>0) B.-887x(x>0)C.8781x(x>0) D.881x(x>0)4.f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数函数C.f(x)=g(x)=0 D.f(x)+g(x)为常数函数5.两车在十字路口相遇后,又沿不同方向继续前进,已知A车向北行驶,速率为30 km/h,B车向东行驶,速率为40 km/h,那么A、B两车间直线距离的增加速率为A.50 km/h B.60 km/h C.80 km/h D.65 km/h6.细杆AB长为20 cm,AM段的质量与A到M的距离平方成正比,当AM=2 cm时,AM段质量为8 g,那么,当AM=x时,M处的细杆线密度ρ(x)为A.2x B.4x C.3x D.5x7.曲线y =x 4的斜率等于4的切线的方程是___________.8.设l 1为曲线y 1=sin x 在点(0,0)处的切线,l 2为曲线y 2=cos x 在点(2π,0)处的切线,则l 1与l 2的夹角为___________. 9.过曲线y =cos x 上的点(21,6π)且与过这点的切线垂直的直线方程为_____________.10.在曲线y =sin x (0<x <π)上取一点M ,使过M 点的切线与直线y =x 23平行,则M 点的坐标为___________.11.质点P 在半径为r 的圆周上逆时针做匀角速率运动,角速率为1 r a d/s ,设A 为起点,那么t 时刻点P 在x 轴上射影点M 的速率为___________.12.求证:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形面积等于常数.13.路灯距地平面为8 m,一个身高为1.6 m的人以84 m/min的速率在地面上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率v.14.已知直线x+2y-4=0与抛物线y2=4x相交于A、B两点,O是坐标原点,试在抛物线的弧上求一点P,使△PAB面积最大.同步练习 X030311.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313D .3103.函数y =x sin x 的导数为A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos xC .y ′=xx sin +x cos xD .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x5.若y =(2x 2-3)(x 2-4),则y ’= .6. 若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 8.质点运动方程是s =t 2(1+sin t ),则当t =2时,瞬时速度为___________.9.求曲线y=x3+x2-1在点P(-1,-1)处的切线方程. 10.用求导的方法求和:1+2x+3x2+…+nx n-1(x≠1).11.水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.同步练习 X030321.函数y =22xax +(a >0)的导数为0,那么x 等于A .aB .±aC .-aD .a 22.函数y =xxsin 的导数为 A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin xxx x - D .y ′=2cos sin xxx x + 3.若21,2xy x +=-则y ’= .4.若423335,x x y x -+-=则y ’= . 5.若1cos ,1cos xy x+=-则y ’= .6.已知f (x )=354337xx x x ++,则f ′(x )=___________.7.已知f (x )=xx++-1111,则f ′(x )=___________.8.已知f (x )=xx2cos 12sin +,则f ′(x )=___________.1相切的直线的方程.9.求过点(2,0)且与曲线y=x10.质点的运动方程是23,s t=+求质点在时刻t=4时的速度.t同步练习 X030411.函数y =2)13(1-x 的导数是 A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x2.已知y =21sin2x +sin x ,那么y ′是A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .非奇非偶函数 3.函数y =sin 3(3x +4π)的导数为 A .3sin 2(3x +4π)cos (3x +4π) B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)4.若y=(sinx-cosx 3),则y ’= .5. 若y=2cos 1x +,则y ’= .6. 若y=sin 3(4x+3),则y ’= .7.函数y =(1+sin3x )3是由___________两个函数复合而成. 8.曲线y =sin3x 在点P (3π,0)处切线的斜率为___________.9.求曲线2211(2,)(3)4y M x x =-在处的切线方程.10. 求曲线sin 2(,0)y x M π=在处的切线方程.11.已知函数y =(x )是可导的周期函数,试求证其导函数y =f ′(x )也为周期函数.同步练习 X030421.函数y =cos (sin x )的导数为A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )2.函数y =cos2x +sin x 的导数为A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos3.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为 A .2y -8x +7=0 B .2y +8x +7=0 C .2y +8x -9=0D .2y -8x +9=04.函数y =x sin (2x -2π)cos (2x +2π)的导数是______________. 5.函数y =)32cos(π-x 的导数为______________.6.函数y =cos 3x 1的导数是___________.7.已知曲线y=2400x + +53(100-x) (0100≤≤x ) 在点M 处有水平切线,8.若可导函数f (x )是奇函数,求证:其导函数f ′(x )是偶函数.9.用求导方法证明:21C 2C n n +…+n n n C =n ·2n -1.同步练习 X030511.函数y =ln (3-2x -x 2)的导数为A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x2.函数y =lncos2x 的导数为A .-tan2xB .-2tan2xC .2tan xD .2tan2x3.函数y =x ln 的导数为A .2x x lnB .xx ln 2C .xx ln 1 D .xx ln 214.在曲线y =59++x x 的切线中,经过原点的切线为________________. 5.函数y =log 3cos x 的导数为___________. 6.函数y =x 2lnx 的导数为 . 7. 函数y =ln (lnx )的导数为 . 8. 函数y =lg (1+cosx )的导数为 .9. 求函数y =ln 22132x x +-的导数.10. 求函数y =12.求函数y =ln (21x +-x )的导数.同步练习 X030521.下列求导数运算正确的是A .(x +x 1)′=1+21xB .(log 2x )′=2ln 1xC .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x 2.函数y =xxa 22-(a >0且a ≠1),那么y ′为A .xxa 22-ln aB .2(ln a )xx a 22-C .2(x -1)xx a22-·ln aD .(x -1)xx a22-ln a3.函数y =sin32x 的导数为A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x4.设y =xx ee 2)12(+,则y ′=___________. 5.函数y =x22的导数为y ′=___________.6.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________.7.求函数y=e 2x lnx 的导数.8.求函数y =x x (x >0)的导数.9.设函数f (x )满足:af (x )+bf (x 1)=xc(其中a 、b 、c 均为常数,且|a |≠|b |),试求f ′(x ).同步练习 x030611.若f (x )在[a ,b ]上连续,在(a ,b )内可导,且x ∈(a ,b )时,f ′(x )>0,又f (a )<0,则A .f (x )在[a ,b ]上单调递增,且f (b )>0B .f (x )在[a ,b ]上单调递增,且f (b )<0C .f (x )在[a ,b ]上单调递减,且f (b )<0D .f (x )在[a ,b ]上单调递增,但f (b )的符号无法判断 2.函数y =3x -x 3的单调增区间是A .(0,+∞)B .(-∞,-1)C .(-1,1)D .(1,+∞) 3.三次函数y =f (x )=ax 3+x 在x ∈(-∞,+∞)内是增函数,则A .a >0B .a <0C .a =1D .a =314.f (x )=x +x2(x >0)的单调减区间是A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 5.函数y =sin x cos 2x 在(0,2π)上的减区间为 A .(0,arctan 22) B .(arctan2,22π) C .(0,2π)D .(arctan 2,21π)6.函数y =x ln x 在区间(0,1)上是A .单调增函数B .单调减函数C .在(0,e 1)上是减函数,在(e1,1)上是增函数D .在(0,e 1)上是增函数,在(e1,1)上是减函数7.函数f (x )=cos 2x 的单调减区间是___________. 8.函数y =2x +sin x 的增区间为___________.9.函数y =232+-x x x的增区间是___________. 10.函数y =xxln 的减区间是___________.11.已知0<x <2π,则tan x 与x +33x 的大小关系是tan x _____x +33x .12.已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0).若f(x)的单调递减1.区间是(0,4). (1)求k的值;(2)当k<x时,求证:2x>3-x 13.试证方程sin x=x只有一个实根.14.三次函数f(x)=x3-3bx+3b在[1,2]内恒为正值,求b的取值范围.同步练习 X030711.下列说法正确的是A .当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B .当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C .当f ′(x 0)=0时,则f (x 0)为f (x )的极值D .当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.下列四个函数,在x =0处取得极值的函数是①y =x 3 ②y =x 2+1 ③y =|x | ④y =2xA .①②B .②③C .③④D .①③ 3.函数y =216xx 的极大值为 A .3 B .4 C .2 D .54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为A .0B .1C .2D .45.y =ln 2x +2ln x +2的极小值为A .e -1B .0C .-1D .1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于A .6B .0C .5D .17.函数f (x )=x 3-3x 2+7的极大值为___________.8.曲线y =3x 5-5x 3共有___________个极值.9.函数y =-x 3+48x -3的极大值为___________;极小值为___________.10.函数f (x )=x -3223x 的极大值是___________,极小值是___________. 11.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.12.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值.求这个极小值及a、b、c的值.a+b有极小值2,求a、b应满足的条件.13.函数f(x)=x+x1时,f(x)的极小14.设y=f(x)为三次函数,且图象关于原点对称,当x=2值为-1,求函数的解析式.同步练习 X030811.下列结论正确的是A .在区间[a ,b]上,函数的极大值就是最大值B .在区间[a ,b]上,函数的极小值就是最小值C .在区间[a ,b]上,函数的最大值、最小值在x=a 和x=b 时到达D .在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值和最小值2.函数14)(2+-=x x x f 在[1,5]上的最大值和最小值是A .f(1),f(3)B .f(3),f(5)C .f(1),f(5)D .f(5),f(2)3.函数f(x)=2x-cosx 在(-∞,+∞)上A .是增函数B .是减函数C .有最大值D .有最小值4.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围是A .0<a<1B .a<1C .a>0D .21<a 5.若函数x x a x f 3sin 31sin )(+=在3π=x 处有最值,那么a 等于 A .2 B .1 C .332 D .0 6.函数5224+-=x x y ,x ∈[-2,2]的最大值和最小值分别为A .13,-4B .13,4C .-13,-4D .-13,47.函数x xe y =的最小值为________________.8.函数f(x)=sinx+cosx 在]2,2[ππ-∈x 时函数的最大值,最小值分别是___. 9.体积为V 的正三棱柱,底面边长为___________时,正三棱柱的表面积最小.10.函数21)(x x x f -+=的最大值为__________,最小值为____________。
"【名校定制,二轮测试】 2014届高三数学(文)第二轮复习专题阶段评估测试题:专题一、二集合、常用逻辑用语、不等式、函数与导数、三角函数与平面向量 "一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={m,3},N={x|2x2+7x+3<0,x∈Z},如果M∩N≠⌀,则m等于( )A.-1B.-2C.-2或-1D.-2.(2013·宣城模拟)函数f(x)=ln+x0.5的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)3.设x,y∈R,则“x2+y2≥9”是“x>3且y≥3”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(2013·天津高考)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log 2a)+f(lo a)≤2f(1),则a的取值范围是( )A.[1,2]B.C. D.(0,2]5.(2013·广东高考)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是( )A.2B.3C.4D.56.函数f(x)=2x+3x的零点所在的一个区间是( )A.( -2,-1)B.(-1,0)C.(0,1)D.(1,2)7.设函数f(x)=|log a x|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n-m的值为,则实数a的值为( )A. B.或C. D.或8.(2013·安徽高考)函数y=f(x)的图象如图所示,在区间上可找到n(n≥2)个不同的数x1,x2,…,x n,使得==…=,则n的取值范围是( )A. B.C. D.9.执行如图所示的程序框图,输出的S值为( )A.3B.-6C.10D.-1510.(2013·安徽高考)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A.3B.4C.5D.6二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)11.若函数f(x)=是奇函数,则g(-8)= .12.已知||=1,||=,·=0,点C在∠AOB内,∠AOC=45°,设=m+n(m,n∈R),则= .13.(2013·江苏高考)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为.14.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示,若两正数a,b满足f(2a+b)<1,则的取值范围是.15.(2013·四川高考)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a= .三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=2x-a(x≤2)的值域为集合B.(1)求集合A,B.(2)若集合A,B满足A∩B=B,求实数a的取值范围.17.(12分)已知m,x∈R,向量a=(x,-m),b=((m+1)x,x).(1)当m>0时,若|a|<|b|,求x的取值范围.(2)若a·b>1-m对任意实数x恒成立,求m的取值范围.18.(12分)(2013·重庆高考)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域.(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.19.(13分)已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为-3和0.(1)求f(x)的单调区间.(2)若f(x)的极小值为-e3,求f(x)在区间[-5,+∞)上的最大值.20.(13分)(2013·新课标全国卷Ⅱ)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值.(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.21.(13分)已知函数f(x)=xlnx,g(x)=-x2+ax-2.(1)求函数f(x)在[t,t+2](t>0)上的最小值.(2)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.(3)若函数y=f(x)+g(x)有两个不同的极值点x1,x2(x1<x2),且x2-x1>1n2,求实数a的取值范围.答案解析1.【解析】选C. N={x|2x2+7x+3<0,x∈Z}={x|-3<x<-,x∈Z}={-2,-1},因为M∩N≠∅,所以m=-1或m=-2.2.【解析】选B.要使函数有意义,则有即所以解得x>1,即定义域为(1,+∞).3. 【解析】选B.令x=1,y=4,满足不等式x2+y2≥9,但此时不满足x>3且y≥3;x>3且y≥3时,有x2+y2≥9成立,所以x2+y2≥9是x>3且y≥3成立的必要不充分条件.4.【解析】选 C.根据对数的运算性质和函数的奇偶性可知f(lo a)=f(-log2a)=f(log2a),因此f(log 2a)+f(lo a)≤2f(1)可化为f(log2a)≤f(1).又因为函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,故≤1,解得≤a≤2.【变式备选】(2013·合肥模拟)已知函数f(x)是定义在R上的奇函数,对于∀x∈(0,+∞)都有f(x+2)=-f(x)且∀x∈(0,1]时,f(x)=2x+1,则f(-2012)+f(2013)的值为( )A.1B.2C.3D.4【解析】选C.由f(x+2)=-f(x)得,f(x+4)=- f(x+2)=-[-f(x)]=f(x),即函数f(x)的周期是4.因为函数f(x)是R上的奇函数,所以f(-2012)=-f(2012)=-f(503×4+0)=-f(0)=0,f(2013)=f(503×4+1)=f(1)=21+1=3,所以f(-2012)+f(2013)=0+3=3.5.【解析】选D.解方程i(x+yi)=3+4i,x+yi==4-3i,|x+yi|=5.另解:在i(x+yi)=3+4i两端乘以因式-i可得x+yi=4-3i,|x+yi|=5.6.【解析】选B.由f(-1)=-3<0,f(0)=1>0及零点存在性定理知f(x)的一个零点在区间(-1,0)上.7.【解析】选D.由题意,分n=1或m=1两种情况:(1)n=1时,m=,此时f(x)在[m,n]上单调递减,故f(m)=|log a m|=1,所以a=.(2)m=1时,n=,此时f(x)在[m,n]上单调递增,故f(n)=|log a n|=1,所以a=.8.【解题提示】作直线y=kx(k≠0),转化为直线与曲线的交点个数问题,数形结合进行判断.【解析】选 B.=表示(x1,f(x1))与原点连线的斜率;==…=表示(x1,f(x1)),(x2,f(x2)),…,(x n,f(x n))与原点连线的斜率相等,而(x1,f(x1)),(x2,f(x2)),…,(x n,f(x n))在曲线图象上,故只需考虑经过原点的直线与曲线的交点个数有几种情况.如图所示,数形结合可得,有2,3,4三种情况,故选B.9.【解析】选C.第一次循环为:i=1,S=-1,i=2,第二次循环为:i=2,S=-1+4=3,i=3,第三次循环为:i=3,S=3-9=-6,i=4,第四次循环为:i=4,S=-6+16=10,i=5,第五次循环条件不成立,输出S=10.10.【解析】选A.因为f′(x)=3x2+2ax+b,函数f(x)的两个极值点为x1,x2,所以f′(x1)=0,f′(x2)=0,所以x1,x2是方程3x2+2ax+b=0的两根,所以解方程3(f(x))2+2af(x)+b=0得f(x)=x1或f(x)=x2.由题意知函数f(x)在(-∞,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.又f(x1)=x1<x2,如图,数形结合可知f(x)=x1有两个不同实根,f(x)=x2有一个实根,所以不同实根的个数为3.11.【解析】因为函数f(x)为奇函数,所以f(-8)=g(-8)=-f(8)=-log28=-3,即g(-8)=-3.答案:-312.【解析】因为·=0,所以⊥.将,放在平面直角坐标系中,如图.因为||=1,||=,所以A(1,0),B(0,).因为∠AOC=45°,所以点C在直线y=x上.设C(x,x),则=(x,x).由=m+n,得(x,x)=m(1,0)+n(0,),即(x,x)=(m,n),所以m=n,即=.答案:13.【解析】因为f(x)是定义在R上的奇函数,故图象关于原点对称.又当x>0时,f(x)=x2-4x,故大致图象如图.由图可得当x∈(-5,0)∪(5,+∞)时不等式f(x)>x成立.答案:(-5,0)∪(5,+∞)14.【解析】f(x)在x>0时单调递增,f(2a+b)<1⇒f(2a+b)<f(4)⇒2a+b<4,结合a>0,b>0,可得在点(0,4)取到最大值3,在点(0,0)取到最小值-1.答案:(-1,3)15.【解析】由题f(x)=4x+(x>0, a>0),根据基本不等式4x+≥4,当且仅当4x=时取等号,而由题知当x=3时取得最小值,即a=36.答案:3616.【解析】(1)A={x|x2-2x-3>0}={x|(x-3)(x+1)>0}={x|x>3或x<-1},B={y|y=2x-a,x≤2}={y|-a<y≤4-a}.(2)因为A∩B=B,所以集合B是集合A的子集,因此4-a<-1或-a≥3.所以a≤-3或a>5,即a的取值范围是a≤-3或a>5.17.【解析】(1)|a|2=x2+m2,|b|2=(m+1)2x2+x2,因为|a|<|b|,所以|a|2<|b|2.从而x2+m2<(m+1)2x2+x2.因为m>0,所以<x2,解得x<-或x>.(2)a·b=(m+1)x2-mx.由题意,得(m+1)x2-mx>1-m对任意的实数x恒成立,即(m+1)x2-mx+m-1>0对任意的实数x恒成立.当m+1=0,即m=-1时,显然不成立,从而解得所以m>.18.【解析】(1)因为蓄水池侧面的总成本为100×2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又据题意200πrh+160πr2=12000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).因r>0,又由h>0可得r<5,故函数V(r)的定义域为(0,5).(2)因V(r)=(300r-4r3).故V′(r)=(300-12r2).令V′(r)=0,解得r1=5,r2=-5(因r2=-5不在定义域内,舍去).当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V′(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8,即当r=5,h=8时,该蓄水池的体积最大.19.【解析】(1)因为f(x)=,所以f′(x)==.令g(x)=-ax2+(2a-b)x+b-c,因为e x>0,所以y=f′(x)的零点就是函数g(x)=-ax2+(2a-b)x+b-c的零点,且f′(x)与g(x)符号相同.又因为a>0,所以-3<x<0时,g(x)>0,即f′(x)>0,当x<-3或x>0时,g(x)<0,即f′(x)<0,所以f(x)的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x=-3是f(x)的极小值点,所以有解得a=1,b=5,c=5.所以f(x)=.因为f(x)的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞),所以f(0)=5为函数f(x)的极大值,所以f(x)在区间[-5,+∞)上的最大值取f(-5)和f(0)中的最大者.而f(-5)==5e5>5,所以函数f(x)在区间[-5,+∞)上的最大值是5e5.20.【解题提示】(1)求导函数f′(x),令f′(x)=0求极值点,列表求极值.(2)设切线,表示出切线l的方程,令y=0得l在x轴上的截距,利用函数知识求得截距的取值范围.【解析】(1)f′(x)=e-x(-x2+2x),令f′(x)=0,得x=0或2.列表如下函数f(x)的极小值为f(0)=0,极大值为f(2)=.(2)设切点为(x0,),则切线l的斜率为k=(-+2x0),此时切线l的方程为y-=(-+2x0)(x-x0),令y=0,得x=+x0.x=+x0-2+3,由已知和(1)得x0∈(-∞,0)∪(2,+∞).令h(t)=t+(t≠0),则当t∈(0,+∞)时,h(t)的取值范围为[2,+∞);当t∈(-∞,-2)时,h(t)的取值范围是(-∞,-3),所以当x0∈(-∞,0)∪(2,+∞)时,x 的取值范围是(-∞,0)∪[2+3,+∞),综上,l在x轴上的截距的取值范围是(-∞,0)∪[2+3,+∞).21.【解析】(1)f′(x)=lnx+1,令f′(x)=lnx+1=0,得x=.①当0<t<时,函数f(x)在上单调递减,在上单调递增,此时函数f(x)在区间[t,t+2]上的最小值为f=-.②当t≥时,函数f(x)在[t,t+2]上单调递增,此时函数f(x)在区间[t,t+2]上的最小值为f(t)=tlnt.(2)由题意得f(x)-g(x)=xlnx+x2-ax+2=0在(0,+∞)上有且仅有一个根,即:a=lnx+x+在(0,+∞)上有且仅有一个根.令h(x)=lnx+x+,则h′(x)=+1-==(x+2)(x-1),易知,h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以,a=h(x)min=h(1)=3.(3)y=f(x)+g(x)=xlnx-x2+ax-2,则其导函数为y′=lnx-2x+1+a,所以y′=lnx-2x+1+a=0有两个不同实根x1,x2,等价于:a=-lnx+2x-1有两个不同实根x1,x2,等价于:直线y=a与函数G(x)=-lnx+2x-1的图象有两个不同的交点.G′(x)=-+2=,所以G(x)在上单调递减,在上单调递增,画出函数G(x)图象的大致形状如图,由图象易知:当a>G(x)min=G=ln2时,x1,x2存在,且x2-x1的值随着a的增大而增大.而当x2-x1=ln2时, 由题有两式相减可得ln=2(x2-x1)=2ln2,得x2=4x1,代入x2-x1=ln2解得x2=4x1=ln2,此时实数a=ln2-ln-1,所以,实数a的取值范围为a>ln2-ln-1.。
函数+三角+向量+数列一、选择题1. 已知角A 是△ABC 的一个内角,若sin A +cos A =错误!,则tan A 等于 ( )A .-125B 。
错误!C .-错误!D 。
错误! 2.函数f (x)=x 3-3x -3一定有零点的区间是( )A .(2,3)B .(1,2)C .(0,1)D .(-1,0)3. 函数y =3cos (x +φ)+2的图象关于直线x =π4对称,则φ的可能取值是 ( )A 。
错误!B .-错误!C 。
错误! D.错误!4.已知函数(21)y f x =+是偶函数,则一定是函数(2)y f x =图象的对称轴的直线是( )A .12x =-B .0x =C .12x =D .1x =5. 已知函数f (x )=2cos(ωx +φ)(ω〉0)的图象关于直线x =错误!对称,且f 错误!=0,则ω的最小值为( )A .2B .4C .6D .86. 已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( )A .150° B.90° C.60° D.30°7. 首项为-24的等差数列{a n }从第10项开始为正数,则公差d 的取值范围是 ( )A 。
错误!≤d <3B 。
错误!<d <3C 。
83<d ≤3 D 。
错误!≤d ≤3 8.已知,log log ,log 21,log log ,10321532a a a a a z y x a -==+=<<则( )A .z y x >>B .x y z >>C .z x y >>D .y x z >>9. 设函数f (x )=cos (ωx +φ)-错误!sin(ωx +φ)错误!,且其图象相邻的两条对称轴为x 1=0,x 2=错误!,则 ( )A .y =f (x )的最小正周期为π,且在错误!上为增函数B .y =f (x )的最小正周期为π,且在错误!上为减函数C .y =f (x )的最小正周期为2π,且在(0,π)上为增函数D .y =f (x )的最小正周期为2π,且在(0,π)上为减函数.10.若关于x 的不等式m x x≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围是( )A . 03≥-≤m m 或B .03≤≤-mC .3-≥mD .3-≤m11. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示数列{a n }的前n 项和,则使得S n 取得最大值的n 是 ( )A .21B .20C .19D .1812. 已知函数f (x )=错误!sin 2x +cos 2x -m 在错误!上有两个零点,则m 的取值范围是( )A .(1,2)B . D . 13.数列{a n }是等差数列,若错误!〈-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A .11B .17C .19D .2114.已知函数()x f x ax b =+-的零点0(,1)()x n n n Z ∈+∈,其中常数,a b 满足23a =,32b =,则n 等( )A .1-B .2-C .1D .2二、填空题15.已知△ABC的面积为错误!,AC=错误!,∠ABC=错误!,则△ABC的周长等于________.16.(2013·课标全国Ⅰ)若数列{a n}的前n项和S n=错误!a n+错误!,则{a n}的通项公式是a n=_______.17.已知a=(2,3),b=(-4,7),则a在b方向上的投影为______.18.函数y=tan错误!的对称中心为________.19.(2013·重庆)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=________. 20.已知函数f(x)=A cos(ωx+φ)的图象如图所示,f错误!=-23,则f(0)=______.三、解答题21. (2013·重庆)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且a 2=b 2+c 2+错误!bc .(1)求A ;(2)设a =错误!,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.22.已知函数()()0122>++-=a b ax ax x g ,在区间[]3,2上有最大值4、最小值1,设函数()()xx g x f =。
三角向量15分钟专题训练之三1、若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =(C )A .(12)-,B .(12),C .(12)-,D .(12)-, 2、若π02x <<,则下列命题正确的是( B ) A.2sin πx x < B.2sin πx x > C.3sin πx x < D.3sin πx x > 3、设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b4、在△ABC 中,AB =1,B C =2,B =60°,则AC =。
5、已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是 6.(本小题满分12分)如图,甲船以每小时当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距答案:CBA 3725- 1A 2A 120 1056、解:如图,连结12A B,22A B =122060A A =⨯=, 122A A B ∆是等边三角形,1121056045B A B ∠=︒-︒=︒, 在121A B B ∆中,由余弦定理得2221211121112222cos 4520220200B B A B A B A B A B =+-⋅︒=+-⨯⨯=,12B B =因此乙船的速度的大小为6020⨯=答:乙船每小时航行海里.。
三角函数和向量测试试卷(含答案)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.02120sin 等于( ) A .23±B .23C .23- D .212.若角0600的终边上有一点()a ,4-,则a 的值是( )A .34B .34-C .34±D .3 3.sin163sin 223sin 253sin313+=( )A .12-B .12 C.2- D.24.若,24παπ<<则( )A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>5.函数)652cos(3π-=x y 的最小正周期是( )A .52π B .25π C .π2 D .π5 6.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .37.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈ 8.已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( )A .7B .10C .13D .49.已知3sin(),45x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .72510.向量(2,3)a = ,(1,2)b =-,若ma b + 与2a b - 平行,则m 等于A .2-B .2C .21D .12-11.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0 12.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是( )二、填空题:本大题共4小题,每小题4分,共16分.把答案填在横线上13.若(2,2)a =-,则与a 垂直的单位向量的坐标为__________。
第四章三角函数练习一角的的概念的推广(一)要点1.正角、负角和零角:规定,一条射线绕它的端点按逆时针方向旋转形成的角为正角.按顺时针方向旋转形成的角为负角.射线没有旋转,形成零角.2.象限角:在平面直角坐标系中,使角的顶点与坐标原点重合,角的终边在x轴的非负半轴上,角的终边落在第几象限内,就称这个角是第几象限角.3. 轴上角:当角的终边落在坐标轴上时,就称之为轴上角,它不属于任何象限.同步练习1.给出命题:①-880是第四象限角;②2560是第三象限角;③4800是第二象限角;④-3000是第一象限角.其中正确的有别( )(A)1个(B)2个(C)3个(D)4个2.有下列四个角:⑴-2100,⑵-1900,⑶-6300,⑷12300其中第二象限的角为( )(A)⑴⑷(B)⑴⑶⑷(C)⑴⑵⑷(D)⑴⑵⑶⑷3.下列各组的两个角中,终边不重合的一组是( )(A) -210与6990(B) 1800与-5400(C) 900与9900(D) 1500与69004.时针的分针经过期2小时40分钟,它所转过的角是______度,这个角是第____象限角.5.在00~3600范围内,找出与下列各角终边相同的角,并判断它们是第几象限角或哪个轴上的角.⑴6900; ⑵5400; ⑶-2000; ⑷-4500.6.在平面直角坐标系中,作出下列各角,并指出它们是哪个象限的角.⑴-3300; ⑵-18300; ⑶-6300; ⑷9900.7.在[-1800, 12600]内,写出与1800角终边相同的所有角.练习二 角的概念的推广(二)要点1. 与角α终边相同的角的集合为{β|β=α+k ·3600,k ∈Z}.2. 第一象限角、锐角和小于900的角的区别与联系.1.下列命题中,正确的是 ( )(A)第一象限角必是锐角 (B)终边相同的角必相等(C)相等的角终边位置必相同 (D)不相等的角终边位置必不相同2. 以下四个命题:⑴小于900的角为锐角 ; ⑵钝角是第二象限角; ⑶第一象限角不一定是负角;⑷第二象限角必大于第一象限角.其中正确命题的个数是 ( ) (A)1 (B)2 (C) 3 (D)43. 角α的终边上一点的坐标是(2,-2),则角α的集合是________________.4. 与-20050终边相同且绝对值最小的角是________________.5. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-3600≤α≤3600的元素α写出来.⑴ 600; ⑵ -834030/.6.写出下列角的集合:⑴终边在y 轴负半轴上的角;⑵终边在坐标轴上的角;⑶终边在第二、第四象限角平分线上的角;⑷终边在第三象限的角;⑸终边在第四象限的角. [思考与研究]若α是第一象限角,试确定2α、2α、3α所在的象限.练习三 弧度制 (一)要点1. 角度制与弧度制:这是两种不同的度量角的制度.角度制是以“度”为单位;弧度制是以“弧度”为单位. 2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同一个式子中,两种制度不能混用.如:与600终边相同的角的集合不能表示为{x|x=2k π+600,k ∈Z},正确的表示方法是x|x=2k π+3π,k ∈Z }或{ x|x=k ·3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则角α的终边在 ( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限2.①4π, ② -45π,③419π,④-43π,其中终边相同的角是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π角的终边相同,则α=_________. 4.正三角形,正四边形,正五边形, 正六边形, 正八边形, 正十边形, 正n 边形的一个内角的大小分别_____,____ ,_____,_____,_____,_____, ______.(用弧度表示) 5.把下列各角用另一种度量制表示. ⑴1350⑵ -67030/⑶2 ⑷-67π6. 将下列各数按从小到大的顺序排列.Sin40, sin21, sin300, sin17. 把下列各角化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的角.(1)-316π; (2)-6750.8. 若角θ的终边与1680角的终边相同,求在[0,2π]内终边与3θ角的终边相同的角.练习四 弧度制(二)要点1. 弧长公式和扇形面积公式:弧长公式 L=|α|r 扇形面积公式 S=21Lr=21|α|r 2其中α是圆心角的弧度数,L 为圆心角α所对的弧长,r 为圆半径.2. 无论是角度制还是用弧度制,都能在角的集合与实数集之间建立起一一对应的关系,但用弧度制表示角时,容易找出与角对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆心角等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的面积是_________.4. 已知一弧所对的圆周角为600,圆的半径为10cm,则此弧所在的弓形的面积等于___________.5. 已知扇形的周长为6cm,面积为2cm 2,求扇形圆心角的弧度数.6. 2弧度的圆心角所对的弦长为2,求这个圆心角所夹扇形的面积.7. 一条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的弓形的面积.练习五 任意角的三角函数 (一)要点1. 三角函数是以角为自变量,以比值为函数值的函数.三角函数的定义域:sin α,cos α的定义域都是R,tan α的定义域是{α|α≠k π+2π, k ∈Z}. 2. 三角函数值在各个象限的符号:第一象限全正,第二象限只有正弦正,第三象限只有正切正,第四象限只有余弦正. 同步练习1.当α为第二象限角时ααsin |sin |-|cos |cos αα的值是 ( ) (A)-2 (B)0 (C)-1 (D)22.设角α的终边过点P(-3α,-4α),(α≠0),则sin α-cos α的值是 ( ) (A)51 (B)- 51 (C)- 51或 -57 (D) -51或51 3.在三角形ABC 中,若cosA ·tanB ·cotC<0,则这个三角形的的形状是_____. 4.设θ为第二象限角,其终边上一点为P(m,5),且cos α,则α的值为_______. 5.已知β的终边经过点P(m,-3)(m ≠0),且cos β=2m,求sin β,tan β的值.6.求cos 3π-tan 45π+43tan 26π+sin 611π+cos 267π-sin 23π的值.7.求函数y=xxsin 1tan +的定义域.练习六 任意角的三角函数(二)要点1. 终边相同角的同名三角函数值相等(公式一),利用这组公式可以将任意角的三角函数值化为00~3600(或0~2π)间的角的三角函数值. 2. 三角函数线都是有向线段、线段的方向表示三角函数值的正负,线段的长度表示三角函数值的绝对值.书写三角函数线时,要注意起点与与终点的次序. 同步练习 1.sin637π的值等于 ( ) (A)21 (B)23 (C)- 21(D) -232.设α、β是第二象限角,若sin α>sin β,则 ( )(A)tan α>tan β (B)cos α<cot β (C)cos α>cos β (D)sec α>sec β 3. 在下列各题中的_____处,填上适当的符号(>,=,<). ⑴sin1560·cos(-4400)_____0; ⑵cot(-817π)·sin(-34π)_______0;⑶5.1tan 4sin ____0;⑷sin320π·tan(-417π)·cos 27π______0. 4. 已知α∈(-π,π),且cos α>-23,则角α的取值范围是________. 5. 计算:(1) m 2sin(-6300)+n 2tan(-3150)-2mncos(-7200);(2) sin(-623π)+cos 713πtan4π-cos 313π.6. 在单位圆中,用阴影线表示满足条件的θ的终边的范围: (1)tan θ≥1 (2)cos θ<21 (3)-21<sin θ≤237. 设0<α<2π,利用单位圆中的三角函数线证明:sin α+cos α>1练习七 同角三角函数的基本关系式(一)要点同角三角函数的基本关系式:sin 2α+cos 2α=1,ααcos sin =tan α,tan α·cot α=1.(1)公式中应注意“同角”二字,如sin 2α+cos 2β=1就不恒成立.(2)注意α的范围,第二个关系式中α≠k π+2π(k ∈Z),第三个关系式中α≠2πk (k ∈Z).(3)对公式的的使用要做到顺用、逆用、变用、活用.同步练习1.下列各式正确的是 ( ) (A)sin 2300+cos 2600=1 (B)sin23π/cos 23π=tan 23π (C)tan2π·cot2π=1 (D)sin 220050+cos 220050=12.下列各式能成立的是 ( ) (A)sin α=cos α=21 (B)cos α=21且tan α=2 (C)sin α=21且tan α=33 (D)tan α=2且cot α=-213. 已知cos θ=31,,则1+tan 4θ=______. 4. 已知sin α+ sin 2α=1则cos 2α+cos 4α的值等于_________. 5. 已知sin α=-53,α是第四象限角,求cos α、tan α的值.6. 已知cot α=-3,求sin α、cos α的值.7. 已知cos α=m(|m|≤1),求tan α和sin α.练习八 同角三角函数的基本关系式(二)要点1. 化简三角函数式的一般要求是(1)能求出函数值的要求出函数值,函数种类尽可能的少;(2)要使化简后的式子项数最少,次数最低;(3)尽量化去含有根式的式子,尽可能的不含分母.2. 证明三角恒等式的实质是消除等式两边的差异,一般由繁到简,可采用:①左边⇒右边 ②右边⇒左边③左边-右边=0④分别从左右两边推出相同的结果. 同步练习1.化简02100sin 1-等于 ( )2.若tan α=a,且sin α=21aa +,则α是 ( )(A) 第一、二象限角 (B)第一、三象限角 (C)第一、四象限角 (D)第二、三象限角3. 化简sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β=____________4. 若tanx=3则xx22cos 1sin +的值是___________ 5. 化简下列各式: (1) ααcos 1cos 1-+-ααcos 1cos 1+-,其中α为第二象限角;(2)αααα2222tan sin tan sin -.6. 证明下列恒等式(1) cos α(αcos 2+tan α) (αcos 1-2tan α)=2cos α-3tan α (2) x x x x 2sin 2cos 2cos 2sin 2122--=xx2tan 12tan 1+-练习九 正余弦的诱导公式(一)要点1.公式二:sin(1800+α)=-sin α,cos(1800+α)=-cos α. 公式三: sin(-α)=-sin α, cos(-α)=cos α.2. 公式中的α是任意角,但在记忆时,可把α看作锐角,从而1800+α可看作第三象限角, -α可看作第四象限角. 同步练习1.下列等式中,恒成立的是 ( )(A) sin(1800+2000)=sin2000(B)cos(-α)=-cos α(C) cos(1800+2000)=-cos2000(D)sin(-α)=sin α 2.sin 2(π+α)-cos(π+α)cos(-α)+1的值是 ( )(A) 2sin 2α (B)0 (C)1 (D)2 3. 计算sin34πcos(-6π)tan(-45π)=_________.4. 化简sin 2(-α)tan α+cos 2(π+α)cot α-2 sin(π+α) cos(-α)=_____5. 求下列各三角函数值:(1) sin(-13200) (2) tan9450(3)cos655π(4)cot(-322π)6.(1)求值sin 2(-300) +sin 22250 +2sin2100 +cos 2(-450) ; (2)若sin(π+α)= 41,求[]1)cos(cos )cos(-++απααπ-)cos()cos()2cos()cos(απαπαπα-+++--值;(3) 已知sin(3π-α)= 31;求sin(6π+α),sin(310π-α)的值.7. 化简:)(cos )tan()2cot()cos()(sin 32πααππααππα++--++练习十 正余弦的诱导公式(二)要点1.公式四: sin(1800-α)=sin α,cos(1800-α)=-cos α.公式五sin(3600-α)=-sin α,cos(3600-α)=cos α.2.记忆公式时, 1800-α可看作第二象限角, 3600-α可看作第四象限角 同步练习 1.sin(-619π)的值是 ( ) (A)21 (B) -21(C)23 (D) -232.已知cos(π-x)=-21,23π<x<2π,则sin(2π-x)的值等于 ( ) (A)21(B)± 23 (C)23 (D) -233.计算:sin(-15600)cos9300+cos(-13800) sin(-14100)=_______. 4. 已知COS(6π+θ)= 33,则COS(65π-θ)=__________.5. 求值0200170cos 110cos 10cos 10sin 21---6. 已知cos(π-α)=-21,计算: (1) sin(2π-α); (2)cot[2)12(π+k +α](k ∈Z)7. 已知sin(α-π) =2cos(2π-α),求)sin()cos(3)2cos(5)sin(ααπαπαπ----+-的值数学家陈景润陈景润(1933~1996),中国数学家、中国科学院院士。
2019届高三单元练习(十一作业) 数学文(三角导数向量立体数列)一、单选题1.若直线1y x =+与曲线32y x bx c =++相切于点(1,2)M ,则2b c + ( )A . 4B . 3C . 2D . 12.已知函数32()24f x x x x =--+,当[3,3]x ∈-时,2()14f x m m ≥-恒成立,则实数m 的取值范围是 ( ) A .(3,11)- B .(3,11) C .[3,11] D .[2,7] 3.若,,a b c 满足223,log 5,32acb ===,则A . b a c >>B .b c a >>C .a b c >>D .c b a >> 4.已知11ln8,ln 5,62a b c ===( ) A . a b c << B .b c a >> C .b a c >> D .c b a <<5.设1165532(),(),ln 353a b c -===,则a ,b ,c 的大小关系是( )A .c b a <<B .b a c >>C .b c a >>D .a c b >>6.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24- B .3- C . 3 D . 87.已知数列{}n a 是公差不为0的等差数列,且137,,a a a 为等比数列{}n b 的连续三项,则2334b b b b ++的值为( ) A .12B . 4C . 2 D8.设数列{}n a 是首项为1,公比为(1)q q ≠的等比数列,若11{}n n a a ++是等差数列,则233420152016111111()()...()a a a a a a ++++++=( ) A . 4026 B . 4028 C . 4030 D . 4032 9.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13 B .38 C .37D .10.已知0,0,,,,x y x a b y >>成等差数列,,,,x c d y 成等比数列,则2()a b cd+的最小值是( )A . 3B . 4C . 5D . 611.若正数,x y 满足2310x xy +-=,则x y +的最小值是( )A .3B.3 CD .12.已知向量a ,b 满足||1,||2a b ==,且向量a ,b 的夹角为4π,若a b -与b 垂直,则实数λ的值为( ) A .12-B .12C .4- D .413.平行四边形ABCD 中,02,1,60AB AD A ==∠=,点M 在AB 边上,且14AM AB =,则DM DB ∙=A . 1-B .1 C.3- D .3二、填空题14.设曲线2xy xe x =+在原点处切线与直线10x ay ++=垂直,则a =______.15.若互不相等的实数,,a b c 成等差数列,,,b a c 成等比数列,且35a b c ++=则a =____.16.设各项均为正数的等比数列{}n a 的前项和为n S ,若52378,13a a S -==,则数列{}n a 的通项公式为n a =____________.17.已知0x <,且1x y -=,则121x y ++的最大值是____. 18.已知,,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是______. 19.已知||1,(1,3)a b ==,,()a b a -⊥,则向量a 与向量b 的夹角为_______________. 20.已知向量(1,2),(2,2),(1,)a b c λ==-=若||(2)c a b +,则λ=________. 21.已知平面向量a ,b 满足,,,则向量,b 夹角的余弦值为_______.22.已知向量a ,b 的夹角为60°,||2,||1a b ==|,则2(2)a b += ____________ .三、解答题23.已知函数32()2f x x ax bx =++- 在2x =- 时取得极值,且在点(1,(1))f -- 处的切线的斜率为3- .(1)求()f x 的解析式;(2)求()f x 在区间[1,2]- 上的最大值与最小值.24.(题文)已知函数2()2ln f x x x =-.(1)求函数()f x 在1x =处的切线方程; (2)求函数()f x 的单调区间和极值.25.已知函数2()ln ,f x x ax x a R =+-∈.(1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若函数()f x 在[1,3]上是减函数,求实数a 的取值范围.26.已知数列{}n a 的前项和2*()n S pn qn n N =+∈,且143,24a S ==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n an b =,求数列{}n b 的前n 项和n T .27.正项等差数列{}n a 中,已知1230,15n a a a a >++=,且1232,5,13a a a +++构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .28.已知数列{}n a 的前项和2*37()n S n n n N =+∈,数列{}n b 为等差数列,且13n n n b b a ++=-.(1)求数列{}n a ,{}n b 的通项公式; (2)设2n n n c a b =,求证:数列{}n c 的前项和16n T <.29.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,已知3c =,,sin 2sin 3C B A π==,.(1)求,a b 的值;(2)求ABC ∆的面积.30.在锐角三角形ABC 中,,,a b c 分别是角,,A B C 的对边,且2sin a b A =.求B ∠的大小;若5a c ==,求三角形ABC 的面积和b 的值.31.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且sin cos 2c C a A ==. (1)求c ;(2)若b =求ABC ∆的周长.32.如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,DC PD =,E 是PC 的中点.⑴证明//PA 平面EDB ;⑵求EB 与底面ABCD 所成的角的正切值.B D33.如图,在四棱锥ABCD P -中,ABCD PD 平面⊥,CD AD ⊥,且DB 平分ADC ∠,E 为PC 的中点,1==CD AD ,22=DB .⑴证明:BDE PA 平面//;⑵证明:PBD AC 平面⊥;⑶求直线BC 与平面PBD 所成的角的正切值.34.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,AD PD ^,1BC =,PC =,2PD CD ==.⑴求异面直线PA 与BC 所成角的正切值;⑵证明:平面PDC ^平面ABCD ; ⑶求直线PB 与平面ABCD 所成角的正弦值.参考答案1.B【解析】分析:求得的导数,由斜率可得b,再由切点满足曲线方程,解方程可得c的值.详解:的导数为,直线与曲线相切于点,,解得,又切点在曲线上,则有,解得,,故选:B.点睛:本题考查导数的运用:求切线以及切线的斜率,注意运用切点既在切线上,也在曲线上,考查方程思想和运算能力,属于基础题.2.C【解析】【分析】首先求得的最小值,然后结合恒成立的条件求解实数的取值范围即可.【详解】由题意可得:,令可得:,且:,据此可知函数在区间上的最小值为,结合恒成立的条件可得:,求解关于m的不等式可得实数的取值范围是.本题选择C选项.【点睛】本题主要考查导函数求解函数的最值,恒成立条件的处理方法等知识,意在考查学生的转化能力和计算求解能力.3.A【解析】【分析】把对数写成指数,根据指数函数的单调性可判断的大小.再根据指数函数的单调性得到,从而可得三者的大小关系.【详解】因为,则,故,故.又,故.综上,,故选A .【点睛】一般地,等价于,因此指数问题和对数问题可以相互转化.另外,指数或对数比较大小时,可以通过中间数来传递大小关系,常见的中间数有0,1等.4.B【解析】【分析】直接利用对数的性质判断大小即可【详解】,,故选【点睛】本题考查了对数值大小的比较方法,一般找中间量“”或“”,以及转化为底数相同的对数,再由对数函数的单调性进行判断,考查了转化思想5.B【解析】【分析】利用指数函数、对数函数的单调性求解【详解】,a=,b>a>0,c=<ln1=0,∴b>a>c故选:B.【点睛】与指数函数与对数函数有关的比较大小问题,可利用指数函数和对数函数的单调性,比较大小.6.A【解析】【分析】设公差为,根据a2,a3,a6成等比数列列出方程,求出公差,代入等差数列前项和即可解决.【详解】因为a2,a3,a6成等比数列,所以,即,解得或(舍去),所以,故选A.【点睛】本题考查了等差数列的通项公式,前n项和概念及等比中项的概念,属于中档题.7.A【解析】分析:数列{a n}是公差d不为0的等差数列,且a1,a3,a7为等比数列{b n}的连续三项,可得=a1•a7,化简可得a1与d的关系.可得公比q=.即可得出=.详解:数列{a n}是公差d不为0的等差数列,且a1,a3,a7为等比数列{b n}的连续三项,∴=a1•a7,可得=a1(a1+6d),化为:a1=2d≠0.∴公比q====2.则==.故选:A.点睛:本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.8.B【解析】分析:运用等比数列的通项公式和等差数列的定义,求得q=1,进而得到所求和.详解:数列{a n}是首项为1,公比为q(q≠﹣1)的等比数列,可得a n=q n﹣1,由是等差数列,即为常数,可得q=1,即a n=1,=1,即有=2×2014=4028.故选:B.点睛:本题考查等比数列的通项公式,是基础的计算题,对于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或者公差,其二是观察各项间的脚码关系,即利用数列的基本性质.9.A【解析】【分析】分析题意,取倒数进而求的最小值即可;结合基本不等式中“1”的代换应用即可求解。
函数与导数题型一 函数的单调性、极值、最值问题例1 已知函数f (x )=2ax -a 2+1x 2+1(x ∈R).其中a ∈R.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≠0时,求函数f (x )的单调区间与极值.解 (1)当a =1时,f (x )=2x x 2+1,f (2)=45,又f ′(x )=x 2+-2x ·2x x 2+2=2-2x 2x 2+2,f ′(2)=-625. 所以,曲线y =f (x )在点(2,f (2))处的切线方程为 y -45=-625(x -2),即6x +25y -32=0. (2)f ′(x )=2a x 2+-2x ax -a 2+x 2+2=-x -a ax +x 2+2. 由于a ≠0,以下分两种情况讨论.①当a >0,令f ′(x )=0,得到x 1=-1a,x 2=a .↘ ↗ ↘所以f (x )在区间⎝ ⎛⎭⎪⎫-∞,-a ,(a ,+∞)内为减函数,在区间⎝ ⎛⎭⎪⎫-1a,a 内为增函数.函数f (x )在x 1=-1a处取得极小值f ⎝ ⎛⎭⎪⎫-1a ,且f ⎝ ⎛⎭⎪⎫-1a =-a 2.函数f (x )在x 2=a 处取得极大值f (a ),且f (a )=1.②当a <0时,令f ′(x )=0,得到x 1=a ,x 2=-1a,↗ ↘ ↗所以f (x )在区间(-∞,a ),⎝ ⎛⎭⎪⎫-a ,+∞内为增函数,在区间⎝ ⎛⎭⎪⎫a ,-a 内为减函数.函数f (x )在x 1=a 处取得极大值f (a ),且f (a )=1.函数f (x )在x 2=-1a 处取得极小值f (-1a),且f ⎝ ⎛⎭⎪⎫-1a =-a 2.答题过程:第一步:确定函数的定义域.如本题函数的定义域为R. 第二步:求f (x )的导数f ′(x ). 第三步:求方程f ′(x )=0的根. 第四步:利用f ′(x )=0的根和不可导点的x 的值从小到大顺次将定义域分成若干个小开区间,并列出表格.第五步:由f ′(x )在小开区间内的正、负值判断f (x )在小开区间内的单调性. 第六步:明确规范地表述结论.第七步:反思回顾.查看关键点、易错点及解题规范.如本题中f ′(x )=0的根为x 1=-1a,x 2=a .要确定x 1,x 2的大小,就必须对a 的正、负进行分类讨论.这就是本题的关键点和易错点.训练1 设f (x )=ex 1+ax2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.题型二 导数与不等式问题例2 设函数f (x )定义在(0,+∞)上,f (1)=0,导函数f ′(x )=1x,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值;(2)讨论g (x )与g ⎝ ⎛⎭⎪⎫1x 的大小关系;(3)是否存在x 0>0,使得|g (x )-g (x 0)|<1x对任意x >0成立?若存在,求出x 0的取值范围;若不存在,请说明理由. 解 (1)由题设易知f (x )=ln x ,g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1,当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间, 当x ∈(1,+∞)时,g ′(x )>0. 故(1,+∞)是g (x )的单调增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g ⎝ ⎛⎭⎪⎫1x=-ln x +x , 设h (x )=g (x )-g ⎝ ⎛⎭⎪⎫1x=2ln x -x +1x,则h ′(x )=-x -2x 2,当x =1时,h (1)=0,即g (x )=g ⎝ ⎛⎭⎪⎫1x ,当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0,因此,h (x )在(0,+∞)内单调递减,当x >1时,h (x )<h (1)=0,即g (x )<g ⎝ ⎛⎭⎪⎫1x .当0<x <1时,h (x )>h (1)=0,即g (x )>g ⎝ ⎛⎭⎪⎫1x , (3)满足条件的x 0不存在. 证明如下:假设存在x 0>0,使|g (x )-g (x 0)|<1x对任意x >0成立,即对任意x >0,有ln x <g (x 0)<ln x +2x,(*)但对上述x 0,取x 1=e时,有ln x 1=g (x 0),这与(*)左边不等式矛盾,因此,不存在x 0>0,使|g (x )-g (x 0)|<1x对任意x >0成立.答题过程:第一步:构造函数h (x )=g (x )-g ⎝ ⎛⎭⎪⎫1x; 第二步:根据求单调性、极值的步骤探求函数h (x )的单调性; 第三步:根据h (x )的单调性比较h (x )和0的大小; 第四步:下结论,反思回顾.训练2 已知函数f (x )=(x 2-3x +3)e x,x ∈[-2,t ] (t >-2). (1)当t <1时,求函数y =f (x )的单调区间; (2)设f (-2)=m ,f (t )=n ,求证:m <n .题型三 导数的综合应用例3 已知f (x )=2x -ax 2+2(x ∈R)在区间[-1,1]上是增函数.(1)求实数a 的值所组成的集合A ;(2)设关于x 的方程f (x )=1x的两个非零实根为x 1、x 2,试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解 (1)f ′(x )=4+2ax -2x 2x 2+2=-x 2-ax -x 2+2.∵f (x )在[-1,1]上是增函数,∴f ′(x )≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立.设φ(x )=x 2-ax -2,∴⎩⎪⎨⎪⎧φ=1-a -2≤0φ-=1+a -2≤0⇔-1≤a ≤1.∵对x ∈[-1,1],f (x )是连续函数,且只有当a =1时, f ′(-1)=0以及当a =-1时,f ′(1)=0, ∴A ={a |-1≤a ≤1}.(2)由2x -a x 2+2=1x,得x 2-ax -2=0.∵Δ=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两个非零实根, ∴x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=x 1+x 22-4x 1x 2=a 2+8.∵-1≤a ≤1,∴|x 1-x 2|=a 2+8≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立.即m 2+tm -2≥0,对任意t ∈[-1,1]恒成立.设g (t )=m 2+tm -2=mt +(m 2-2),则⎩⎪⎨⎪⎧g -=m 2-m -2≥0g =m 2+m -2≥0⇔m ≥2或m ≤-2. 综上知:存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2或m ≤-2}. 答题过程:第一步:将问题转化为形如不等式f (x )≥a (或f (x )≤a )恒成立的问题. 第二步:求函数f (x )的最小值f (x )min 或f (x )的最大值f (x )max . 第三步:解不等式f (x )min ≥a (或f (x )max ≤a ). 第四步:明确规范地表述结论. 第五步:反思回顾.查看关键点、易错点及规范解答.如本题重点反思每一步转化的目标及合理性,最大或最小值是否正确.训练3 已知函数f (x )=a ln x +bx 2图象上点P (1,f (1))处的切线方程为2x -y -3=0. (1)求函数y =f (x )的解析式;(2)函数g (x )=f (x )+m -ln 4,若方程g (x )=0在⎣⎢⎡⎦⎥⎤1e ,2上恰有两解,求实数m 的取值范围.函数与导数练习:1.若函数y =f (x )的定义域是[0,2],则函数g (x )= fxln x的定义域是( ) A.[0,1] B.[0,1) C.[0,1)∪(1,4]D.(0,1)2.设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g x ,gx -x ,x ≥g x ,则f (x )的值域是( )A.[-94,0]∪(1,+∞)B.[0,+∞)C.[-94,+∞)D.[-94,0]∪(2,+∞)3.若方程x lg(x +2)=1的实根在区间(k ,k +1) (k ∈Z)上,则k 等于 ( ) A.-2 B.1 C.-2或1 D.04.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.5.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为 ( )A.6B.7C.8D.96.已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是 ( ) A.(3,6) B.(-1,0) C.(1,2) D.(-3,-1)7.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是 ( )A.a >-14B.a ≥-14C.-14≤a <0D.-14≤a ≤08.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A.在区间⎣⎡⎦⎤1e ,1,(1,e)内均有零点B.在区间⎣⎡⎦⎤1e ,1,(1,e)内均无零点C.在区间⎣⎡⎦⎤1e ,1内有零点,在区间(1,e)内无零点 D.在区间⎣⎡⎦⎤1e ,1内无零点,在区间(1,e)内有零点9.函数f (x )=x -cos x 在[0,+∞)内 ( ) A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点 10.设a =log 3π,b =log 23,c =log 32,则 ( ) A.a >b >c B.a >c >b C.b >a >c D.b >c >a11.定义x ⊙y =3x -y ,则a ⊙(a ⊙a )等于 ( ) A.-a B.3a C.a D.-3a12/已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有 ( ) A.10个 B.9个 C.8个 D.1个13.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=[f (x )-x 3]·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.14.已知函数f (x )=1x+a ln x (a ≠0,a ∈R).(1)若a =1,求函数f (x )的极值和单调区间;(2)若a <0且在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围.15.已知函数f (x )=ax 3+bx 2+cx , 其导函数y =f ′(x )的图象经过 点(1,0),(2,0),如图所示,则下列说法中不正确的是________. (填序号)① 当x =32时函数取得极小值;② f (x )有两个极值点;③当x =2时函数取得极小值; ④当x =1时函数取得极大值.不等式不等式的恒成立,能成立,恰成立等问题 (1)恒成立问题若不等式f (x )>A 在区间D 上恒成立,则等价于在区间D 上f (x )min >A ; 若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上f (x )max <B . (2)能成立问题若在区间D 上存在实数x 使不等式f (x )>A 成立,则等价于在区间D 上f (x )max >A ; 若在区间D 上存在实数x 使不等式f (x )<B 成立,则等价于在区间D 上f (x )min <B . (3)恰成立问题若不等式f (x )>A 在区间D 上恰成立,则等价于不等式f (x )>A 的解集为D ; 若不等式f (x )<B 在区间D 上恰成立,则等价于不等式f (x )<B 的解集为D . 1.设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( ) A.20B.35C.45D.552.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A.8B.4C.1D.143.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A.1+ 2B.1+ 3C.3D.4 4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为( ) A.11B.10C.9D.8.55.已知函数|32||12|)(-++=x x x f . (I)求不等式)(x f ≤6的解集;(Ⅱ)若关于x 的不等式)(x f >a 恒成立,求实数a 的取值范围.6.已知函数a a x x f +-=2)(.(Ⅰ)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.三角函数1.已知函数f (x )=1+2cos ⎝⎛⎭⎫2x -π4sin ⎝⎛⎭⎫x +π2.(1)求f (x )的定义域;(2)若角α在第一象限,且cos α=35,求f (α).2.已知-π2<x <0,sin x +cos x =15,求cos x -sin x 的值.3.已知函数f (x )=cos 2⎝⎛⎫x +π12,g (x )=1+12sin 2x . (1)设x =x 0是函数y =f (x )的图象的一条对称轴,求g (x 0)的值; (2)求函数h (x )=f (x )+g (x )的单调递增区间.4.已知函数f (x )=2sin x (sin x +cos x ),x ∈⎣⎡⎦⎤0,π2,求函数f (x )的最大值. 在锐角△ABC 中,已知内角A 、B 、C 的对边分别为a ,b ,c ,且3(tan A -tan B )=1+tan A ·tan B ,又已知向量m =(sin A ,cos A ), n =(cos B ,sin B ),求|3m -2n |的取值范围.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a sin A =(2b -c )sin B +(2c -b )sin C . (1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且a 2+c 2-b 2=65ac .(1)求2sin 2A +C2+sin 2B 的值;(2)若b =2,求△ABC 面积的最大值.7.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π48.已知函数y =sin(ωx +φ) (ω>0,-π≤φ<π)的图象如图所示,则φ=________.9.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6 B.π4 C.π3 D.π2 10.已知函数f (x )=3sin x -cos x ,x ∈R ,若f (x )≥1,则x 的取值范围为( )A.{x |k π+π3≤x ≤k π+π,k ∈Z}B.{x |2k π+π3≤x ≤2k π+π,k ∈Z}C.{x |k π+π6≤x ≤k π+5π6,k ∈Z}D.{x |2k π+π6≤x ≤2k π+5π6,k ∈Z}11.①存在α∈(0,π2)使sin α+cos α=13;②存在区间(a ,b )使y =cos x 为减函数且sin x <0;③y =tan x 在其定义域内为增函数;④y =cos 2x +sin(π2-x )既有最大、最小值,又是偶函数;⑤y =|sin(2x +π6)|的最小正周期为π,以上命题错误的为________(填序号).12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin B =513,且a ,b ,c 成等比数列.(1)求1tan A +1tan C的值;(2)若ac cos B =12,求a +c 的值.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
阶段性考试试卷姓名: 分数:一、选择题(每题5分,共13题,65分) 1.若命题1)1(log ),,0(:2≥++∞∈∀xx x p ,命题01,:0200≤+-∈∃x x R x q ,则下列命题为真命题的是( ) A.p q ∨ B.p q ∧ C.()p q ⌝∨ D.()()p q ⌝∧⌝ 2.已知函数,则不等式f (x )≤5的解集为( )A .[﹣1,1]B .(﹣∞,﹣2]∪(0,4)C .[﹣2,4]D .(﹣∞,﹣2]∪[0,4]3.设复数z 满足11zi z+=-,则的z 虚部为( ) A .i - B .i C .1 D .1-4.函数)(x f y =是定义在R 上的奇函数,且在区间]0,(-∞上是减函数,则不等式)1()(ln f x f -<的解集为( ) A.()+∞,e B.⎪⎭⎫ ⎝⎛+∞,1e C.⎪⎭⎫ ⎝⎛e e ,1 D.⎪⎭⎫ ⎝⎛e 1,05.已知函数2()(1)xf x e x =-+(e 为自然对数的底),则()f x 的大致图象是( )6. 对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B .a b a b-≤-C .()22a b a b+=+D .()()22a b a b a b +-=- 7.若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<8.已知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且其图像向左平移3π个单位后得到函数 ()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12x π=对称 B .关于直线512x π=对称 C .关于点(,0)12π对称 D .关于点5(,0)12π对称9.已知a 是实数,则函数()1sin f x a ax =+的图像不可能是( )10.若20πα<<,31)3cos(=+απ,则cos α=( ) A.6322+ B.6162- C.6162+D.6322-11.已知(cos,sin )66a ππ=,55(cos ,sin )66b ππ=,则||a b -=( ) A .1 B 631012.已知向量,a b 的夹角为120°,且2,3a b ==,则向量23a b +在向量2a b +方向上的投影为( )A 1913B 613C 56D 8313.已知等差数列{}n a 的前n 项和为114,22,12n S S a ==-,如果当n m =时,n S 最小,那么m 的值为( ) A .10 B .9 C .5 D .4二、填空题(每题5分,共25分) 14.函数ln ()2xf x x=-的定义域为 . 15.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 16.已知⎩⎨⎧>≤--=)1(log )1(1)2()(x x x x a x f a 是R 上的增函数,那么实数a 的取值范围是___17.在ABC ∆中,G 为重心,BE 为AC 上的中线,()1//,4AG CD AD AB AC R λλ=+∈,则λ的值为___________. 18.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3B π=,3b 2a c +的最大值为 .三、解答题(每题12分,共60分) 19.(1)已知()2tan 5αβ+=,1tan 44πβ⎛⎫-= ⎪⎝⎭,求cos sin cos sin αααα+-的值;(2)已知α,β均为锐角,且()cos αβ+=,()sin αβ-=,求2β.20.已知函数2()2sin ()24f x x x π=+-.(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,求实数m 的取值范围.21.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知cos cos 2cos b C c B a A +=. (1)求A 的大小; (2)若=3AB AC ⋅,求△ABC 的面积.22.已知a ,b ,c 是同一平面内的三个向量,其中)2,1(=a .(1)若||=c ,且//c a ,求c 的坐标;(2)若||=b ,且2+a b 与2-a b 垂直,求a 与b 的夹角θ.23.在∆ABC 中, 内角A ,B ,C 的对边分别为a ,b ,c ,且22cos -=c a B b . (1)求角A 的大小;(2)若∆ABC 且22cos 4++=c ab C a ,求a .参考答案1.A 【解析】试题分析:关于命题p ,2110,2,log log 21,x x x x x⎛⎫>∴+≥∴+≥= ⎪⎝⎭因此为真命题.关于命题q ,使用配方法可得2013024x ⎛⎫-+> ⎪⎝⎭,故为假命题,由真值表可知,只有p q ∨为真命题,故选A.考点:1、特称命题与全程命题;2、真值表的应用. 2.C 【解析】试题分析:根据分段函数,分别解不等式,再求出并集即可. 解:由于,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4,当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤3, ∴不等式f (x )≤5的解集为[﹣2,4], 故选:C . 3.C 【解析】试题分析:依题意,()11z i z +=-,解得()()()()11121112i i i iz i i i i ---====++-,则的z 虚部为1,故选C.考点:1、复数的四则运算;2、复数的概念. 4.B 【解析】试题分析:因函数)(x f y =是奇函数,故不等式)1()(ln f x f -<可化为)1()(ln -<f x f ,由函数的单调性可得1ln ->x ,解之得ex 1>,应选B. 考点:函数的基本性质及运用. 5.C. 【解析】试题分析:∵2()(1)xf x e x =-+,∴'()2(1)xf x e x =-+,''()2xf x e =-,∴'()f x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增,而'(ln 2)22(ln 21)2ln 20f =-+=-<,1'(1)0f e --=>,(1)40f e =-<,故()f x 存在极大值点1(1,ln 2)x ∈--,极小值点2(1,)x ∈+∞,故选C.考点:导数的运用.【名师点睛】函数的图象是函数性质的体现,如单调性,奇偶性等,而图象又归结为极值点和单调区间的讨论,找函数的极值点,即先找导数的零点,但并不是说导数为零的点就是极值点(如3y x =),还要保证该零点为变号零点. 6.B 【解析】试题分析: 由题 A .||||||a b a b ⋅≤,由向量乘法的定义,0||=||||cos a b a b θθ=⋅当时;成立。