轴力及轴力图练习题
- 格式:docx
- 大小:52.29 KB
- 文档页数:3
材料力学学习指导与练习第二章2.1预备知识一、基本概念1、 轴向拉伸与压缩承受拉伸或压缩杆件的外力作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。
2、 轴力和轴力图轴向拉压杆的内力称为轴力,用符号F N 表示。
当F N 的方向与截面外向法线方向一致时,规定为正,反之为负。
求轴力时仍然采用截面法。
求内力时,一般将所求截面的内力假设为正的数值,这一方法称为“设正法”。
如果结果为正,则说明假设正确,是拉力;如是负值,则说明假设错误,是压力。
设正法在以后求其他内力时还要到。
为了形象的表明各截面轴力的变化情况,通常将其绘成“轴力图”。
作法是:以杆的左端为坐标原点,取χ轴为横坐标轴,称为基线,其值代表截面位置,取F N 轴为纵坐标轴,其值代表对应截面的轴力值,正值绘在基线上方,负值绘在基线下方。
3、 横截面上的应力根据圣维南(Saint-Venant)原理,在离杆一定距离之外,横截面上各点的变形是均匀的,各点的应力也是均匀的,并垂直于横截面,即为正应力,设杆的横截面面积为A ,则有AN =σ 正应力的符号规则:拉应力为正,压应力为负。
4、 斜截面上的应力与横截面成α角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:()⎪⎪⎩⎪⎪⎨⎧=+=αστασσαα2sin 22cos 12α角的符号规则:杆轴线x 轴逆时针转到α截面的外法线时,α为正值;反之为负。
切应力的符号规则:截面外法线顺时针转发900后,其方向和切应力相同时,该切应力为正值;反之为负值。
当α=00时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。
当α=±450时,切应力达到极值。
5、轴向拉伸与压缩时的变形计算与虎克定律(1) 等直杆受轴向拉力F 作用,杆的原长为l ,面积为A ,变形后杆长由l 变为l +∆l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAll N F =∆ 上式为杆件拉伸(压缩)时的虎克定律。
2-1 试作图示各杆的轴力图,并确定最大轴力| FN |max 。
2-2 试求图示桁架各指定杆件的轴力。
2-3 试作图示各杆的扭矩图,并确定最大扭矩| T |max 。
2-4 图示一传动轴,转速n =200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。
(1)试绘该轴的扭矩图。
(2)若将轮C与轮D对调,试分析对轴的受力是否有利。
2-5 试列出图示各梁的剪力方程和弯矩方程。
作剪力图和弯矩图,并确定| Fs |max及| M |max值。
2-6 试用简易法作图示各梁的剪力图和弯矩图,并确定| F s |max及| M |max值,并用微分关系对图形进行校核。
2-7 图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁A B的内力图。
2-8 图示处于水平位置的操纵手柄,在自由端C处受到一铅垂向下的集中力F p作用。
试画出AB段的内力图。
第3章3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。
3-2变截面直杆如图所示。
已知A1=8cm2,A2=4cm2,E=200GPa 。
求杆的总伸长量。
3-3 在图示结构中,AB为刚性杆,CD为钢斜拉杆。
已知F P1=5kN ,F P2=10kN ,l=1m ,杆CD的截面积A=100mm2 ,钢的弹性模量E=200GPa 。
试求杆CD的轴向变形和刚性杆AB在端点B的铅垂位移。
3-4 一木柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
3-5 图示的杆系结构中杆1、2为木制,杆3、4为钢制。
已知各杆的横截面面积和许用应力如下:杆1、2为A1=A2=4000 mm2 ,[s ]w =20 MPa ,杆3、4为A1=A2=4000 mm2 ,[s ]s =120 MPa 。
材料力学习题训练22-1.求图示阶梯状直杆横截面1-1﹑2-2和3-3上的轴力,并作轴力图。
如横截面面积,,,求各横截面上的应力。
2-5.图示结构中,已知杆之横截面为的矩形,当杆横截面上的最大正应力为时,求此时的值。
2-6.直杆在两侧面受有沿轴线方向均匀分布的载荷(仅在段),其集度为;在端受集中力作用,。
已知杆横截面面积,,材料的弹性模量。
求:1、画出轴力图; 2、两截面的铅垂位3、过两点与轴线夹角斜截面上的应力。
2-8.图示一手动压力机,在工件上所加的最大压力为150kN。
已知立柱和螺杆所用材料的屈服点MPa,规定的安全系数n=。
(1)试按强度要求选择立柱的直径D;(2)若螺杆的内径d=40mm试校核其强度。
3-1 夹剪如图所示。
销子C的直径d=5mm。
当加力P=,剪直径与销子直径相同的铜丝时,求铜丝与销子横截面的平均剪应力。
已知a=30mm,b=150mm。
3-2 结构受力如图所示,若已知木材的许用切应力,试校核木接头剪切强度是否安全。
3-3 木梁由柱支撑如图所示,今测得柱中的轴向压力为,若已知木梁所能承受的许用挤压应力。
确定柱与木梁之间垫板的尺寸。
3-4 木构件和由两片层合板用胶粘接在一起,承受轴向载荷作用,如图所示。
已知和的空隙为;板宽;胶层的许用切应力。
确定层合板的长度。
3-5 水轮发电机组的卡环尺寸如图所示。
已知轴向荷载P=1450kN,卡环材料的许用剪应力=80MPa,许用挤压应力=150MPa。
试对卡环进行强度校核。
3-6 拉力P=80kN的螺栓连接如图所示。
已知b=80mm,t=10mm,d=22mm,螺栓的许用剪应力=130MPa,钢板的许用挤压应力=300MPa,许用拉应力 =170MPa。
试校核该接头的强度。
3-7 一托架如图所示。
已知外力P=35kN,铆钉的直径d=20mm,铆钉都受单剪。
求最危险的铆钉横截面上剪应力的数值及方向。
3-8 销钉式安全离合器如图所示,允许传递的外力偶矩m=30kN·cm,销钉材料的剪切强度极限=360MPa,轴的直径D=30mm,为保证m>30000N·cm时销钉被剪断,求销钉的直径d。
第1章1-1 什么是构件的强度、刚度和稳定性?1-2 材料力学对变形固体有哪些假设?第2章2-1 试作图示各杆的轴力图,并确定最大轴力| FN |max 。
2-2 试求图示桁架各指定杆件的轴力。
2-3 试作图示各杆的扭矩图,并确定最大扭矩| T|max 。
2-4 图示一传动轴,转速n=200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。
(1)试绘该轴的扭矩图。
(2)若将轮C与轮D对调,试分析对轴的受力是否有利。
2-5 试列出图示各梁的剪力方程和弯矩方程。
作剪力图和弯矩图,并确定| Fs |max及|M |max值。
2-6 试用简易法作图示各梁的剪力图和弯矩图,并确定| F s |max及| M|max值,并用微分关系对图形进行校核。
2-7 图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁A B的内力图。
2-8 图示处于水平位置的操纵手柄,在自由端C处受到一铅垂向下的集中力F p作用。
试画出AB段的内力图。
第3章3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。
3-2变截面直杆如图所示。
已知A1=8cm2,A2=4cm2,E=200GPa 。
求杆的总伸长量。
3-3 在图示结构中,AB为刚性杆,CD为钢斜拉杆。
已知F P1=5kN ,F P2=10kN ,l=1m ,杆CD的截面积A=100mm2 ,钢的弹性模量E=200GPa 。
试求杆CD的轴向变形和刚性杆AB在端点B的铅垂位移。
3-4 一木柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
计 算 题( 第四章 )试作图示各杆的轴力图。
图题4. 1图示等截面混凝土的吊柱和立柱,已知横截面面积A 和长度a ,材料的重度γ,受力如图示,其中10F Aa γ=。
试按两种情况作轴力图,并求各段横截面上的应力,⑴不考虑柱的自重;⑵考虑柱的自重。
图题一起重架由100×100mm2 的木杆BC 和直径为30mm 的钢拉杆AB 组成,如图所示。
现起吊一重物WF =40kN 。
求杆AB 和BC 中的正应力。
图题图示钢制阶梯形直杆,各段横截面面积分别为21100mm A =,2280mm A =,23120mm A =,钢材的弹性模量GPa E 200=,试求:(1)各段的轴力,指出最大轴力发生在哪一段,最大应力发生在哪一段;(2)计算杆的总变形;图题4.5 图示短柱,上段为钢制,长200mm ,截面尺寸为100×100mm2;下段为铝制,长300mm ,截面尺寸为200×200mm 2。
当柱顶受F 力作用时,柱子总长度减少了0.4mm 。
试求F 值。
已知:(E 钢=200GPa ,E 铝=70GPa)。
4.6 图示等直杆AC ,材料的容重为ρg ,弹性模量为E ,横截面积为A 。
求直杆B 截面的位移ΔB 。
题图 题图两块钢板用四个铆钉连接,受力kN 4=F 作用,设每个铆钉承担4F 的力,铆钉的直径mm 5=d ,钢板的宽mm 50=b ,厚度mm 1=δ,连接按(a )、(b )两种形式进行,试分别作钢板的轴力图,并求最大应力max σ。
题图用钢索起吊一钢管如图所示,已知钢管重kN10=G F ,钢索的直径mm 40=d ,许用应力[]MPa 10=σ,试校核钢索的强度。
正方形截面的阶梯混凝土柱受力如图示。
设混凝土的320kN m γ=,载荷kN 100=F ,许用应力[]MPa 2=σ。
试根据强度选择截面尺寸a 和b 。
题图 题图图示构架,30=α,在A 点受载荷kN 350=F 作用,杆AB 由两根槽钢构成,杆AC 由一根工字钢构成,钢的许用拉应力[]MPa 160t =σ,许用压应力[]MPa 100c =σ,试为两杆选择型钢号码。
第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。
(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。
如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。
3、一木桩受力如图所示。
柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。
4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。
(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。
如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。
(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。
当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。
5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。
已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。
试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。
6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。
试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。
工程力学作图题试题库及答案一、静力学基础作图题1. 给定一个简支梁,两端支点A和B,梁上有三个集中力F1、F2、F3作用,分别位于点C、D和E。
请画出梁的受力图和弯矩图。
答案:首先画出梁的简图,标出支点A、B和集中力F1、F2、F3的位置。
在受力图上,画出三个集中力的矢量表示。
然后,根据静力平衡条件,计算出支点反力,并在图上表示。
接着,逐段计算梁的弯矩,画出弯矩图,注意弯矩图的正负号表示。
2. 一个悬臂梁,端点A固定,梁上有一个集中力F作用于点B。
请画出梁的剪力图和弯矩图。
答案:画出悬臂梁的简图,标出固定端A和集中力F的位置。
在剪力图上,从左到右逐段计算剪力,注意集中力处剪力的变化。
在弯矩图上,同样逐段计算弯矩,注意弯矩图的起始点为零。
二、材料力学作图题3. 给定一个圆杆,直径为d,受到一个轴向拉伸力P。
请画出圆杆的应力分布图。
答案:画出圆杆的横截面图,标出直径d。
在横截面上,根据轴向拉伸的均匀应力分布,画出一个均匀的应力圆环。
在图旁边标注应力公式σ = P/A,其中A为圆杆横截面积。
4. 一个矩形截面梁受到一个垂直于截面的集中力F。
请画出该梁的应力分布图。
答案:画出矩形截面的简图,标出集中力F的位置。
在截面上,根据应力分布规律,画出应力分布图。
应力在截面中心线处达到最大,向两侧逐渐减小。
在图旁边标注应力公式σ = 6F/bd^2,其中b和d分别为截面的宽度和高度。
三、动力学作图题5. 给定一个单摆,摆长为L,摆锤质量为m。
请画出单摆的运动轨迹图和回复力图。
答案:画出单摆的简图,标出摆长L和摆锤质量m。
在运动轨迹图上,画出单摆的圆周运动轨迹。
在回复力图上,根据单摆的运动状态,画出回复力的矢量表示,回复力始终指向平衡位置。
6. 一个质点在水平面上受到一个恒定的水平力F,同时受到摩擦力作用。
请画出质点的运动速度图和加速度图。
答案:画出质点的简图,标出作用力F和摩擦力。
在速度图上,根据牛顿第二定律,画出质点随时间变化的速度曲线。