3.1 常微分方程 课后答案
- 格式:doc
- 大小:209.00 KB
- 文档页数:4
习题1、2 1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也就是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x 、2、 y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也就是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24、 (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也就是原方程的解。
5.(y+x)dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y 、 6、 x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7、 tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也就是原方程的解,而c=0时,y=0、 所以原方程的通解为sinycosx=c 、 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c 、9、x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy 、 10、 dxdy =e y x - 解:原方程为:dxdy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c12、 dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c 、13、 dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c 、15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y)2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1)、 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2xu ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
第八章 常微分方程【教学要求】一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。
二、熟练掌握一阶可分离变量微分方程的解法。
三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+'的解法——常数变易法和公式法。
四、理解线性微分方程解的性质和解的结构。
五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。
会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。
六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'')(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。
所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。
关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。
【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。
【典型例题】。
的阶数是微分方程例)(e )(12x y y y =-'+''2.1.B A 4.3.D C 解:B。
的特解形式是微分方程例)(e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++x x c b ax D cx b ax C e ).(e ).(++++解:C是一阶线性微分方程。
下列方程中例)(,3 x x y y x B y A yx cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0.解:B ⎩⎨⎧=='++1)1(0)1(4y y x y y 求解初值问题例⎰⎰-=+x x y y y d )1(d 解:由变量可分离法得c x y y ln ln 1ln+-=+∴代入上式得通解为由21ln ln 1)1(=⇒=c yx y y 211=+ 的特解。
常微分方程(第三版)王高雄著课后习题答案.d o c(总86页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dx dy =y y 21+31x x + yy 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: yy -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ xdxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln xy =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dx dy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1 )1)((1+u f u du=x 1dx 所以原方程可化为变量分离方程。
习题1.21.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2xu ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程第二版答案第三章习题3—11.判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='.解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=xy x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则<-->=??,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ??),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2.求初值问题=--=,0)1(,22y y x dxdy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解设22),(y x y x f -=,则4),(max ),(==∈y x f M Ry x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ?是方程的解,)(2x ?是第二次近似解,则0)1()(0=-=y x ?,3131)0(0)(3121-=-+=?-x dx x x x,4211931863])3131([0)(34712322+-+--=--+=?-x x x x dx x x x x.在区间411≤+x 上,)(2x ?与)(x ?的误差为322)!12()()(h ML x x +≤-??. 取22),(max max ),(),(=-=??=∈∈y y y x f L Ry x R y x ,故241)41()!12(24)()(322=+?≤-x x ??.3.讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解设3123),(y y x f =,则3221-=??y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ??),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x . 所以通过点)0,0(O 的一切解为0=y 及,,, )(,023C x C x C x y >≤-=.,,)(,023C x C x C x y >≤--=如图. 4.试求初值问题1++=y x dxdy,0)0(=y ,的毕卡序列,并由此取极限求解.解按初值问题取零次近似为0)(0=x y ,一次近似为2121)10()(x x ds s x y x+=++=?,二次近似为 3220261]1)21([)(x x x ds s s s x y x ++=+++=?, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x+++=++++=, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+?+++=,五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--+++++++=++n x x n x x x x x n n ,所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5.设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy=,00)(y x y =的右侧解是唯一的. 证设)(1x y ?=,)(2x y ?=是初值问题的两个解,令)()()(21x x x -=,则有0)(000=-=y y x ?.下面要证明的是当0x x ≥时,有0)(≡x ?.用反证法.假设当0x x ≥时,)(x ?不恒等于0,即存在01x x ≥,使得0)(1≠x ?,不妨设0)(1>x ?,由)(x ?的连续性及0)(0=x ?,必有100x x x <≤,使得0)(0=x ?,0)(>x ?,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==??,?+=xx dxx x f y x 0)](,[)(101??,+=xx dx x x f y x 0)](,[)(202??,则有)()()(21x x x -=?-=xx dx x x f x x f 0)]}(,[)](,[{21??,10x x x ≤<.由0)()()(21>-=x x x (10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ?.从而证明方程的右侧解是唯一的.习题3—31.利用定理5证明:线性微分方程)()(x b y x a dxdy+= (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2.讨论下列微分方程解的存在区间: 1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为xCey -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<="" 为渐近线,当+∞→x="" 时,以0="y" 时,以1="y" ,则方程满足00)(y="">ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ?=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ?=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图().2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C .3.设初值问题)(E :2)(2)32(y x e y y dxdy+--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明因2)(2)32(),(y x ey y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<="" 的下方,积分曲线γ是单调上升的,并且它在向右延伸时不可能从直线1-="y" 的右行解的延伸定理,得出)(e="" 的解γ可以延伸到2r="" 的边界.另一方面,直线1-="y" 穿越到上方.因此它必可向右延伸到区间+∞<类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4.设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdyx -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x-=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡xxe x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ?=,在平面内延伸)(x y ?=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ?β.下证后一种情形不可能出现.事实上,若不然,则必存在β)(.不妨设βe x >)(.于是必存在),(00βx x ∈,使0()x x e ?=,x e x <)(?(00x x x <≤).此时必有0)(00'>=≥x x x x e dxde x ?,但0),())(,()(00000'===x x e x F x x F x ??,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ?=(00)(y x y =)必可延拓到+∞<≤x x 0.。
常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyx y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
习题3.1
1 求方程dx
dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ϕ 20020012
1)()(x xdx dx y x y x x
x ==++=⎰⎰ϕ 522200210220
121])21([])([)(x x dx x x dx x x y x x x +=+=++=⎰⎰ϕϕ dx x x x y x x ])20
121([)(252003+++=⎰ϕ = 118524400
1160120121x x x x +++
2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ϕ
则 20020012
1)()(x xdx dx y x y x x
x ==-+=⎰⎰ϕ 522200210220
121])21([])([)(x x dx x x dx x x y x x x -=-=-+=⎰⎰ϕϕ dx x x x y x x ])20
121([)(252003--+=⎰ϕ =118524400
1160120121x x x x -+- 3 题 求初值问题:
⎪⎩⎪⎨⎧=-=0
)1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计;
解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4
1 则解的存在区间为0x x -=)1(--x =1+x ≤4
1 令 )(0X ψ=0 ;
)(1x ψ=y 0+⎰-x
x x 0)0(2dx=31x 3+31;
)(2x ψ =y 0+])3131([2132⎰-+-x
x x dx=31x 3-9x -184x -637x +4211 又 y
y x f ∂∂),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32
2
)12(*h L M +=2411
4 题 讨论方程:31
23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解;
解:因为y
y x f ∂∂),(=3221-y 在y 0≠上存在且连续; 而312
3y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23
又 因为y(0)=0 所以:y =x 2
3
另外 y=0也是方程的解;
故 方程的解为:y =⎪⎩⎪⎨⎧≥00023 x x x
或 y=0;
6题 证明格朗瓦耳不等式:
设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,
且满足不等式:
f(t)≤k+⎰t
ds s g s f α
)()(,βα≤≤t
则有:f(t)≤kexp(⎰t
ds s g α
)(),βα≤≤t
证明:令R (t )=⎰t
ds s g s f α
)()(,则R '(T)=f(t)g(t)
R '(T)-R(t)g(t)= f(t)g(t)- R(t)g(t) ≤kg(t)R '(T)- R(t)g(t)≤kg(t);
两边同乘以exp(-⎰t
ds s g α
)() 则有:
R '(T) exp(-⎰t
ds s g α)()-R(t)g(t) exp(-⎰t ds s g α
)()
≤ kg(t) exp(-⎰t
ds s g α
)()
两边从α到t 积分:
R(t) exp(-⎰t ds s g α)()≤-⎰t ds s kg α)(exp(-⎰t
dr r g α
)()ds
即 R(t) ≤⎰t ds s kg α)( exp(-⎰t
s
dr r g )()ds
又 f(t) ≤1≤k+R(t) ≤k+k ⎰t s g α)(exp(-⎰t
s
dr r g )()ds
≤k(1-1+ exp(-⎰t s dr r g )()=k exp(⎰s
t
dr r g )()
即 f(t) ≤k ⎰t
dr r g α
)(;
7题 假设函数f(x,y)于(x 0,y 0)的领域内是y 的 不增函数,试证方程
dx
dy = f(x,y)满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多只有一个解; 证明:假设满足条件y(x 0)= y 0的解于x ≥ x 0一侧有两个ψ(x),ϕ(x)
则满足:
ϕ(x)= y 0+⎰x
x x x f 0
))(,(ϕdx
ψ(x)= y 0+⎰x
x x x f 0
))(,(ψdx
不妨假设ϕ(x) ψ(x),则ϕ(x)- ψ(x)≥0
而ϕ(x)- ψ(x)= ⎰x x x x f 0))(,(ϕdx-⎰x
x x x f 0
))(,(ψdx
=⎰-x
x x x f x x f 0
))(,())(,([ψϕdx
又因为 f(x,y)在(x 0,y 0)的领域内是y 的 增函数,则: f(x, ϕ(x))-f(x, ψ(x))≤0
则ϕ(x)- ψ(x)= ⎰-x
x x x f x x f 0
))(,())(,([ψϕdx ≤0
则ϕ(x)- ψ(x)≤0
所以 ϕ(x)- ψ(x)=0, 即 ϕ(x)= ψ(x) 则原命题方程满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多 只有一个解;。