当前位置:文档之家› 可靠性基本概念

可靠性基本概念

可靠性基本概念
可靠性基本概念

可靠性理论是以产品寿命特征为主要研究对象的一门综合性和边缘性科学,它涉及到基础科学、技术科学和管理科学的许多领域。对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。它的应用完善了传统的设计理论,极大地提升了结构和产品的质量,因此一直受到国内外学者的关注。可靠性理论在其发展过程中主要经历了五个时期:

(1)萌芽期

可靠性理论早在十九世纪30~40年代已发展起来了。十七世纪初期由伽利略、高斯、泊淞、拉普拉斯等人逐步建立了概率论,奠定了可靠性工程的主要理论基础。十九世纪初布尔尼可夫斯基主编出版了一本概率论教程,同时他的学生马尔可夫建立了随机过程理论和大数定律,成为了维修性的理论基础。1939年瑞典专家威布尔提出了描述材料疲劳强度的威布尔分布。可靠性研究萌芽于飞机失事事件,1939年美国航空委员会出版的《适航性统计学注释》中,提出飞机事故率不应超过105 /h。这里讲的事故率只是未能沿用可靠度的定义而已。

(2)摇篮期

50年代的电子管事件揭开了可靠性研究的序幕。50年代电子真空管的故障率增长迅速。使电子技术进步与失效间的矛盾十分突出。例如1941~1945年第二次世界大战期间,美国空军运往远东的机载电子设备在到达时就有60%已经失效,轰炸机的MTBF(无故障时间)不超过20小时。另外,1945年12月美国制成的第一台电子管计算机,整个计算机共有18000只电子管。但是,平均每33分钟就有一只失效。与此同时,1943年德国火箭专家R.Lusser第一次用概率乘法法则定量算出了V-2火箭诱导装置的可靠度R的值为0.75。第二次世界大战结束以后,美国国防部总结战争教训,提出了一个全新的问题——可靠性,并下令军队有关部门在今后的采购中只选择有可靠性指标的军需品。

(3)奠基期

60年代,美国成为可靠性发展最早的国家。1952年美国国防部成立AGREE 电子设备可靠性顾问团。同年,可靠性顾问团第一次提出了科学的可靠性定义。AGREE组织于1957年写出了一份较为系统的《电子设备可靠性报告》,较完整地

提出了电子产品的可靠性理论基础和方法。这份《电子设备可靠性报告》的发表,是可靠性工程成为一门独立学科的标志。1957年在美国国防部领导下,美国有关部门起草和陆续出版了空军、陆军、海军、航空、航天等一整套较完整的八大可靠性标准系列:MIL、EIA、AIC、ANSI、RTCA、IEEE,其中以MIL-STD最为重要。这些标准为世界各国所引证,为各国的可靠性标准体系奠定了基础。

(4)普及期

70年代,日本成为了可靠性技术发展最快的国家。60年代到70年代期间,美国形成可靠性热,可靠性技术成为了美国登月成功的关键,美国在50年代就提出了开发宇宙的阿波罗计划,当时失败了很多次,致使很多研究方面落后于原苏联,后引进了可靠性技术,并利用可靠性技术率先登月成功。登月成功后,NASA(美国航空航天局)将可靠性工程列为三大技术成就之一。可靠性技术是阿波罗计划成功之关键,这在很大程度上震撼了日本工程界。当时,日本众多媒体声称:“可靠性对国家、军事、社会和产业界均是一个划时代意义的大问题,本国对可靠性问题重要性的认识已为时过晚了”。1956年日本从美国引进可靠性技术,并使其迅速发展。例如日本的小松制作所,70年代此公司濒临倒闭,在日本引入可靠性技术以后全公司开展可靠性活动,经过数年的努力,使推土机MTBF 的产量提高了三倍,维修费下降2/3,使出口贸易额由原来的小于20%上升到40—50%,可以说可靠性技术拯救了小松企业。现在日本此公司的汽车、家用电器等成为质量信得过产品,营销全球。美国认为:“对民用产品进行可靠性投资和美国直接效益不相结合,划不来”。而日本则认为可靠性技术将成为今后经济竞争的焦点,成为以后与各国产品竞争的有力武器,使日本民用产品的可靠性成为世界上发展最快的国家,其民用产品的质量和可靠性在全球也是遥遥领先。

(5)成熟期

70年代,实施产品质量法PL(Product Liability)的出台,从法律上规定可靠性成为质量保证QA(Quality Assurance)的重要坏节。1987年美国颁布可靠性和维修性(RM)2000年发展规划。至此,可靠性脱颖而出发展成为一门新兴学科——“可靠性工程学”。

中国可靠性研究始于60年代中期的宇航电子产品的研究,陆续从美国引进了可靠性标准和资料。1981年成立电子元器件数据交换和质量认证中心。1985

年10月科工委也颁发“航空技术装置寿命和可靠性工作暂行规定”。1988年全国相继成立了七个全国性可靠性技术学术组织:中国电子产品可靠性与质量管理学会、中国数学可靠性学会、中国现代设计法可靠性学会、机电部可靠性委员会等组织。1985年至1986年期间颁发了多种可靠性国家学会、机电部可靠性国家标准GB。1988年国产电子元器件可靠性已达到了世界的先进水平。1989年原机电部提出了设计、制造、测试、可靠性四项共性技术,其中可靠性就是其中之一。原机电部也指出:“可靠性技术是振兴机械工业目标的主要途径之一。机电产品的形象不好,很大程度上是因为可靠性的好坏,用户反映最强烈的是可靠性问题,质量的首位也是可靠性。”

半个世纪以来,可靠性工程经历了50年代的起步阶段,60年代的发展阶段,70年代的成熟阶段和80年代的更深更广的发展阶段,以及90年代以来进入向综合化、自动化、智能化和实用化发展的阶段,使可靠性工程成为一门提高产品质量的重要的工程技术学科。可靠性工程已从电子产品可靠性发展到机械和非电子产品的可靠性,其研究范围不断扩展,已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门。

1.2 机械可靠性的研究概况

所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料的离散特性以及在测量、加工、制造和安装过程中的误差等因素的影响,使机械产品的系统参数具有固有的不确定性。因此,对这种不确定性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。

众所周知,机械产品的安全可靠性是机械设计和机械生产的主要目的之一。可靠性与其他性能一样,都必须在产品研制设计过程中给予充分的考虑。机械产品的可靠性是由制造和管理来保证的。有效地增强产品的质量、降低产品的成本、减轻整机的质量、提高产品可靠性和机械作业的效率是可靠性设计的主要目标。随着工业技术的不断发展,机械产品性能的参数也日益提高,结构也日趋复杂,

使用场所更加广泛,产品的性能和可靠性问题也就越来越突出。这种向高效率、复杂化和经济性方向发展的产品的设计和生产又总是对其可靠性提出更高的要求。因此,现代的可靠性技术在机械产品设计中的广泛应用是有着十分重要的意义。

结构、机构等机械可靠性的研究晚于电子可靠性[6],它始于上世纪六十年代初期,在发展的初期也与美国的航天计划有关,当时由于机械故障而引起的事故很多,损失巨大。例如1963年同步通讯卫星SYNCOMI由于高压容器断裂引起故障,卫星在空中坠毁;1964年人造卫星Ⅲ号也因机械故障而损坏,因此从1965年起,美国宇航局NASA开始进行了包括用过载试验方法进行可靠性验证、随机动载荷下结构和零件的可靠性以及把规定的可靠性指标值直接设计到应力分布和强度分布都随时间变化的机械零件中等内容在内的机械可靠性研究。

结构可靠性理论是一门涉及多学科并与工程应用有着密切关系的学科,对结构设计能否符合安全可靠、耐久适用、经济合理、技术先进、确保质量的要求,起着重要的作用[7]。传统的结构可靠性理论从上世纪60年代起步,到80年代已较为成熟。它运用概率论、数理统计和随机过程等数学方法用来处理工程结构中的随机性问题,以应力—强度分布干涉理论为基础,涉及结构随机可靠度的基本概念、原理和有关的基本算法。在这方面做出贡献的有美国的 A.H.SAng和FredMoses[8]、丹麦的Ditlevesen[9]和我国的冯元生[10][11]及赵国藩等。在可靠度的基本算法中,一次二阶矩方法由于物理意义直观和计算简便而得到广泛应用。但有些情况上述方法并不适用。根据不同问题的特点和要求,我国学者提出了广义随机空间的概念,建立了广义随机空间内考虑随机变量相关性的结构可靠度实用分析方法[12],从而扩大了现有可靠度分析方法的适用范围;针对极限状态方程的高度非线性,提出了基于拉普拉斯逼近原理的渐近可靠性分析方法[13],提高了计算精度;基于信息论中的最大熵原理,提出了结构可靠度分析的四阶矩方法[14],该法在考虑极限状态方程非线性影响的同时,也考虑了随机变量高阶矩的影响,同时提出用改进罗森布鲁斯(Rosenblueth)方法[15]解决极限状态方程不易求导的问题;提出了原始随机空间内可靠度分析的一次和二次方法[16],这一方法无须用随机变量的概率分布函数而只使用概率密度函数,降低了对初始条件的要求,避免了传统的结构可靠度分析方法遇到的困难;应用响应面的概念,提出与结构可

靠度几何法相结合的响应面方法[17],给出新的计算迭代格式。进行了随机结构的静态分析和动态响应分析以及对蒙特卡罗模拟法进行了改进。随机可靠性、模糊可靠性、非概率可靠性均用来处理工程中的不确定现象,它们有着各自的适用条件和应用范围。模糊可靠性理论包含了传统可靠性理论,后者是前者的基础。模糊可靠性理论应用在系统中有不容忽视的模糊现象(信息)时,是对传统可靠性理论的丰富和发展。而非概率可靠性理论为小样本、贫信息情况下进行结构的可靠度分析提供了可能,是对可靠性理论的有益补充。

与结构可靠性相比,机构可靠性的研究要晚些,从上世纪70年代末期才开始研究,到80年代才有了一些基础,至90年代才有了一些成果。机构磨损可以说是机构中最为突出的问题。在飞机构造及一般机械中,机构运动副零件的磨损失效占总失效中相当大的比例,约为30%~80%。电机操纵机构,起落架收放机构,直升机升力螺旋桨中的铰链接头等都有因磨损失效而引起事故的实例。这种情况促使前苏联的学者们对机构磨损可靠性进行研究;飞机起落架不能按要求完成其收放功能的事故、卫星通讯设备的可收放天线不能按要求完成其收放功能的事故、军用及民用各种阀门的控制功能的失效事故等导致了对运动机构运动功能可靠性的研究;美国C5A大型军用运输机前缘襟翼的卡住事故,以及各种阀门的卡滞故障,促使人们对机构防卡可靠性的研究;起落架意外开锁放下事故以及波音747旅客机飞行中舱门自动打开的事故,促使人们对锁系统可靠性的研究。目前,航空机构出现较多的故障也迫切需要解决机构可靠性问题。[18] [19]机械可靠性的分析计算方法的发展也经历了许多阶段。在结构方面,1951年前苏联的学者提出了应力-强度结构可靠性设计的正态模型,并推导了用正态分布二阶矩表述的可靠性系数的一般形式,这些研究还局限于古典可靠度理论。1969年Cornell提出了用与结构失效概率相关联的可靠性指标作为衡量结构安全性的一种统一数量指标[20],并建立了结构安全度的二阶矩模式。虽然Cornell解决了非线性程度较小的极限状态方程的失效概率计算问题,但却缺乏对等效极限状态方程求解结果的不变性。1974年,Hasofer和Lind[21]提出FOSM方法,后来Lind又对此方法进行了发展[22][23],改进的FOSM方法概念明确,方法简单,尽管还存在不少的缺点,但仍在结构可靠性分析计算中得到广泛的应用。1977年Rackwite和Fiessler提出了一种有效的算法[24],使得任何非正态随机变量都能

够在设计点(Design Point)处转化为正态随机变量,从而使计算由非正态随机变量和非线性极限状态方程得到推广。Moses提出的增量载荷法[25][2][27]是最早用以确定结构强度可靠性极限状态方程的方法,这种方法在大型工程结构件上得到了发展和应用。现在,在结构可靠性分析中最具通用性的方法是数值方法,数值方法又分数值积分法和模拟法(或Monte-Carlo模拟)。随着计算机技术及计算数学的发展,人们又提出了各种各样的改进的数值模拟方法[28] [29],其中以重要抽样法的研究最为广泛。在机构方面,可靠性分析计算方法也比较多。有许多文献[30] [31] [32]对机构防卡可靠性、机构可靠性的破坏模式、机构磨损可靠性等方面作了深入的研究。在机构运动精度方面,Sandler[33]对齿轮机构和凸轮机构等的运动精度和动力精度作了深入的研究;前苏联H.Г.勃鲁也维奇[34]对机构运动误差进行较为全面的分析,提出了分析运动副间隙所引起的机构输出误差的转换机构法;徐卫良等用微小位移合成法对空间机构进行了运动误差的确定性分析进行了研究[35];刘深厚等用环路增量法对空间机构中的位置误差进行了确定性分析。

可靠性基本概念

可靠性理论是以产品寿命特征为主要研究对象的一门综合性和边缘性科学,它涉及到基础科学、技术科学和管理科学的许多领域。对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。它的应用完善了传统的设计理论,极大地提升了结构和产品的质量,因此一直受到国内外学者的关注。可靠性理论在其发展过程中主要经历了五个时期: (1)萌芽期 可靠性理论早在十九世纪30~40年代已发展起来了。十七世纪初期由伽利略、高斯、泊淞、拉普拉斯等人逐步建立了概率论,奠定了可靠性工程的主要理论基础。十九世纪初布尔尼可夫斯基主编出版了一本概率论教程,同时他的学生马尔可夫建立了随机过程理论和大数定律,成为了维修性的理论基础。1939年瑞典专家威布尔提出了描述材料疲劳强度的威布尔分布。可靠性研究萌芽于飞机失事事件,1939年美国航空委员会出版的《适航性统计学注释》中,提出飞机事故率不应超过105 /h。这里讲的事故率只是未能沿用可靠度的定义而已。 (2)摇篮期 50年代的电子管事件揭开了可靠性研究的序幕。50年代电子真空管的故障率增长迅速。使电子技术进步与失效间的矛盾十分突出。例如1941~1945年第二次世界大战期间,美国空军运往远东的机载电子设备在到达时就有60%已经失效,轰炸机的MTBF(无故障时间)不超过20小时。另外,1945年12月美国制成的第一台电子管计算机,整个计算机共有18000只电子管。但是,平均每33分钟就有一只失效。与此同时,1943年德国火箭专家R.Lusser第一次用概率乘法法则定量算出了V-2火箭诱导装置的可靠度R的值为0.75。第二次世界大战结束以后,美国国防部总结战争教训,提出了一个全新的问题——可靠性,并下令军队有关部门在今后的采购中只选择有可靠性指标的军需品。 (3)奠基期 60年代,美国成为可靠性发展最早的国家。1952年美国国防部成立AGREE 电子设备可靠性顾问团。同年,可靠性顾问团第一次提出了科学的可靠性定义。AGREE组织于1957年写出了一份较为系统的《电子设备可靠性报告》,较完整地

可靠性工程每章基本概念及复习要点知识讲解

复习要点: ?可靠性 ?广义可靠性 ?失效率 ?MTTF(平均寿命) ?MTBF(平均事故间隔) ?维修性 ?有效性 ?修复度 ?最小路集及求解 ?最小割集及求解 ?可靠寿命 ?中位寿命 ?特征寿命 ?研究可靠性的意义 ?可靠性定义中各要素的实际含义 ?浴盆曲线 ?可靠性中常见的分布 ?简述串联系统特性 ?简述并联系统特性 ?简述旁联系统特性 ?简述r/n系统的优势 ?并-串联系统与串-并联系统的可靠性关系 ?马尔可夫过程 ?可靠性设计的重要性 ?建立可靠性模型的一般步骤 ?降额设计的基本原理 ?冗余(余度)设计的基本原理 ?故障树分析优缺点 广义可靠性:包括可靠性、维修性、耐久性、安全性。可靠性:产品在规定时期内规定条件规定的时间完成规定功能能力。耐久性:产品在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成规定功能能力。安全性:产品在一定的功能、时间、成本等制约条件下,使人员和设备蒙受伤害和损失最小的能力 可靠度R(t):产品在规定条件下和规定时间内完成规定功能的概率 累积失效概率F(t):也称不可靠度,产品在规定条件下和规定时间内失效的概率 失效概率密度f(t):产品在包含t的单位时间内发生失效的概率 失效率λ(t):工作到t时刻尚未失效的产品,在该时刻t后的单位时间内发生失效的概率。基本:实验室条件下。应用:考虑到环境,利用,降额和其它因素的实际使用环境条件下。任务:元器件在执行任务期间,即工作条件下的基本 不可修产品平均寿命MTTF:指产品失效前的平均工作时间可修MTBF:指相邻两次故障间的平均工作时间,称为平均无故障工作时间或平均故障间隔时间维修性:在规定的条件下使用的可维修产品,在规定的时间内,按规定的程序和法进行维修时,保持或恢复到能完成规定功能的能力 维修度M(t):是指在规定的条件下使用的产品发生故障后,在规定的时间(0,t)内完成修复的概率。修复率μ(t):修理时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修理的概率。平均修复时间MTTR:可修复的产品的平均修理时间,其估计值为修复

项目管理基本概念题1

应掌握的基本概念:(以下内容将包含在选择、填空和问答题中) 1、项目的定义 一般认为:项目是一个组织为实现自己既定的目标,在一定的时间、人员和资源约束条件下,所开展的一种具有一定独特性的一次性工作。 2、项目管理的定义 1.项目管理是使用各种管理方法、技术和知识为实现项目目标而对项目各项活动所开展的管理工作。 2.项目管理涉及到对于项目或项目阶段的起始、计划、组织、控制和结束这样五个具体的管理过程(或内容)。 3、一个项目可以划分为四个主要工作阶段: 1.项目的定义与决策阶段 2.项目的计划和设计阶段 3.项目的实施与控制阶段 4.项目的完工与交付阶段 4、现代项目管理知识体系的构成 按照PMI的体系可以划分为如下九个主要的方面。 1.项目集成管理 确保各种项目工作和项目的成功要素能够很好的协调与配合,以及相应的管理理论、方法、工具。 2.项目范围管理 计划和界定一个项目或项目阶段需要完成的工作和必须要完成的工作的管理工作的理论、方法、工具。 3.项目时间管理 又叫项目工期进度管理,是有关如何按时完成项目工作的理论、方法、工具。 4.项目成本管理 又叫项目选价管理,是如何在不超出项目预算的情况下完成整个项目工作,所需的管理理论、方法、工具。 5.项目质量管理 如何确保项目质量,以及保证项目质量所需的管理理论、方法、工具。 6.项目人力资源管理 如何更有效地利用项目所涉及的人力资源,以及在项目人力资源管理方面所需的管理理论、方法、工具。 7.项目沟通管理 如何有效、及时地生成、收集、储存、处理和最有效的使用项目信息,以及在项目信息和沟通管理方面所需的管理理论、方法、工具。 8.项目风险管理 如何识别项目风险、分析项目风险和应对项目风险,以及项目风险管理所需的管理理论方法、工具。 9.项目采购管理 也叫做项目获得管理,是有关从项目组织外部寻求和获得各种商品与劳务的管理,以及这一管理所需的理论、方法、工具。 5、项目管理过程 一个项目的全过程或项目阶段都需要有一个相对应的项目管理过程。这种项目管理过程一般由五个不同的管理具体工作过程构成。 1.起始过程 它包含有:定义一个项目阶段的工作与活动、决策一个项目或项目阶段的起始与否,以及决定是否

结构可靠度读书笔记

结构可靠度结课论文 摘要:本文主要从两个方面介绍自己对结构可靠度课程的学习。第一,介绍自己对于结构可靠度基本理论,结构可靠度分析方法(包括一次二阶矩法、二次二阶矩法和结构可靠度数值模拟方法)的理解;第二,论述了结构可靠性理论的发展历史,最后简单阐述了可靠性理论的研究和应用现状,并展望了未来的发展趋势。 一引言 工程结构在设计中需要遵循安全可靠、适用、美观、耐久等方面原则,在其使用期内需要安全可靠的承受各种作用,它们的安全可靠与否不但影响结构正常使用,通常还关系到人身安危。 在工程结构的设计中,当结构总体布置、结构方案和型式已经确定,接下来要进行的就是结构计算,在结构计算中我们对于截面及构件的设计应使所设计结构在设计基准期内经济合理地满足下列要求:1能承受正常施工和正常使用期间可能出现的各种作用(包括荷载及外加变形或约束变形);2在正常使用时具有良好的工作性能;3在正常维修和养护下,具有足够的耐久性;4在偶然事件(如地震、爆炸、龙卷风等)发生时及发生后,能够保持必要的整体稳定性。 结构的安全性、适用性、和耐久性三折总称为结构的可靠性[1]。用来度量可靠性的指标称为可靠度。上述要求的第1、4项,关系到人身财产安全,属于结构的安全性;第2项关系到结构的适用性,第3项关系到结构的耐久性。 二结构可靠度课程学习笔记 2.1影响工程结构可靠性的三种不确定性[2] 2.1.1事物的随机性 事物是随机性是指,事件发生的条件不充分,使得在条件与事件之间不能出现必然的因果关系,从而事件的出现与否表现出不确定性,这种不确定性成为随机性。研究事物随机性问题的数学方法主要有概率论、数理统计和随机过程。

可靠性基本概念

可靠性基本概念 Ting Bao was revised on January 6, 20021

可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力 产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。

项目管理复习资料完整版

第一讲: 项目的定义:某一主体(个人或组织)为了完成特定的目标,在一定的资源约束下,有组织地开展由一系列基本活动构成的非重复性的有独特成果的活动。 项目的特征:总体性,一次性,物别性,组织的开放性和临时性。 项目质量:质量是反映实体(产出物和工作过程)满足用户明确的或隐含的需要的能力特性总和。主要为功能的实现程度和寿命长度。 项目成本:项目所消耗的资源的货币体现。 项目时间(周期):项目从开始到结束所经历的时间段。这个时间段也被定义为项目的生命周期,它分为项目启动、计划、实施和收尾四个阶段。 P= f (C,T,S) Performance: 绩效,所完成工作的质量。 Cost: 成本,项目工作的成本,与项目使用的人力资源和自然资源直接相关。 Time: 时间,项目必须满足的进度要求。 Scope:范围,要执行的任务的幅度。 时间、成本和质量是一个项目的3个主要变量,三者是相互制约的。如果其中一个或两个变量发生变化,那么其他的变量也会随之变化。 项目资源需求度:项目在各个阶段对各种资源的需求程度。 项目风险度:项目的成功概率和不确定程度。 项目干系人影响力:项目干系人对项目目标、质量、进度等的影响程度;项目资源需求随着项目周期阶段的推进呈现低-高-低的状态;项目面临风险程度随时间推移下降;项目干系人影响力随时间沿着项目阶段下降。 第二讲: 项目管理的概念:项目管理是通过运用知识、技能、工具和技术等资源,以满足项目干系人对项目的需求和期望为目的,对项目活动所开展的各项管理职能活动的总称。 项目管理的特征:(1)普遍性(2)创新性(3)独特性(4)复杂性(5)目的性 项目生命周期:项目从开始到结束可以划分为若干阶段,这些不同的阶段先后衔接起来便构成了项目的生命周期。 项目生命周期一般划分为四个阶段:1、启动阶段(或定义阶段)2、规划阶段(或计划阶段)3、实施阶段(或执行阶段)4、收尾阶段(或交付阶段)

可靠性概念1

第一部分产品可靠性基本概念 编讲杨志飞 1 质量定义 为了某个目的而进行的单项具体工作叫“活动”。活动需要“资源”,资源包括人员、设施、设备、技术、资金和时间。 将输入转化为输出的一组关联的资源和活动称“过程”。 产品:ISO 9000定义为“活动或过程的结果”。产品可包括:硬件、流程性材料、软件、服务或它们的组合;产品可以是有形的(如组件或流程性材料),也可以是无形的(如知识或概念)或是它们的组合;产品可以是预期的(如提供给客户的)或非预期的(如污染物或不愿有的后果)。(国内曾经把产品定义为:是指任何元器件、零部件、组件、设备、分系统或系统,可以指硬件、软件或者两者的结合。) 硬件,是有形的、不连续的、具有特定形状的产品,通常由制造的、建造的和装配的零件、部件或(和)组件组成。 流程性材料,是由固体、气体、液体或由它们的组合所组成,经转换形成的产品(最终产品或中间产品),通常由管道、桶、袋、罐或以卷的形式交付。 软件,是通过支持媒体表达的信息所构成的一种智力创作。 服务,是为满足顾客的需要,供方和顾客之间接触的活动以及供方内部活动产生的结果。 整机:是指产品的部分内涵,即产品中设备以上的部分。 系统:能够完成某项工作任务的设备、人员及技术的组合。一个完整的系统应包括在规定的工作环境下,使系统的工作和保障可以达到自给所需的一切设备、有关的设施、器材、软件、服务和人员。 分系统:在系统中执行一种使用功能的组成部分。如数据处理分系统、制导分系统等。 请注意:组件多数可以看作整机,有时也当作元器件,在高度集成的器件中,往往包含了整机的模块,现代的部件往往也做成组件。因此很难划清它们的界线。 实体,是可以单独描述和考虑的事物,可以是某项活动和过程、某个产品、某个组织、体系或人或他们的任何组合。 特性,是帮助识别和区分各类实体的一种属性。属性包括物理、化学、外观功能或其它可识别的性质。其描述的量叫“特性参数”。 反映实体满足规定和潜在需要能力的特性之和叫“质量”。潜在需要是用户未在合同或定单中明确提出但实质上有的需要。质量是实体的一项最重要的特性,包括:性能、适用性、可信性、安全性、环境、经济性、美学。 可信性,是描述可用性和它的影响因素包括可靠性、维修性、维修保障性的集合性术语。 2故障定义 产品终止最终完成规定功能的能力的事件称“失效”。产品不能执行规定功能的状态叫“故障”。丧失功能的准则叫故障判据。 相对于给定的规定功能,有故障的产品的一种状态叫“故障模式”。形成故障的物理、化学(可能还有生物)变化等内在原因称为“故障机理”。 产品在规定的条件下使用,由于其本身固有的弱点而引起的失效,称为“本质故障”,不按规定条件使用产品而引起的失效称为“误用故障”。产品设计应包括减少误用故障的设计过程。 产品由于制造上的缺陷等原因而发生的故障称为“早期故障”;而由于偶然因素发生的故障称为“偶然故障”,一般在事前不能测试或监控,属于“突然故障”。产品由于老化、磨损、损耗或疲劳等原因引起的故障称为“耗损故障”。通过事前的测试或监控可以预测到的故障称为“渐变故障”。使产品不能完成规定任务或可能导致人或物重大损失的

项目管理的基本概念

项目管理 项目的概念与特性 项目是在限定条件下,为完成特定目标要求的一次性任务。任何项目的设立都有其特定的目标,这种目标从广义的角度看,表现为预期的项目结束之后所形成的“产品”或“服务”。也有人把这类目标称为“成果性目标”,与之相对就应的还有另一类项目的目标,称为“约束性目标”,如费用限制、进度要求等。作为一次性的项目任务,有区别于其它任务(运作)的基本特征,它意味着每一个项目都有其特殊性,不存在两个完全相同的项目。这是基于项目的整体性而言的,项目的特殊性可能表现在项目的目标、环境、条件、组织、过程等诸方面,两个目标不同的项目肯定各有其特殊性,即使目标相同的两个项目也各有其特殊性。例如,按照同一设计图纸建造两座图书馆,但建设这两座图书馆的项目是不会完全相同的,由于地理位置、施工的地质条件等不完全相同,其地基处理、平面处理、管道布置的施工方案和任务就不会完全相同。 从上述项目的概念可以看到,项目的外延是广泛的。大到长江三峡工程建设是一个项目,小到组织一次技术改造之类的活动也称其为一个项目。项目不论类型如何、规 模大小,都具备一些共同的特性: ·唯一性。也称独特性,即任 何一个项目都有区别于其它项目的 特殊性。这一特性决定了项目执行 的过程是不可能完全程序化的,这 也正是项目管理工作极具挑战性的 原因所在。 ·一次性。即有起点和终点, 任务完成,项目即告结束,没有重 复。一次性是指项目整体而言的, 并不排斥项目中有重复性工作。 ·多目标特性。项目的最终目 标是所谓的“成果性目标”,但成果 性目标与约束性目标是分不开的, 如项目最终“成果”的质量是与约束 性目标中的“费用”与“进度”密不可 分的,因而,项目的目标实质上是多 目标的平衡点。 ·生命周期特性。项目是一次 性的任务,总是有预期的终点的。 任何项目都会经历起动、开发、实 施、结束这样一个过程,人们常把这 一过程称为“生命周期”。项目的生 命周期特性还表现在项目的全过程 中起动比较缓慢,开发实施阶段比 较快速,而结束阶段又比较缓慢的 规律。 项目管理的概念 项目管理虽然不是一个难以理 解的词,但像其它事物一样,要用科 学的语言文字准确地予以描述并不 是一件容易的事。正因为如此,已有 较多的论述项目管理的定义,但尚 未见统一。美国项目管理学会的定 义说:项目管理是在项目活动中,综 合应用各种知识、技巧、工具和技术 以完成项目预期的目标和满足项目 有关各方面的需求。虽然我们理解 这一定义指的是单个项目的管理, 但严格地说上述定义中“项目活动” 是一个模糊的概念。因为“项目”既 可以是指一个具体的项目,也可以 是指一组或一群项目;而“活动”,既 可以是泛指的项目活动,也可以是 指某个项目的生命周期阶段的活 动。正因为如此,人们可以从不同的 类别、不同的角度来阐述或理解项 目管理。我们将其归纳为以下几种: 1.宏观项目管理 主要是研究项目与社会及环境 的关系,也是指国家或区域性组织 或综合部门对项目群的管理。宏观 项目管理涉及到各类项目的投资战 略、投资政策和投资计划的制订,各 类项目的协调与规划、安排、审批等 等。 2.中观项目管理 这是指部门性或行业性机构对 同类项目的管理,如建筑业、冶金 业、航空工业等等。包括制订部门 的投资战略和投资规划,项目的优 先顺序以及支持这些战略、顺序的 政策,项目的安排、审批和验收等。 项目管理的基本概念 ◆钱福培欧立雄

项目投资的基本概念

项目投资的基本概念 黄大方 一、项目投资的相关概念 1、投资主体 投资人或从债权人也可以作为项目的投资主体(间接投资主体)。这三种人都要从各自的立场分析评价投资项目。 企业项目投资的直接投资主体就是企业本身。 2、项目计算期 项目计算期是指投资项目从投资建设(建设起点)开始到最终清理(终结点)结束整个 过程的全部时间,包括建设期和生产经营期。 n =s+p 从上述数轴中应该明白六点:建设期起点(项目计算期起点);建设期终点(经营期起点);经营期终点(项目计算期终点)。 NCF1 :第1年现金净流量( 假定其全部发生于第1年末现金净流量) NCF2:第2年现金净流量(假定其全部发生于第2年末现金净流量) 注意NCF 与N 、S 、P 之间的换算关系如某项目建设期为3年,生产经营期7年,则: NCF9=NCF (3+6)表示项目计算期第9年,也是生产经营期第6年的净现金流量。 如某项目建设期为3年,生产经营期7年,则:项目计算期第7年即为生产经营期第4年(7-3);生产经营期第2年即为项目计算期第5年(3+2)。 3、投资项目的有关价值指标 1)原始总投资等于企业为使项目完全达到设计生产能力、开展正常经营而垫支的全部现实资金,包括建设投资(固定资产投资、无形资产投资、开办费投资)与流动资金投资。原始总投资可以一次投入,也可以分次投入。 2)投资总额等于原始总投资与建设期资本化利息之和,其中固定资产投资与其资本化利息之和称为固定资产原值。

投资决策中的现金流量,通常由以下几个方面构成: 1、初始现金流量 初始现金流量是指项目开始投资量发生的现金流量。包括: (1)固定资产投资。 (2)其他长期资产投资。 (3)流动资金投资。 (4)原有固定资产的变价收入。 2、营业现金流量 营业现金流量是指项目完成后,就整个寿命周期内由于下沉生产营业所带来的现金流量。此类现金流量可按年计算。其值等于营业现金收入减去营业现金支出和 税金支出后的差额。 应该注意的是,定期损益计算的净收益和营业上实际发生的现金流量是有所不同的。因为根据权责发生制进行定期的损益计算,费用中包括了非现金支出的部分(主要是折旧费、摊销费和利息费)。因此,以定期操作益计算的净收益为基础,可按下式调整计算现金流量: 营业现金流量=定期操作益计算的净收益+非现金支出的成本费用 3、终结点现金流量 终结点现金流量是指项目经济寿命终结时发生的现金流量。主要包括 a)固定资产的变价收入或残值收入 b)原垫支的流量资金回收额。

第六章 测量误差的基本知识

工 程 测 量 理论教案 授课教师:谢艳 使用班级:13-1、13-2、 13-3、13-4、13-5

教师授课教案 课程名称:公路工程测量2013年至2014年第二学期第次课 班级:13-1、13-2、13-3、13-4、13-5 编制日期:20 14 年月日 教学单元(章节) 第六章测量误差的基本知识 目的要求 1、了解测量误差的概念。 2、掌握测量误差产生的原因 3、了解测量误差的分类及其相应的处理方式。 4、掌握评定观测精度的标准及其相应的计算方式。 知识要点 1、测量误差概念 2、测量误差产生的原因 3、测量误差的分类 4、评定观测精度的标准 技能要点 分析问题能力 教学步骤 介绍测量误差的概念,了解测量误差的产生的原因、测量误差的分类。介绍评定观测精度的标准。练习中误差、容许误差、相对误差的计算方法。 教具及教学手段 多媒体课件教学。 作业布置情况 3题 教学反思 授课教师:谢艳授课日期:2014年月日

教学内容 第六章测量误差的基本知识 一、情境导入 用PPT播放工程实例图片及其测量误差产生的原因,让学生对测量误差有一个微观上的了解。 讲解测量误差的来源:每一个物理量都是客观存在,在一定的条件下具有不以人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值是不可能测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差 二、新课教学 第一节概述 1、测量误差概念:真值与观测值之差 测量误差(△)=真值-观测值 如:测量工作中的大量实践表明,当对某一客官存在的量进行多次贯彻时,不论测量仪器多么的精密,贯彻进行的多么的细致,所得到的各观测值质检总是存在差异。同一量各观测值质检,以及观测值与其真实值(简称为真值)质检的差异,称为建筑测量误差。 2、误差产生的原因: 仪器设备、观测者、外界环境 测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。 具体来说,测量误差主要来自以下四个方面: (1) 外界条件主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化,导致测量结果中带有误差。 (2) 仪器条件仪器在加工和装配等工艺过程中,不能保证仪器的结构能满足各种几何关系,这样的仪器必然会给测量带来误差。 (3) 方法理论公式的近似限制或测量方法的不完善。 (4) 观测者的自身条件由于观测者感官鉴别能力所限以及技术熟练程度不同,也会在仪器对中、整平和瞄准等方面产生误差。 3、测量误差分类 系统误差 在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差。系统误差一般具有累积性。 系统误差产生的主要原因之一,是由于仪器设备制造不完善。例如,用一把名义长度为50m的钢尺去量距,经检定钢尺的实际长度为50.005 m,则每量尺,就带有+0.005 m的误差(“+”表示在所量距离值中应加上),丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。 再如,在水准测量时,当视准轴与水准管轴不平行而产生夹角时,对水准尺的读数所产生的误差为l*i″/ρ″(ρ″=206265″,是一弧度对应的秒值),它与水准仪至水准尺之间的距离l成正比,所以这种误差按某种规律变化。 系统误差具有明显的规律性和累积性,对测量结果的影响很大。但是由于系统误差的大小和符号有一定的规律,所以可以采取措施加以消除或减少其影响。

可靠性基本概念(doc 14页)

可靠性基本概念(doc 14页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑 可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力 产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。 可靠度 可靠度是产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。它是时间的函数,故也记为R(t),称为可靠度函数。

误差-基本概念.

误差的基本概念 测量值与真值之差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。 基本概述 【英文】: an error; inaccuracy deviation 【中文拼音】: wù chā 【基本解释】: 一个量的观测值或计算值与其真值之差;特指统计误差,即一个量在测量、计算或观察过程中由于某些错误或通常由于某些不可控制的因素的影响而造成的变化偏离标准值或规定值的数量 释义 误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。 设被测量的真值(真正的大小)为a,测得值为x,误差为ε,则:x-a=ε 误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。从实验的原理,实验所用的仪器及仪器的调整,到对物理量的每次测量,都不可避免地存在误差,并贯穿于整个实验始终。 测量值与真值之差异称为误差。 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下:

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

工程结构荷载与可靠度设计原理-复习资料

工程结构荷载与可靠度设计原理-复习资料

荷载与结构设计原理总复习题 一、判断题 1.严格地讲,狭义的荷载与直接作用等价,广义的荷载与间接作用等价。(N) 2.狭义的荷载与直接作用等价,广义的荷载与作用等价。(Y) 3.广义的荷载包括直接作用和间接作用。(Y) 4.按照间接作用的定义,温度变化、基础不均匀沉降、风压力、地震等均是间接作用。(N) 5.由于地震、温度变化、基础不均匀沉降、焊接等引起的结构内力变形等效应的因素称为间接作用。(Y) 6.土压力、风压力、水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(N) 7.由于雪荷载是房屋屋面的主要荷载之一,所以基本雪压是针对屋面上积雪荷载定义的。(N) 8.雪重度是一个常量,不随时间和空间的变化而变化。(N) 9.雪重度并非一个常量,它随时间和空间的变化而变化。(N) 10.虽然最大雪重度和最大雪深两者有很密切的关系,但是两者不一定同时出现。(Y) 11.汽车重力标准是车列荷载和车道荷载,车列荷载是一集中力加一均布荷载的汽车 重力形式。(N) 12.烈度是指某一地区遭受一次地震影响的强弱程度,与震级和震源深度有关,一次地震有多个烈度。(Y) 13.考虑到荷载不可能同时达到最大,所以在实际工程设计时,当出现两个或两个以上荷载时,应采用荷载组合值。(N) 14.当楼面活荷载的影响面积超过一定数值需要对均布活荷载的取值进行折减。(Y) 15.土的侧压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的土压力。(Y) 16.波浪荷载一般根据结构型式不同,分别采用不同的计算方法。(Y) 17.先张法是有粘结的预加力方法,后张法是无粘结的预加力方法。(Y) 18.在同一大气环境中,各类地貌梯度风速不同,地貌越粗糙,梯度风速越小。(N) 19.结构构件抗力R是多个随机变量的函数,且近似服从正态分布。(N) 20.温度作用和变形作用在静定结构中不产生内力,而在超静定结构中产生内力。(Y) 21.结构可靠指标越大,结构失效概率越小,结构越可靠。(Y) 22.朗肯土压力理论中假设挡土墙的墙背竖直、光滑、填土面水平无超载。(Y) 23.在朗肯土压力理论的假设中,墙背与填土之间既无摩擦力也无剪力存在。(Y) 24.在朗肯土压力理论的假设中,墙背与填土之间虽然无摩擦力,但仍有剪力存在。(N) 25.土的自重应力为土自身有效重力在土体中引起的应力。(Y) 26.不但风的作用会引起结构物的共振,水的作用也会引起结构物的共振。(Y) 27.平均风速越大,脉动风的幅值越大,频率越高。(N) 28.风压是指风以一定的速度向前运动受到阻塞时对阻塞物产生的压力。(Y) 29.地震作用中的体波可以分为横波和纵波,两者均可在液体和固体中传播。(N) 30.如果波浪发生破碎的位置距离直墙在半个波长以内,这种破碎波就称为近区破碎

可靠性的基本概念知识

可靠性的基本概念知识 一、可靠性 产品在规定的条件下和规定的时间内,完成规定功能的能力称为可靠性。可靠性的概率度量称为可靠度。这里的产品指的是新版ISO)9000中定义的硬件和流程性材料等有形产品以及软件等无形产品。它可以大到一个系统或设备,也可以小至一个零件。产品终止规定功能就称为失效,也称为故障。产品按从发生失效后是否可以通过维修恢复到规定功能状态,可分为可修复产品和不可修复产品。如汽车属于可修复产品,日光灯管属不可修复产品。习惯上,终止规定功能,对可修复产品称为故障,对不可修复产品称为失效。可靠性定义中的“三个规定”是理解可靠性概念的核心。“规定条件”包括使用时的环境条件和工作条件。产品的可靠性和它所处的条件关系极为密切,同一产品在不同条件下工作表现出不同的可靠性水平。一辆汽车在水泥路面上行驶和在砂石路上行驶同样里程,显然后者故障会多于前者,也就是说使用环境条件越恶劣,产品可靠性越低。“规定时间”和产品可靠性关系也极为密切。可靠性定义中的时间是广义的,除时间外,还可以是里程、次数等。同一辆汽车行驶1万公里时发生故障的可能性肯定比行驶1千公里时发生故障的可能性大。也就是说,工作时间越长,可靠性越低,产品的可靠性和时间的关系呈递减函数关系。“规定的功能”指的是产品规格书中给出的正常工作的性能指标。衡量一个产品可靠性水平时一定要给出故障(失效)判据,比如电视机图像的清晰度低于多少线就判为故障要明确定义,否则会引起争议。因此,在规定产品可靠性指标要求时一定要对规定条件、规定时间和规定功能给予详细具体的说明。如果这些规定不明确,仅给出产品可靠度要求是无法验证的。 产品的可靠性可分为固有可靠性和使用可靠性。固有可靠性是产品在设计、制造中赋予的,是产品的一种固有特性,也是产品的开发者可以控制的。而使用可靠性则是产品在实际使用过程中表现出的一种性能的保持能力的特性,它除了考虑固有可靠性的影响因素之外,还要考虑产品安装、操作使用和维修保障等方面因素的影响。 产品可靠性还可分为基本可靠性和任务可靠性。基本可靠性是产品在规定条件下无故障的持续时间或概率,它反映产品对维修人力的要求。因此在评定产品基本可靠性时应统计产品的所有寿命单位和所有故障,而不局限于发生在任务期间的故障,也不局限于是否危及任务成功的故障。任务可靠性是产品在

建设工程项目基本概念

建设工程项目基本概念 一、建设工程项目(construction project) 为完成依法立项的新建、改建、扩建的各类工程(土木工程、建筑工程及安装工程等)而进行的、有起止日期的、达到规定要求的一组相互关联的受控活动组成的特定过程,包括策划、勘察、设计、采购、施工、试运行、竣工验收和移交等。 二、建设工程项目的分类 (一)按建设性质划分 分为新建、扩建、改建、迁建、恢复。 新建项目:有两种情况 (1)从无到有。 (2)如果在扩建的过程中,新增的固定资产价值超过原有固定资产价值的三倍以上。 (二)按建设规模划分 可分为大型、中型和小型三类;更新改造项目按照投资额分为限额以上和限额以下项目两类。 1.按总投资划分的项目,能源、交通、原材料工业项目5000万元以上,其他项目3000万元以上的作为大中型(或限额上)项目。 2.否则为小型(或限额以下)项目。 注:更新改造的项目应该按照限额以上和限额以下来划分。

三、建设工程项目的组成 建设工程项目可分为单项工程、单位(子单位)工程、分部(子分部)工程和分项工程。 特点:投资额巨大、建设周期长、整体性强和固定性等特征。 1、单项工程: 单项工程是指具有独立的设计文件,竣工后可以独立发挥生产能力或效益的工程。也有称作为工程项目。如工厂中的生产车间、办公楼、住宅;学校中的教学楼、食堂、宿舍等,它是基建项目的组成部分。 2、单位工程是指具有单独设计和独立施工条件,不能独立发挥生产能力或效益的工程,它是单项工程的组成部分。如生产车间这个单项工程是由厂房建筑工程和机械设备安装工程等单位工程所组成。建筑工程还可以细分为一般土建工程、水暖卫工程、电器照明工程和工业管道工程等单位工程。 单项工程和单位工程两者的区别主要是看它竣工后能否独立地发挥整体效益或生产能力。 3、分部工程(parts of construction)是单位工程的组成部分,分部工程一般是按单位工程的结构形式、工程部位、构件性质、使用材料、设备种类等的不同而划分的工程项目。例如一般土建工程可以划分为地基与基础工程、主体结构工程、建筑装饰装修工程、屋面工程、建筑

项目管理复习提纲(戚安邦版)汇编知识讲解

项目管理复习提纲(戚安邦版)汇编

课程内容顺序: 1.项目管理概论 2.项目过程和管理过程 3.项目范围管理 4.项目时间管理 5.项目成本管理 6.项目质量管理 7.项 目集成管理8.项目风险管理9.项目沟通管理10.项目组织管理11.项目人力资源管理12.项目采购管理 第一章绪论 第一节项目的基本概念 一.项目的定义与概念一般认为:项目是一个组织为实现自己既定的目标,在一定的时间、人员和资源约束条件下,所开展的一种具有一定独特性的一次性工作。 二、项目的特性 1.目的性---任何项目都是为实现特定的组织目标服务的。 2.独特性---项目的产品或服务都具有一定的独特之处。 3.一次性---项目有自己明确的时间起点和终点,是有始有终的,而不是不断重复、周而复始的。 4.制约性---指每个项目都在一定程度上受客观条件的制约。最主要的制约是资源的制约。 5.其它特性---包括项目的不确定性、项目的风险性、项目的渐进性、项目成果的不可挽回性、项目组织的临时性和开放性等等。 三、项目的分类 1.封闭性项目和开放式项目 2.业务项目和自我开发项目 3.企业项目、政府项目和非盈利机构的项目 4.盈利性项目和非盈利性项目 5.项目组合、项目群、项目和子项目 Project Portfolio、Program、Project 和Sub-project。 第二节项目管理的基本概念 一、项目管理的定义 1.项目管理是使用各种管理方法、技术和知识为实现项目目标而对项目各项活动所开展的管理工作。 2.项目管理涉及到对于项目或项目阶段的起始、计划、组织、控制和结束这样五个具体的管理过程(或内容)。 二、项目管理的基本特性

结构可靠度基本理论

结构可靠度基本理论 摘要:目前,在结构工程领域,人们越来越认识到,只有用概率和统计的方法,才能正确地处理结构设计和分析中存在的大量不确定因素,从而对结构的安全性做出科学的评估。近三十年来,结构可靠性理论得到了迅速的发展。它以概率论和统计学为数学工具,形成了一个相当完整的理论体系,它还发展了许多便于在工程实际中应用的计算方法,为结构安全性评估提供了强有力的手段。 关键词:疲劳失效、可靠度、可靠性指标 长期以来,在船舶与海洋工程领域,对结构的疲劳现象已进行了大量的研究,并在此基础上建立了可供实际应用的疲劳设计与分析方法。通常,结构的疲劳损伤和疲劳寿命采用Miner 线性累计损伤理论和S—N 曲线来计算。近年来,更为先进的断裂力学方法也越来越受到重视,并逐步得到了应用。目前,这两种方法已成为船舶与海洋工程结构疲劳设计与分析的两种相互补充的基本方法。但是,这两种方法以往都是在确定性的意义上使用的,在分析过程中,有关的参数都认为有确定的数值。而事实上,船舶与海洋工程结构的疲劳是一个受到大量因素影响的极其复杂的现象,大多数的影响因素从本质上说是随机的。例如,海洋中的波浪无规则地运动,由此引起结构内的交变应力就是一个随机过程。一艘船或海洋平台,用确定性方法进行疲劳分析时,若有关参数都取均值,那么计算所得的疲劳寿命可能是规定的设计寿命的数倍甚至数十倍。从表面上看,可以认为是充分安全 的。但是,若考虑到各参赛的不确定性,在同样的条件下,疲劳寿命大于 设计寿命的概率却可能很低,实际上并不能满足安全性的要求。

在结构可靠性理论中,各种影响结构安全的不确定因素都用随机变量或随机过程来描述;在充分考虑这些不确定因素的基础上,一个结构安全与否,用该结构在规定服务期内不发生破坏的概率来度量,这一概率称为结构的可靠度。很显然,对于受到大量不确定因素影响的船舶与海洋工程结构的疲劳问题,用结构可靠度理论来加以研究是非常适当的,可以对结构在疲劳方面的安全性做出比用确定性方法更加合理的评估。下面我将从以下几个方面来介绍我学到的结构可靠度基本理论: 极限状态 在工程实际中,结构受载后的响应必须满足一定的要求,例如安全性的要求、适应性的要求,或其他一些衡准。结构的极限状态定义为若超过此状态,结构就不能满足某一特定的要求。结构的极限状态主要有两类:一类是承载能力极限状态,它与结构的安全性要求有关,如屈服、失稳、疲劳、断裂等引起的结构破坏的状态;另一类是正常使用极限状态,它与结构的适应性要求有关,如过度的变形、过度的振动等导致结构不能正常使用的状态。结构超过极限状态称为“失效”,因此极限状态又称为“失效模式” 失效概率和可靠度 结构可靠性分析的任务就是要计算在规定时间内结构超过极限状态的概率,这一概率成为“失效概率”。可把在规定时间内结构不达到极限状态的概率定义为结构的“可靠度”。若用

相关主题
文本预览
相关文档 最新文档