误差原理第一章 基本概念
- 格式:ppt
- 大小:280.50 KB
- 文档页数:31
计算方法-1 -第一章 误差分析的基本概念§ 1误差的来源1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。
2. 产生误差的主要原因① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。
② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。
这种由观察产生的误差称为观 测误差。
③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。
例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。
这个被舍的高阶无穷小量正是截断误差。
④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。
3. 举例说明例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为t 时的长度计算值,并建立一个数学模型: I tL °(1「.t ),其中a 是由实验观察得到的常数:-二(0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。
这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。
为了计算近似值,可取前面有限项计算•如取前面五项计算,计算过程中与计算结果都取五位小数得e ~1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为~ =2.71828,于是截断误差为:□0' —:2.71828 -2.7083 = 0.00995 n总n !这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。
误差理论与数据处理开课学院:主讲教师:联系电话:E-mail:关于任课教师秦岚, 1983年9月-1994年6月在重庆大学获精密仪器及机械专业学士、硕士和博士学位,长期从事精密仪器及机械学科的科研和教学工作。
2001年12月晋升教授,2004年7月任博导,2011年晋三级教授。
现为重庆市“322重点人才”工程人选、重庆市学术技术带头人。
先后担任重庆大学光电工程学院副院长(1996-1999)、党委书记(1999-2010)、重庆市发改委副主任(2001-2003,挂职)、重庆大学数学与统计学院党委书记(2010—)、大连理工大学校长助理(201204-201207,挂职)。
先后兼任全国高等学校机电类专业教学指导委员会委员,中国仪器仪表学会机械量测试仪器分会第四届理事会副理事长,全国测量误差与不确定度研究会副理事长,中国计量测试学会第五届理事会理事,全国互换性与测量技术研究会常务理事、副秘书长等。
1994年至今担任本课程主讲教师。
本课程的意义20042006我和费先生的特殊友谊20132009费业泰: 误差理论是仪器科学特有的基础理论1、误差理论贯穿仪器及测试系统的始末。
在仪器设计、制造、使用及测试结果处理与评定等五大环节,误差理论均起着指导与保证作用。
2、误差理论在仪器科学人才培养中是必不可少重要内容。
过去的教学计划中测试技术课程为主要课程,而有关误差理论内容则占全课程约1/3 学时。
根据国外高校相关专业很早巳开设有关误差理论课程,我国高校1978年首次设置该课程. 30年来讲授误差课程高校专业已很普遍,但仪器学科专业该课程体系、内容最为全面系统。
3、误差理论在科学技术与工程实践中具有重要作用。
任何科学与工程对可靠性、准确度具有要求,这是普遍性问题.不仅其实验和实践过程需要测试,而本身在系统设计、建造和运行控制也需要一定的误差理论作指导。
结论:误差理论是仪器科学的重要基础理论,也是科学与工程技术具有遍普意义的必不可少基础理论之一,而仪器科学领域学术研究所建立误差理论的严谨学术体系与全面系统内容,则是其他科学与工程技术应用误差理论的依据,充分表明误差理论是仪器科学特有的基础理论。
▪ 第一章 误差和精度的基本概念▪ 误差公理① 测量结果都具有误差,误差自始自终存在于一切科学实验和测量的过程之中。
② 误差是不相等的,即误差具有不确定性。
③ 误差一般是未知的,因为真值是未知的。
因此研究误差通常从残余误入手 。
④ 由于误差的不确定性,所以可以把误差看成是随机变量,可以利用概率论与数理统计学来研究误差。
注:由于误差的不可避免性,对测量误差的分析和处理就成为测量工作中的重要问题。
误差估计过大,会造成不必要的浪费,误差估计过小,会使测量准确度低,导致实验失败或影响产口 质量。
只有在准确估计测量误码差,合理使用实验设备,正确选用测量方法,严格控制测量 环境条件的情况下,才能获得与测量准确度要求相适应的测量结果。
2. 测量设备误差包括标准器件误差,装置误差,附件误差标准器件误差是指设计测量装置时,由于采用近似原理所带来的工作原理误差 。
一般要求标准器件的误差占总误差的1/3~1/10。
装置误差是指设备出厂时校准与定度所带来的误差 。
附件误差是指元器件老化、磨损、疲劳所造成的误差 。
3.测量方法误差指使用的测量方法不完善,或采用近似的计算公式等原因所引起的误差 ,又称为理论误差4.测量环境误差指各种环境因素与要求条件不一致而造成的误差。
5. 测量人员误差测量人员的工作责任心、技术熟练程度、生理感官与心理因素、测量习惯等的不同而引起的误差。
6.误差的来源主要有:(1) 仪器误差:零部件变形及其不稳定性,信号处理电路的随机噪声等。
(2) 环境误差:温度、湿度、气压的变化,光照强度、电磁场变化等。
(3) 人员误差:瞄准、读数不稳定,人为操作不当等。
(4)方法误差:指使用的测量方法不完善,或采用近似的计算公式等原因所引起的误差 ,又称为理论误差。
7.绝对误差 0x x x -=∆(绝对误差=测得值-被测量的真值,常用约定真值代替 )特点:① 绝对误差是一个具有一定的大小、符号及单位的量。
单位:给出了被测量的量纲,其单位与测得值相同。
第一章基本概念例题例1 在万能测长仪上,测量某一被测件的长度为50mm,已知其最大绝对误差为1μm,试问该被测件的真实长度为多少?解:L = 50mm δ= 0.001mm 故L0= L ±δ = 50.000 ± 0.001mm例2 用两种方法测量长度为50mm 的被测件,分别测得50.005mm;50.003mm。
试评定两种方法测量精度的高低。
解:因对相同的被测量,可用绝对误差的大小来评定其两种测量方法之精度高低。
绝对误差小者,其测量精度高。
第一种方法的绝对误差为:δ1 = (50.005 −50.000)mm = 0.005mm第二种方法的绝对误差为:δ2 = (50.003−50.000 )mm = 0.003mm∵δ2<δ1故第二种方法的测量精度高。
例3若某一量值Q 用乘积ab 表示,而a 与b 是各自具有相对误差f a和f b的被测量,试求量值Q 的相对误差。
解:式中a0、b0分别为a、b的真值。
则因此,Q 的相对误差约为f a+ f b。
例4若某一测量值Q用a与b的商a / b表示,而a与b 是各自具有相对误差f a和f b 的被测量,试求量值Q 的相对误差。
解:则因此,Q 的相对误差约为f a +f b。
例5通过电阻R 的电流I 产生热量(单位J)Q = I2Rt 式中的t 为通过电流的持续时间,已知I 与R 测量的相对误差为1%,t 测量的相对误差为5%,试求Q 的相对误差。
解:例6某一正态分布的随机误差δ的标准差为σ=0.002mm,求误差值落在±0.O05mm以外的概率。
解:误差落入[—0.O05,O.O05]范围内的概率为而δ落在±0.O05mm以外的概率则为例7某一随机误差δ服从正态分布,其标准差为σ=0.06N,给定∣δ∣≤a 的概率为0.9,试确定a的值。
解: 由对称区间概率计算公式可得由概率积分表可查得则习题1-1研究误差的意义是什么?误差理论研究的主要内容是什么?1-2什么叫测量误差?什么叫修正值?含有误差的某一测得值经过修正后,能否得到被测量的真值?为什么?1-3误差的绝对值与绝对误差是否相同?为什么?1-4测得某三角块的三个角度之和为180°00′02″,试求测量的绝对误差和相对误差。
第一章绪论1.1研究误差的意义1.1.1研究误差的意义为:1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
1.2误差的基本概念1.2.1误差的定义:误差是测得值与被测量的真值之间的差。
1.2.2绝对误差:某量值的测得值之差。
1.2.3相对误差:绝对误差与被测量的真值之比值。
1.2.4引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得比值为引用误差。
1.2.5误差来源:1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
1.2.7系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差为系统误差。
1.2.8随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
1.2.9粗大误差:超出在规定条件下预期的误差称为粗大误差。
1.3精度1.3.1精度:反映测量结果与真值接近程度的量,成为精度。
1.3.2精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3)精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
1.4有效数字与数据运算1.4.1有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
1.4.2测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
《误差理论与数据处理》第1章习题解答1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】:真值=100.5Pa ,测得值=100.2Pa绝对误差=测得值—理论真值=100.2-100.5=-0.3Pa1-8在测量某一长度时,读数值为m 31.2,其最大绝对误差为m μ20,试求其最大相对误差。
【解】:最大相对误差≈(最大绝对误差)/测得值,所以: 最大相对误差%1066.8%1002.3110204-6-⨯=⨯⨯≈ 1-9 使用凯特摆时,由公式由公式()22124T h h g +=π给定。
今测出长度()21h h +为()m 00005.004230.1±,振动周期T 为()s 0005.00480.2±。
试求g 及其最大相对误差。
如果()21h h +测出为()m 0005.00422.1±,为了使g 的误差能小于2/001.0s m ,T 的测量必须精确到多少?解:由 ()22124T h h g +=π 令 ()21h h h += 得 222/81053.90480.204230.14s m g =⨯=π 取对数并全微分得:TT h h g g ∆-∆=∆2 g 的最大相对误差为:因为可由得1-10检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格?【解】:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 %2%1001002=⨯ 因为 2%<2.5%所以,该电表合格。
【或解】:该电压表合格。
1-11 为什么在使用微安表时,总希望指针在全量程的2/3范围内使用?解:设微安表的量程为n X ~0,测量时指针的指示值为X ,微安表的精度等级为S ,最大误差%S X n ≤,相对误差XS X n %≤,一般情况下n X X ≤,故当X 越接近Xn 相对误差就越小,故在使用微安表时,希望指针在全量程的2/3范围内使用。