人教版初一数学下册第六章实数[007]
- 格式:docx
- 大小:24.21 KB
- 文档页数:4
人教版七年级下册第六章实数知识点
实数是数学中最基本的概念之一,是指可以用数字表示的所有数。
实数由有理数和无理数两部分组成。
有理数是可以表示成两个整数之比的数,包括整数、分数、小数等,而无理数则不能表示成有理数的形式,如圆周率π、自然对数的底数e等。
在七年级数学下册第六章中,我们将学习实数的相关知识,包括实数的分类、实数的运算、实数的比较等。
一、实数的分类
1.有理数:有理数包括正整数、负整数、零、正分数、负分数和整数。
2.无理数:无理数是不能表示成有理数的形式的数,它们包括无限不循环小数和根号下无理数等。
二、实数的运算
1.加法:实数的加法满足交换律、结合律和分配律。
2.减法:实数的减法可以转化成加法,即a-b=a+(-b)。
3.乘法:实数的乘法满足交换律、结合律和分配律。
4.除法:实数的除法可以转化成乘法,即a÷b=a×(1/b),其中b≠0。
5.乘方:实数的乘方表示数的自我乘积,即a的n次幂表示为an。
三、实数的比较
1.正数比较大小:正数比较大小时,数值越大的数越大。
2.负数比较大小:负数比较大小时,数值越小的数越大。
3.正数和负数比较大小:正数比负数大。
4.零和正数、负数比较大小:零比负数大,比正数小。
5.一般实数比较大小:需要将实数转化成同一种形式再比较大小。
以上就是七年级数学下册第六章实数知识点的简单介绍,希望对大家有所帮助。
在学习实数时,我们需要多做练习,多思考,才能真正掌握实数的相关知识。
新人教版七年级下册数学第六章实数知识点总结及阶梯练习第六章实数考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类3(1)开方开不尽的数,如等; 7,2π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3(3)有特定结构的数,如0.1010010001…等;o(4)某些三角函数,如sin60等(这类在初三会出现)0,,16判断一个数是否是无理数,不能只看形式,要看运算结果,如是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“”。
a(2)a(a?0)的平方根的符号表达为。
the drawings, first to become familiar with the drawings, mainly about the following aspects: 1) pages of drawings and diagrams, maps; 2) a comprehensive understanding of drawing; 3) finding of design-driven dimensions (), do not resize and adjust the size; 4) questioned the drawings; 5) develop buries a construction programme and technical clarification; 6) clear corners and special treatment; 7) controlled construction drawings to verify construction scheme and design. (2) at the construction site to find subject planted area: various engineering, first on the scene to find planted area, it must first understand thecurtain wall installation section, and some projects are all curtain wall, the entire project is a region-wide, only partial walls, the zone is local. (3) identify the axis positioning: positioning the drawings shown in axis compared with the actual construction site to find out exactly where the axis positioning, axis positioning function are: 1) to help determine the origin of curtain walls; 2) acceptance of the installation is accurate; 3) adjust errors, and determine the error range. (4) find anchor points: according to site to find the exact location of the axis, according to the drawings provided by the content determine the positioning point; number of anchor points shall not be less than two points. Repeated measurements determine the location points must ensure that the positioning is correct. (5) take level (level): level (minor works available in horizontal pipe), the two anchor points determine the horizontal position. Level according to use(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
人教版七年级下册第六章“实数”教材分析从《数学课程标准》看,关于数的内容,第三学段主要学习有理数和实数,它们是“数与代数”领域的重要内容.对于有理数和实数,本套教科书安排了3章内容,分别是7年级上册第1章“有理数”,7年级下册第6章“实数”和8年级下册第16章“二次根式”.本章是在学生学习了“有理数”的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算.本章首先介绍平方根与立方根的概念,并通过开平方、开立方运算认识一些不同于有理数的数,在此基础上引入无理数,把数的范围扩充到实数;类比有理数,引入实数在数轴上的表示和实数的运算;并用这些知识解决一些实际问题.通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围.本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题.虽然本章的内容不多,篇幅不大,但在中学数学中占有重要地位,本章内容不仅是后续学习二次根式、一元二次方程以及锐角三角函数等知识的基础,也是学习高中数学中函数、不等式以及解析几何等知识的基础.本章共安排三个小节和两个选学内容,教学时间大约需要8课时,具体安排如下(仅供参考):13.1平方根3课时13.2 立方根2课时13.3实数2课时数学活动小结1课时一、教科书内容和本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容本章主要包括算术平方根、平方根、立方根,以及实数的有关概念、运算以及实数在数轴上的表示等内容.本章的重点是算术平方根和平方根的概念和求法,难点是平方根和实数的概念.教科书的第一节是平方根,本节先研究算术平方根,再研究平方根.教科书首先创设一个问题情景,从中抽象出的数学问题为:已知正方形的面积求其边长.这是一个典型的求算术平方根的问题,它与学生熟悉的已知正方形的边长求其面积是一个互逆的过程.通过对这类问题的探讨,引出算术平方根的概念,给出其符号表示,这时教科书所涉及到的被开方数本质上都是完全平方数.接着,教科书设置一个“探究”栏目,让学生尝试能否将两个面积为1的小正方形拼成一个面积为2的大正方形,进而求出这个大正方形的边长.这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是,这样教科书就引进了用根号形式表示的无理数(但暂时不出现无理数的概念),这是教科书第一次出现这样的数.另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数.出现后,一个很自然的问题是,到底多大.教科书采用用有理数夹逼的方法,利用不足近似值和过剩近似值来估计的大小,通过一步一步的估计,得到的越来越精确的近似值,进而指出是一个无限不循环小数的事实,并进一步指出,,等也是无限不循环小数,这就为后面认识无理数打下基础.会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法.用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子(例3)介绍了用有理数估计无理数的常用方法.至此,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容.接着,教科书设置一个“思考”栏目,对平方根展开讨论.在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于1,16,36…的数,由此抽象概括出平方根的概念和开平方运算.开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明.最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨数的平方根的特征,归纳出“正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”.教科书的第二节是立方根.对于立方根,教科书采用了与讨论平方根类似的方法进行讨论.首先设置一个问题情景,从中抽象出的数学问题是:已知立方体的体积求它的边长,这是一个典型的求数的立方根的问题.教科书从这个典型问题出发,引出立方根的概念和开立方运算.接着,教科书指出,和平方运算与开平方运算互为逆运算一样,立方运算与开立方运算也互逆,并通过一个“探究”栏目,运用这种互逆关系求一些正数、负数和0的立方根.在此基础上归纳出数的立方根的特征:“正数的立方根是正数,负数的立方根是负数,0的立方根是0”.最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质().学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数.本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,并分析这些小数的共同特点,进而归纳出有理数都可以化成有限小数或无限循环小数的形式,然后直接指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来.在此基础上指出,像,,等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念.教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义.为了是学生全面了解实数的概念,教科书根据不同的标准对实数进行分类,揭示出实数的内部结构.随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化.教科书通过几方面的例子说明了这种一致性和发展变化.首先,教科书通过探究在数轴上画出表示和的点,说明了无理数也可以用数轴上的点来表示,并指出当数由有理数扩充到实数后,直线上的点与实数就是一一对应的;接着,教科书通过设置思考问题,让学生体会,在有理数范围内成立的一些概念(如绝对值、相反数等)在实数范围内仍然成立;最后,教科书结合具体例子,指出有理数的运算(如加、减、乘、除、乘方运算等),以及运算律、运算性质(如交换律、分配律、结合律等)在实数范围内仍然成立,并且可以进行新的运算(如正数和0可以进行开平方运算、任何一个实数可以进行开立方运算)等.与大纲教材相比,本章内容在原教科书“数的开方”一章的基础上,适当增加了有关实数运算的内容(实数的运算在本套书“二次根式”一章继续学习);从内容安排上看,改变原教科书先讲平方根,将算术平方根作为平方根一种特例的做法,而是从实际问题出发,先讲算术平方根,再讲平方根,加强了与实际的联系;在教学目标方面,强调所有学生都应会使用计算器进行开平方、开立方运算,加强了对估算的要求等.(三)本章学习目标1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.4.能用有理数估计一个无理数的大致范围.二、编写时考虑的几个问题(一)加强与实际的联系本章内容与实际的联系是非常密切的.例如,无理数是从现实世界中抽象出来的一种数,开平方运算和开立方运算也是实际中经常用到的两种运算,用有理数估计无理数的大小在现实生活中经常遇到等等.因此,本章内容在编写时注意联系实际,对于一些重要的概念和运算紧密结合实际生活展开.例如,算术平方根是从已知正方形的面积求它边长、立方根是从已知立方体的体积求它边长等典型的实际问题引出的;再如,用有理数估计无理数的大小也是紧密结合实际问题展开的(6.1 节的探究1,2和例3).将本章内容与实际紧密联系起来,可以使学生在解决实际问题的过程中,认识实数的有关概念和运算.(二)加强知识间的纵向联系,突出类比的作用本章内容属于“数与代数”领域,有关数的内容,学生在7年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深刻的认识,本章是在有理数的基础上学习实数的初步知识,本章很多内容是有理数相关内容的延续和推广,因此,编写时,注意加强知识间的相互联系,突出类比的作用,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化.例如,类比有理数,引入实数的绝对值和相反数的概念,实数的运算法则和运算性质,实数与数轴上的点一一对应关系;平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的.另外,本章前两节“平方根”“立方根”在内容和展开方式上是基本平行的,因此,编写“立方根”这节时,充分利用了类比的方法.例如,类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等.这样的编写方法,有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移.(三)留给学生探索交流的空间根据本章内容的特点,对于一些重要的概念和结论,编写时注意了让学生通过观察、思考、探究等活动归纳得出结论的过程.例如,对于平方根概念的引入,教科书首先通过一个问题情景,引出已知正方形的面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知正方形的边长求面积的问题是一个相反的过程,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方,求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过一些具体活动,在对算术平方根一定的感性认识的基础上归纳给出这个概念.再比如,在讨论数的立方根的特征时,教材首先设置“探究”栏目,在栏目中以填空的方式让学生计算一些具体的正数、负数和0的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究活动的过程中发展思维能力,有效改变学生的学习方式.三、对教学的几个建议(一)加强数学思想方法的引导与渗透本章类比有理数,引入实数的相反数、绝对值等概念,以及实数的运算和运算律,教学时应注意引导学生体会类比这种研究方法的作用.实数与数轴上点是一一对应的,因此,可以利用数轴将“数”与“形”联系起来,这不仅对理解实数的有关概念及运算很有帮助,而且对后续学习数学乃至研究数学都将产生深远影响,教学时,应注意让学生初步认识“数形结合”的思想方法的作用.(二)把握好教学要求与大纲教材和以往的课标教材相比,本章对开平方、开立方运算的要求有所降低,课程标准规定“会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根”,教学时要注意把握好这个变化.实数理论非常高深,初中生不可能充分理解,这就决定了教学时应充分利用学生已有的有理数的经验,不能追求严密的逻辑体系.例如,对于实数运算法则和运算性质,本章是通过一个实数的简单运算的例题来学习的.这样安排的目的是,通过类比有理数的运算,指出有理数的运算法则和运算性质等在实数范围内仍然成立,此处不宜深究.关于实数的运算,在后面的“二次根式”一章中还要继续研究.(三)发挥计算器的作用,加强估算能力的培养使用计算器进行比较复杂的运算,可以使学习的重点更好地集中到理解数学的本质上来,估算是一种具有实际应用价值的运算能力.提倡使用计算器进行复杂运算,加强估算,综合运用笔算、计算器和估算等方式培养学生的运算能力,是本章的一个教学要求.为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有理数估计无理数的大致范围等内容.因此,教学中应结合具体内容,综合利用各种途径培养学生的运算能力.(四)关注实数的文化价值无理数的发现引发了数学史上的第一次危机,是数学发展史上的重要里程碑.引入无理数经历了一个漫长而艰苦的过程,这个过程体现了人类为追求真理而不懈努力的精神.因此,教学时可以结合无理数的发现和引入,挖掘数学知识的文化内涵,使学生感受丰富的数学文化,开阔他们的眼界,增长他们的见识.。
第六章实数
6.1.1平方根(第一课时)
【教学目标】
知识与技能:
通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表
示;
过程与方法:
通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌
握算术平方根的意义。
情感态度与价值观:
通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展
抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教具准备:三块大小相等的正方形纸片;学生计算器。
教学方法:自主探究、启发引导、小组合作
【教学过程】
一、情境引入:
问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?
二、探索归纳:
1. 探索:
学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为5dm。
接下来教师可以再深入地引导此问题:
如果正方形的面积分别是1、9、16、36、—,那么正方形的边长分别是多少呢?
25
学生会求出边长分别是1、3、4、6、2,接下来教师可以引导性地提问:上面的问题它
5
们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题
2. 归纳:
⑴算术平方根的概念:
一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:
a 的算术平方根记为总,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:
例1、 求下列各数的算术平方根:
⑴ 100 ⑵ 49
(3)17 ⑷ 0.0001 ⑸ 0
64 9 解:⑴因为102 =100,所以100的算术平方根是10,即• 100 =10 ;
⑷因为0.012 =0.0001,所以0.0001的算术平方根是0.01,即0.0001 =0.01 ;
⑸因为02 =0,所以0的算术平方根是0 ,即0 = 0。
注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;
② 求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;
③ 0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:
你能求出一1, - 36, - 100的算术平方根吗?任意一个负数有算术平方根吗?
归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
即:只有非负数有算术平方根,如果 X hJ a 有意义,那么a —0,x — 0。
注:a 一0且2 -0这一点对于初学者不太容易理解,教师不要强求,可以在以后的教 学中慢慢渗透。
例2、 求下列各式的值:
(1) -4 (2) .. 49
(3)匸11)2 (4) • 62
V 81 分析:此题本质还是求几个非负数的算术平方根。
⑵因为(8)2 =64,所以64的算术平方根是 ⑶因为19罟W )2晋,所以19的算术平方根是I ,
7
例3、 求下列各数的算术平方根:
⑴ 32 ⑵ 43 (3)( 一10)2 ⑷ 46
105
解:⑴因为32 =9,所以...32「9 = 3 ;
⑵因为 4’ = 64 = 82,所以 J 4’ = 64 = 8 ; ⑶因为(-10)6 =100 =102,所以.(一10)2 二.100 =10 ; 根据学生的学习能力和理解能力可进行如下总结: 1、由.3 =3, . 62 = 6,可得 a =a(a 丄 0) 2、由,(-11)2 =11, (-10)2 =10,可得,a 2 - -a(a ^O) 教师需强调a =0时对两种情况都成立。
四、随堂练习:
1、 算术平方根等于本身的数有 __________ o
2、 求下列各式的值:
七、 教学反思
http://cooco. /view/63332/
3 求下列各数的算术平方根:
2
1 2 9
0.0025, 121, 42, (-―)2,1 2 16
4 已知心• 1,.b-1 =0,求a 2b 的值。
六、 布置作业
五、 课堂小结 1、这节课学习了什么呢?
2、 算术平方根的具体意义是怎么样的?
3、 怎样求一个正数的算术平方根? 解:(1、4=2 (2)壽=7 (3) .(f =11 (4). 62 = 6
⑷因为 1 103 106 ,所以106
(7)。