人教版七年级下册数学实数
- 格式:ppt
- 大小:1.87 MB
- 文档页数:37
人教版七年级数学下册6.3.1《实数的概念》说课稿一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习的开始。
本节内容从实际问题出发,引导学生认识实数的必要性,进而引入实数的概念,使学生感受数学与现实生活的密切联系。
教材通过丰富的例题和练习题,帮助学生理解和掌握实数的概念,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经学习了有理数和无理数,对数学运算和逻辑推理有一定的基础。
但是,对于实数的定义和性质,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的认知水平,循序渐进地引导学生理解和掌握实数的概念。
三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够运用实数解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体验实数概念的形成过程,培养学生的抽象思维能力。
3.情感态度与价值观:让学生感受数学与现实生活的密切联系,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:实数的概念和性质。
2.教学难点:实数的抽象性质和实数在实际问题中的应用。
五. 说教学方法与手段本节课采用讲授法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。
六. 说教学过程1.导入新课:从实际问题出发,引导学生认识实数的必要性,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主发现实数的性质,体会实数概念的形成过程。
3.教师讲解:对实数的性质进行详细讲解,引导学生理解实数的概念。
4.例题讲解:通过典型例题,让学生了解实数在实际问题中的应用,巩固所学知识。
5.练习与巩固:让学生进行课堂练习,及时巩固所学知识,提高学生的实际应用能力。
6.课堂小结:对本节课的主要内容进行总结,帮助学生形成知识体系。
七. 说板书设计板书设计要简洁明了,突出实数的概念和性质。
人教版七年级下册第六章实数知识点
实数是数学中非常重要的一个概念,其涉及到数学中的各个领域。
在七年级下册的第六章中,我们主要学习了实数的相关知识。
1. 实数的概念
实数是指所有可以表示成有限小数、无限循环小数或无限不循环小数的数。
简单来说,实数包括整数、分数、小数、无理数等。
2. 实数的分类
根据实数的性质,可以将实数分为有理数和无理数两类。
有理数是可以表示成分数形式的实数,包括整数、分数和循环小数。
无理数是不能表示成分数形式的实数,例如根号2、π等。
3. 实数的运算
实数的运算包括加、减、乘、除四种基本运算。
对于任意两个实数a和b,它们的和、差、积、商分别为:
a+b,a-b,ab,a÷b(b≠0)
此外还有实数的乘方运算,即a的n次方(n为正整数),表示a 连乘n次的结果。
4. 实数的比较
实数之间可以进行大小比较。
对于任意两个实数a和b,若a>b,则a称为大于b,b称为小于a。
若a=b,则a与b相等。
若a<b,则a称为小于b,b称为大于a。
5. 实数的表示
实数可以用数轴上的点表示。
数轴是一条直线,上面的每个点都
与一个实数一一对应。
数轴上的原点表示0,向右表示正数,向左表示负数。
以上就是七年级下册第六章实数的相关知识点。
实数是数学中非常基础的概念,掌握好实数的相关知识对于后续的学习非常重要。
人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。
本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。
教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。
但实数概念相对抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数进行简单的运算和解决问题。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。
六. 教学准备1.教材、PPT等相关教学资料。
2.实例和问题。
3.小组合作学习分组。
七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。
例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。
3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。
4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。
例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。
5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。
人教版七年级下册数学知识点归纳第六章 实数6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果; 一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。