多元统计分析第一章
- 格式:ppt
- 大小:376.00 KB
- 文档页数:36
多元统计分析知识点多元统计分析课件精品多元统计分析(1)题目:多元统计分析知识点目录第一章绪论 (1)§1.1什么是多元统计分析 ............................ 1 §1.2多元统计分析能解决哪些实际问题 .... 2 §1.3主要内容安排 ........................................ 2 第二章多元正态分布 .. (2)§2.1基本概念 ................................................ 2 §2.2多元正态分布的定义及基本性质 .. (8)1.(多元正态分布)定义 ..................... 92.多元正态变量的基本性质 ............... 10 §2.3多元正态分布的参数估计12(,,,)p X X X X '= (11)1.多元样本的概念及表示法 ............... 122. 多元样本的数值特征 ..................... 123.μ和 ∑的最大似然估计及基本性质.............................................................. 15 4.Wishart 分布 (17)第五章 聚类分析 (18)§5.1什么是聚类分析 .................................. 18 §5.2距离和相似系数 . (19)1.Q —型聚类分析常用的距离和相似系数 (20)2.R型聚类分析常用的距离和相似系数 (25)§5.3八种系统聚类方法 (26)1.最短距离法 (27)2.最长距离法 (30)3.中间距离法 (32)4.重心法 (35)5.类平均法 (37)6.可变类平均法 (38)7.可变法 (38)8.离差平方和法(Word方法) (38)第六章判别分析 (39)§6.1什么是判别分析 (39)§6.2距离判别法 (40)1、两个总体的距离判别法 (40)2.多总体的距离判别法 (45)§6.3费歇(Fisher)判别法 (46)1.不等协方差矩阵两总体Fisher判别法 (46)2.多总体费歇(Fisher)判别法 (51)§6.4贝叶斯(Bayes)判别法 (58)1.基本思想 (58)2.多元正态总体的Bayes判别法 (59)§6.5逐步判别法 (61)1.基本思想 (61)2.引入和剔除变量所用的检验统计量 (62)3.Bartlett近似公式 (63)第一章绪论§1.1什么是多元统计分析在自然科学、社会科学以及经济领域中,常常需要同时观察多个指标。
精心整理第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。
近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解、H.Hotelling 、、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。
20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。
20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。
20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。
20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显着成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。
在20世纪末与本世纪初,人们获得的数据正以前所未有的速度急剧增加,产生了很多超大型数据库,遍及超级市场销售、银行存款、天文学、粒子物理、化学、质学、社会学、考古学、环境保护、军事科学、文学等方面都有广泛的应用,这里我们例举一些实际问题,进一步了解多元统计分析的应用领域,让读者从感性上加深对多元统计分析的认识。
1、城镇居民消费水平通常用八项指标来描述,如人均粮食支出、人均副食支出、人均烟酒茶支出、人均衣着商品支出、人均日用品支出、人均燃料支出、人均非商品支出。
这八项指标存在一定的线性关系。
为了研究城镇居民的消费结构,需要将相关强的指标归并到一起,这实际就是对指标进行聚类分析。
2、在企业经济效益的评价中,涉及到的指标往往很多,如百元固定资产原值实现产值、百元固定资产原值实现利税、百元资金实现利税、百元工业总产值实现利税、百元销售收入实现利税、每吨标准煤实现工业产值、每千瓦时电力实现工业产值、345他们每个人若干项症状指标数据。
第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。
近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解决实际问题的有效方法。
然而,随着In ternet的日益普及,各行各业都开始采用计算机及相应的信息技术进行管理和决策,这使得各企事业单位生成、收集、存储和处理数据的能力大大提高,数据量与日俱增,大量复杂信息层出不穷。
在信息爆炸的今天,人们已经意识到数据最值钱的时代已经到来。
显然,大量信息在给人们带来方便的同时也带来一系列问题。
比如:信息量过大,超过了人们掌握、消化的能力;一些信息真伪难辩,从而给信息的正确应用带来困难;信息组织形式的不一致性导致难以对信息进行有效统一处理等等,这种变化使传统的数据库技术和数据处理手段已经不能满足要求.In ternet 的迅猛发展也使得网络上的各种资源信息异常丰富,在其中进行信息的查找真如大海捞针。
这样又给多元统计分析理论的发展和方法的应用提出了新的挑战。
多元统计分析起源于上世纪初,1928年Wishart发表论文《多元正态总体样本协差阵的精确分布》,可以说是多元分析的开端。
20世纪30年代R.A. Fisher 、H.Hotelling 、S.N.Roy、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。
20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。
20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。
20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。
20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显著成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。
《多元统计分析》目录前言第一章基本知识﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 §1·1总体,个体与样本﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 §1·2样本数字特征与统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 §1·3一些统计量的分布﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍9 第二章统计推断﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 §2·1参数估计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 §2·2假设检验﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍19 第三章方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32 §3·1一个因素的方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32 §3·2二个因素的方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍37 §3·3用方差分析进行地层对比﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍44 第四章回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·2回归方程的确定﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·3相关系数及其显着性检验﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍52 §4·4回归直线的精度﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍55 §4·5多元回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍56 §4·6应用实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍60 第五章逐步回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍65 §5·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍65 §5·2“引入”和“剔除”变量的标准﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍66 §5·3矩阵变换法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍67 §5·4回归系数,复相关系数和剩余标准差的计算﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍69 §5·5逐步回归计算方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍70§5·6实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍74 第六章趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍80 §6·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍80 §6·2图解汉趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍81 §6·3计算法趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍83 第七章判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍90 §7·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍90 §7·2判别变量的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍91 §7·3判别函数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍92 §7·4判别方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍96 §7·5多类判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍104 第八章逐步判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·2变量的判别能力与“引入”变量的统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·3矩阵变换与“剔除”变量的统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍113 §8·4计算步聚与实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍115 第九章聚类分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 125 §9·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍125 §9·2数据的规格化(标准化)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍125 §9·3相似性统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍126 §9·4聚类分析方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍131 §9·5实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍134 §9·6最优分割法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍134 第十章因子分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍142 §10·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍142 §10·2因子的几何意义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍143 §10·3因子模型﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍145§10·4初始因子载荷矩阵的求法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍147 §10·5方差极大旋围﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍152 §10·6计算步聚﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍156 §10·7实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍157 附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍162 附录1标准正态分布函数量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍162 附录2正态分布临界值u a表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍164 附录3t分布临界值t a表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍165 附录4(a)F分布临界值Fa表(a=0·1)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附录4(b)F分布临界值Fa表 (a=0·05) ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附表4(c)F分布临界值Fa表(a=0·01)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附表5 x2分布临界值xa2表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍第一章基本知识§1·1总体、个体与样本总体(母体)、个体一(样本点)和样本(子样)是统计分析中常用的名词。