四种线性代数模型
- 格式:doc
- 大小:802.50 KB
- 文档页数:8
线性代数时隔一年,总算把特征值特征向量以及二次型部分给大家补上了:)还是那句话,个人水平有限,加上不同人的不同的思维习惯,所以只能说我把自己的思路提供出来给大家作为参考,希望能起到点提纲挈领的作用吧。
说实话,写最后这部分时,还是感觉到有些压力,最主要怕写出来不如前四章那样让大家满意,呵呵,不过无论如何,我已经尽力了,线代的知识框架总结也算是形成了一个完整的篇章,至少有始有终吧。
最近一段时间课题任务比较重,可能要过个把月才有空把高数部分重新修订了。
最后一个小说明,因为这个系列文章的重点是挖掘、梳理各知识点之间的相互联系和脉络,所以内容上并没有全盘覆盖课本,而是有所侧重,打个比方,相当于是勾勒出的一个线性代数的基本框架,那么建议大家在此基础上多开阔思路,通过发散思维把框架之外的剩余部分囊括到自己的脑海中来:)线性代数知识点框架(五)由矩阵乘法的特点可知,计算一个矩阵A的n次方,相对于数乘运算来说要繁琐得多。
我们注意到,如果存在可逆矩阵P和对角矩阵∧,使得A=P*∧*P逆,那么有:A^n=(P*∧*P逆)^n=(P*∧*P逆)(P*∧*P逆)…(P*∧*P逆)=P*∧^n*P 逆由于对角矩阵的乘方容易计算,从而问题得到大幅简化。
对矩阵A、B来说,如果存在着可逆矩阵P,使得A=P *B*P逆,我们称A与B是相似的。
特别地,如果A与对角矩阵∧相似,则称A可对角化。
由此可见,如果矩阵A可对角化,那么A^n的计算将变得简单许多。
故可把相似的说法理解为一个在寻找矩阵乘方简便运算的过程中提出来的概念。
相似的矩阵有许多共同的性质,如有相同的秩和相同的行列式值,相似的矩阵或者都可逆,或者都不可逆,等等。
设矩阵A相似于对角矩阵∧,那么:A=P*∧*P逆<=>AP=P∧,其中P为可逆矩阵<=> A*(a1, a2, …, an)=(a1, a2, …, an)*∧,其中a1, a2, …, an 分别为可逆矩阵P的列向量,λ1, λ2, …, λn分别为对角矩阵∧的主对角线上元素<=> A*a1=λ1*a1,A*a2=λ2*a2,…,A*an=λn*an也就是说,矩阵A能对角化的关键,在于找到n个常数λ1, λ2, …, λn和n 个线性无关的向量a1, a2, …, an(因为这些向量构成的矩阵可逆,这也决定了零向量不是特征向量),使得A*ai=λi*ai(i=1,2,3,…,n)。
线性代数是高等学校理工科和经济类学科相关专业的一门重要基础课,它不仅是其他数学课程的基础,也是物理、力学、电路等专业课程的基础。
作为处理离散问题工具的线性代数,也是从事科学研究和工程设计的科研人员必备的数学工具之一。
实验一 生物遗传模型1.工程背景设一农业研究所植物园中某植物的基因型为AA 、Aa 和aa 。
常染色体遗传的规律是:后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对。
如果考虑的遗传特征是由两个基因A 、a 控制的,那末就有三种基因对,记为AA 、Aa 和aa 。
研究所计划采用Aa(AA)型的植物与每一种基因型植物相结合的方案培育植物后代。
问经过若干年后,这种植物的任意一代的三种基因型分布如何?2.问题分析分析双亲体结合形成后代的基因型概率,如表6-4所示。
表6-4基因型概率矩阵 后代 基因对 父体—母体的基因对AA —AAAA —Aa AA —aa Aa —Aa Aa —aa aa —aa AA 1 1/2 0 1/4 0 0 Aa 0 1/2 1 1/2 1/2 0 aa1/41/213.模型建立与求解设,,n n n a b c 分别表示第n 代植物中基因型AA 、Aa 、aa 型的植物占植物总数的百分率。
则第n 代植物的基因型分布为()n n n n a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,0(0)00a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭表示植物型的初始分布。
依据上述基因型概率矩阵,有1112n n n a a b --=+,1112n n n b b c --=+,0n c =,1n n n a b c ++=,表示为矩阵形式11111/2001/21000n n n n n n a a b b c c ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭记11/2001/21000M ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(1)2(2)3(3)(0)n n n n n x MxM x M x M x ---=====。
数学建模四大模型总结1优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。
1.5 组合优化经典问题l 多维背包问题(MKP)背包问题:个物品,对物品,体积为,背包容量为。
如何将尽可能多的物品装入背包。
多维背包问题:个物品,对物品,价值为,体积为,背包容量为。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于难问题。
l 二维指派问题(QAP)工作指派问题:个工作可以由个工人分别完成。
工人完成工作的时间为。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):台机器要布置在个地方,机器与之间的物流量为,位置与之间的距离为,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
l 旅行商问题(TSP)旅行商问题:有个城市,城市与之间的距离为,找一条经过个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
l 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
l 车间作业调度问题(JSP)车间调度问题:存在个工作和台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。
系数矩阵H 为Hilbert 矩阵,是著名的病态问题。
因而决定求解Hx b =此线性方程组来验证上述问题。
详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。
关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。
理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。
考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。
线性代数是高等学校理工科和经济类学科相关专业的一门重要基础课,它不仅是其他数学课程的基础,也是物理、力学、电路等专业课程的基础。
作为处理离散问题工具的线性代数,也是从事科学研究和工程设计的科研人员必备的数学工具之一。
实验一 生物遗传模型1.工程背景设一农业研究所植物园中某植物的基因型为AA 、Aa 和aa 。
常染色体遗传的规律是:后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对。
如果考虑的遗传特征是由两个基因A 、a 控制的,那末就有三种基因对,记为AA 、Aa 和aa 。
研究所计划采用Aa(AA)型的植物与每一种基因型植物相结合的方案培育植物后代。
问经过若干年后,这种植物的任意一代的三种基因型分布如何2.问题分析分析双亲体结合形成后代的基因型概率,如表6-4所示。
表6-4基因型概率矩阵 后代 基因对 父体—母体的基因对AA —AA AA —Aa AA —aa Aa —Aa Aa —aa aa —aa AA 1 1/2 0 1/4 0 0 Aa 0 1/2 1 1/2 1/2 0 aa1/41/213.模型建立与求解设,,n n n a b c 分别表示第n 代植物中基因型AA 、Aa 、aa 型的植物占植物总数的百分率。
则第n 代植物的基因型分布为()n n n n a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,0(0)00a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭表示植物型的初始分布。
依据上述基因型概率矩阵,有1112n n n a a b --=+,1112n n n b b c --=+,0n c =,1n n n a b c ++=,表示为矩阵形式11111/2001/21000n n n n n n a a b b c c ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭记11/2001/21000M ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(1)2(2)3(3)(0)n n n n n x MxM x M x M x ---=====。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模_四大模型总结四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
中考数学常见模型中考数学常见模型是中等难度的数学问题,涵盖了数学的各个方面,包括代数、几何、概率等等。
下面将列举一些常见的数学模型,以帮助同学们更好地准备中考数学。
一、代数模型:1.一次函数模型:y=kx+b,其中k和b为常数,表示一条直线的方程。
常用于描述速度、距离等线性关系。
2.二次函数模型:y=ax²+bx+c,其中a、b、c为常数。
常用于描述抛物线的形状,如物体自由落体的高度和时间关系。
3.百分比模型:常用于计算百分比,如增长率、折扣率等。
4.平均数模型:用于求平均数,如求一组数的算术平均数、几何平均数等。
5.方程与不等式模型:常用于解决方程和不等式问题,如线性方程、二次方程、绝对值和分数方程等。
二、几何模型:1.面积和体积模型:常用于求解平面图形和立体图形的面积和体积,如矩形、三角形、圆形、圆柱体、球体等。
2.相似模型:用于表示两个形状相似的几何图形之间的比例关系。
3.三角模型:用于解决三角形相关问题,如正弦定理、余弦定理、面积公式等。
4.坐标模型:用于求解平面上的坐标问题,如平面直角坐标系和极坐标系等。
三、概率模型:1.事件模型:用于描述事件的概率,如事件的可能性、互斥事件、相对频率等概念。
2.随机模型:用于分析随机事件的发生概率和期望值,如抛硬币、掷骰子等。
3.条件概率模型:用于计算在已知某些条件下的事件发生概率,如加法原理、乘法原理等。
四、函数模型:1.函数关系模型:用于描述函数之间的关系,如函数的定义域、值域、奇偶性、单调性等。
2.复合函数模型:用于把多个函数组合成一个新函数,如复合函数的求导、求导法则等。
3.反函数模型:求一个函数的反函数,如对数函数和指数函数的互为反函数等。
以上只是一部分常见的数学模型,同学们在备考中还需根据自己的实际情况进行重点复习和应用。
在解题过程中,要善于分析题意,理解问题,找到合适的数学模型进行求解。
并且要注意解题的思路和方法,培养逻辑思维能力,灵活运用各种数学知识和模型,提高解题的准确性和效率。
线性代数是高等学校理工科和经济类学科相关专业的一门重要基础课,它不仅是其他数学课程的基础,也是物理、力学、电路等专业课程的基础。
作为处理离散问题工具的线性代数,也是从事科学研究和工程设计的科研人员必备的数学工具之一。
实验一 生物遗传模型1.工程背景设一农业研究所植物园中某植物的基因型为AA 、Aa 和aa 。
常染色体遗传的规律是:后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对。
如果考虑的遗传特征是由两个基因A 、a 控制的,那末就有三种基因对,记为AA 、Aa 和aa 。
研究所计划采用Aa(AA)型的植物与每一种基因型植物相结合的方案培育植物后代。
问经过若干年后,这种植物的任意一代的三种基因型分布如何2.问题分析分析双亲体结合形成后代的基因型概率,如表6-4所示。
表6-4基因型概率矩阵 后代 基因对 父体—母体的基因对 AA —AA AA —Aa AA —aa Aa —Aa Aa —aa aa —aa AA 1 1/2 0 1/4 0 0 Aa 0 1/2 1 1/2 1/2 0 aa1/41/213.模型建立与求解设,,n n n a b c 分别表示第n 代植物中基因型AA 、Aa 、aa 型的植物占植物总数的百分率。
则第n 代植物的基因型分布为()n n n n a xb c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,0(0)00a x b c ⎛⎫⎪= ⎪ ⎪⎝⎭表示植物型的初始分布。
依据上述基因型概率矩阵,有1112n n n a a b --=+,1112n n n b b c --=+,0n c =,1n n n a b c ++=,表示为矩阵形式11111/2001/21000n n n n n n a a b b c c ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭记11/2001/21000M ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(1)2(2)3(3)(0)n n n n n x MxM x M x M x ---=====。
于是问题归结为如何计算n M ,可将M 对角化。
易于计算M 的特征值为1、1/2、0,其相应的特征向量为(1,0,0)T,(0,1,0)T-,(1,2,1)T-。
令101012001P ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,则111/2001/21000M P P -⎛⎫ ⎪= ⎪ ⎪⎝⎭。
于是()(0)1(0)11/2001/21000nn n xM x P P x -⎛⎫⎪== ⎪ ⎪⎝⎭1(0)1011001010120(1/2)0012001000001nn x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11000001(0)10011(1/2)1(1/2)(1/2)(1/2)01/21/2(1/2)(1/2)0000n n n n n n n n a b c b c x b c ----⎛⎫⎛⎫--++-- ⎪ ⎪==+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1001001(1/2)(1/2)(1/2)(1/2)0n n n n b c b c --⎛⎫-- ⎪=+ ⎪ ⎪⎝⎭。
当n →∞,1,0n n a b →→,因此,可以认为经过若干年后,培育出的植物基本上呈现AA 型。
实验二 员工培训问题 1.工程背景某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将1/6熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。
新、老非熟练工经培训及实践至年终考核有2/5成为熟练工。
若记第n 年一月份统计的熟练工与非熟练工所占比例分别为n n x y ⎛⎫⎪⎝⎭。
2.问题问题1:第n+1年熟练工与非熟练工所占比例11n n x y ++⎛⎫⎪⎝⎭与第n 年熟练工与非熟练工所占比例n n x y ⎛⎫⎪⎝⎭的关系。
问题2:若第1年熟练工与非熟练工所占比例为111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求11n n x y ++⎛⎫ ⎪⎝⎭。
3.模型建立与求解 依据题意,有1521()656n n n n x x x y +=++,131()56n n n y x y +=+。
整理化简得119210513105n n n n n n x x y y x y ++⎧=+⎪⎪⎨⎪=+⎪⎩,即119210513105n n n n x x y y ++⎛⎫ ⎪⎛⎫⎛⎫=⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭,记9210513105A ⎛⎫⎪= ⎪ ⎪ ⎪⎝⎭,亦有11n n n n x x A y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭。
由问题1结果,有112111212n n n n n n n x x x A A A y y y +-+-⎛⎫ ⎪⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭。
问题归结为求nA ,可将A 对角化。
易于计算1、1/2是矩阵A 的两个特征值,且相应的特征向量为()()4,1,1,1TT-。
记4111P -⎛⎫= ⎪⎝⎭,则1921010511302105P P -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭11104()44()411111221111411550()1()14()222n n n n n n A ⎛⎫+-⎛⎫ ⎪-⎛⎫⎛⎫ ⎪==⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-+ ⎪⎝⎭⎝⎭。
因此111183()122111023()22n n n n n x A y ++⎛⎫⎛⎫- ⎪ ⎪⎛⎫== ⎪⎪ ⎪ ⎪ ⎪⎝⎭+ ⎪ ⎪⎝⎭⎝⎭。
实验三 多金属分选流程计算1. 工程背景设,j γγ—原矿产率及第j 种产品产率,%,100%γ=;i α—原矿中第i 种金属品位,%;ij β—第j 种产品中第i 种金属品位,%;ijβε—第j 种产品中第i 种金属的理论回收率,%;按照金属平衡和产率平衡进行计算。
为了计算方便,尾矿视为产品。
金属平衡, 1,1,2,,ni jij j i m γαγβ===∑产品平衡,1100%njj γ==∑其中,尾矿产率及金属品位为,n i in θγγθβ== 解次多元线性方程组求出产品产率。
各产品任一金属回收率1100%ijj ijnjijj βγβγβε=⨯=∑。
2. 问题某铅锌矿选矿厂生产的产品为铅、锌、硫精矿和尾矿,已化验知各产品的金属品位(见下表),试计算各产品产率和回收率。
表6-5各产品的化验品位原矿 铅 锌 硫 尾矿3. 模型建立与求解设铅、锌、硫和尾矿的产率为123,,x x x 和4x ,按照金属平衡与产率平衡,可建立以下线性方程组:123412341234123471.04 1.200.380.34100 3.143.7151.500.350.10100 3.6315.7030.8042.38 1.4010015.41100x x x x x x x x x x x x x x x x +++=⨯⎧⎪+++=⨯⎪⎨+++=⨯⎪⎪+++=⎩ MATLAB 源代码:A=[ ; ; ;1 1 1 1] %创建系数矩阵 b=[314 363 1541 100]’; %常数列矩阵 x=A\b %利用x=inv(A)*b x =又 x0=repmat(x,[1,4]); %创建多维数组B0=repmat(b,[1 4])’;s=x0.*A ’./B0 %计算各产品的理论回收率,最后一列为产率 s=将计算结果填入下表表6-6各产品产率及回收率计算结果实验四交通流量模型1. 问题图6-8.图6-8假设:(1)全部流入网络的流量等于全部流出网络的流量.(2)全部流入一个节点的流量等于全部流出此节点的流量.2. 模型的建立与求解由假设可知,所给问题满足如下线性方程组:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==-==+=+=+=-=+=+-1006002004001008008002005003006381091098751216754432x x x x x x x x x x x x x x x x x x x x 3. Matlab 程序实现A=[0,1,-1,1,0,0,0,0,0,0;0,0,0,1,1,0,0,0,0,0;0,0,0,0,0,-1,1,0,0,0;1,1,0,0,0,0,0,0,0,0;1,0,0,0,1,0,0,0,0,0;0,0,0,0,0,0,1,1,0,0;0,0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,-1,1;0,0,0,0,0,0,0,0,0,1;0,0,1,0,0,1,0,1,0,0] % 矩阵Ab=[300;500,200;800;800;100;400;200;600,100] B=[A,b] % 增广矩阵B Rank(A) % 计算矩阵A 的秩Rank(B) % 计算增广矩阵B 的秩,若秩相等,则有解 rref(B) % 将增广矩阵B 化为最简型4.结果分析 增广矩阵系数矩阵的秩Rank(A)=8增广矩阵的秩Rank(B)=8<10,说明该非齐次线性方程组有无穷多个解. 增广矩阵的最简型为:其对应的齐次同解方程组为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+=+==-=+600400100800500200080010987865435251x x x x x x x x x x x x x 以85,x x 做为自由变量,将最简形方程转化为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==+-=+-=+-==+=+-=600400100800500200080010987865435251x x x x x x x x x x x x x 求得其通解为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛6004000100080005002000800001110000000000110112110987654321C C x x x x x x x x x x。