第四节 用拉氏反变换解常微分方程
- 格式:ppt
- 大小:1.64 MB
- 文档页数:22
第一章自动控制的一般概念一.是非题1.开环控制是一种反馈控制(×)2.开环控制的稳定性比闭环控制的稳定性要好(×)3.线形系统的主要特点是具有齐次性和叠加性(√)4.线性定常系统的各项系数是与时间有关的 (×)5.闭环控制的控制精度在很大程度上由形成反馈的测量元件的精度决定的(√)6.自动控制就是采用控制装置使被控对象自动的按给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按给定的规律变化(√)7.自动控制系统有两种最基本的控制形式即开环控制,闭环控制(√)二.选择题1.下述(D)不属于对闭环控制系统的基本要求。
(A)稳定性(B)准确性(C)快速性 (D)节能性2.自动控制系统一般由(D)组成(A)输入和输出(B)偏差和反馈 (C)控制量和扰动(D)控制器和被控对象3.在组成系统的元件中,(A),即为非线形系统(A)只要有一个元、器件的特性是非线形的(B)有且只有一个元、器件的特性是非线形的(C)两个及两个以上的元、器件的特性是非线形的(D)所有的元器件的特性都是非线形的4.古典控制理论形成于(D)(A)2000年前 (B)1000年前(C)100年前(D)20 世纪20—40年代 5.对于一个自动控制、系统的性能要求可以该概括为三个方面:(A)快速性和准确性(A)稳定性(B)定常性(C)振荡性(D)抗干扰性6.传递函数的概念除了适用于定常系统之外,还可以描述(A)系统(A)线形时变(B)非线性定常(C)非线形时变( D )以上都不是 7.在控制系统中被控制的物理量是被控量,直接改变被变量的元件称为(A)(A)执行元件 (B)控制元件(C)调节器(D)测量元件8.在通常的闭环控制系统结构中,系统的控制器和控制对象共同构成了(B)(A)开环传递函数(B)前向通道(C)反馈通道(D)闭环传递函数 9.下面数学模型中(D)是线形定常系统的外部描述(A)传递函数(B)微分方程 (C)频率特性(D)前面三种都是三.填空题1.自动控制系统的两种最基本形式即开环控制 ,闭环控制。
拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。
拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。
因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。
拉普拉斯拉斯变换的定义一个定义在区间的函数,其拉氏变换定义为L[f(t)]=F(s)=式中:s=б+jω为复数,有时称变量S为复频域。
应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。
通常用“L[ ]”表示对方括号内的函数作拉氏变换。
拉普拉斯变换的基本性质本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。
一、唯一性定义在区间的时间函数与其拉氏变换存在一一对应关系。
根据可以唯一的确定其拉氏变换;反之,根据,可以唯一的确定时间函数。
唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。
唯一性的证明从略。
二、线性性质若和是两个任意的时间函数,其拉氏变换分别为和,和是两个任意常数,则有证根据拉氏变换的定义可根据拉氏变换的定义可得例求的拉氏变换。
解三、时域导数性质(微分性质)例应用时域导数性质求的象函数。
四、时域积分性质(积分规则)例:求单位斜坡函数及的象函数。
五、时域平移性质(延迟性质)作业:书后习题1、2、3、4。
课后记事:注意板书层次,因为内容很多,不要太乱。
常用时间函数的象函数一览表,见教材221页。
8-2、8-3拉普拉斯反变换和运算电路图(4学时)(教材第221页)教学目的:具有单根、复根、重根三种情况下用部分分式及分解定理求待定系数法,运算电路图的画法。
教学重点:具有单根、复根时求待定系数法,熟练掌握反变换的求法,熟练掌握运算电路图的画法。
拉普拉斯变换求解微分方程拉普拉斯变换可以把微分方程转化为代数方程。
由于现在是在利用拉氏变换求解微分方程,所以我们暂时不关注拉普拉斯变换中比较细节的方面。
利用拉氏变换解微分方程的基本方法就是把以 t 为变量的函数变换到以 s 为变量的代数函数,而这个过程会把微分项转换为代数式,这样我们就可以求解不含微分项的方程了。
最后再利用拉普拉斯逆变换,把关于 s 的函数变换回关于 t 的函数,就完成了微分方程的求解。
不过我们要先有几样趁手的工具——常用函数的拉普拉斯变化对以及微分的拉普拉斯变换:L[f(t)]=F(s) 表示对 f(t) 进行拉普拉斯变换的结果是 F(s) ,反之, L−1[F(s)]=f(t)表示的是对 F(s) 进行拉普拉斯逆变换得到了函数 f(t) .常用函数的拉普拉斯变换(对应的逆变换也成立):L[1]=1sL[tm]=m!sm+1L[eat]=1s−aL[cosat]=ss2+a2L[sinat]=as2+a2L[eatf(t)]=F(s−a)拉普拉斯变换是具有线性性质的,也就是说, L[αf(t)+βg(t)]=αL[f(t)]+βL[g(t)] . 逆变换也具有线性性质。
对公式两侧同时进行拉普拉斯逆变换就可以得到逆变换的公式,比如第一个式子: L−1[L[1]]=L−1[1s] ,整理一下就能得到 L−1[1s]=1 .微分的拉普拉斯变换(需要知道原函数已经各阶导数在0处的值):L[f(n)(t)]=snF(s)−sn−1f(0)−sn−2f′(0)−...−s0f(n−1)(0)式中的 F(s) 是一个未知的函数,是需要我们解出来的。
百闻不如一见,来看例题。
先来一个简单的例题。
例1:求解微分方程 yt′=t,y(0)=1解:第一步,对方程两侧同时进行拉普拉斯变换,即 L[yt′]=L[t] 得到 sY(s)−y(0)=1s2 .第二步,带入初值 y(0)=1 ,得到 sY(s)−1=1s2 .第三步,求解 Y(s) .这时候我们把第二步得到的式子看成一个普通的代数式就可以,很容易解得 Y(s)=1s3+1s 。