实变函数期末考试卷A及参考答卷
- 格式:doc
- 大小:1.15 MB
- 文档页数:18
实变函数期末考试题考试题目:本次实变函数期末考试题旨在考察学生对实变函数的理解、分析和应用能力。
考试时间为120分钟,共分为两部分,选择题和解答题。
请同学们仔细阅读每个问题,并在考试纸上作答。
祝各位同学好运!第一部分:选择题选择题共有10道题,每题4分,共40分。
请在A、B、C、D四个选项中选择正确答案,并填涂在答题纸上。
1. 设函数f(x) = x^2 + 2x - 1,那么f'(x)的导函数是:A. 2x + 2B. 2x + 1C. 2x - 1D. 2x + 22. 实变函数f(x) = e^x,则f''(x)的导函数是:A. e^xB. e^x - 1C. e^x + 1D. e^x + e^x3. 设函数f(x) = 3x^2 + 5,那么f(0)的值为:A. 5B. 3C. 0D. 84. 函数f(x) = |x - 2|的定义域为:A. (2, +∞)B. (-∞, 2)C. [2, +∞)D. (-∞, +∞)5. 函数f(x) = log(2x - 1)的定义域为:A. (1/2, +∞)B. (-∞, 1/2)C. [1/2, +∞)D. (-∞, +∞)6. 函数f(x) = sin(2x)的最小正周期为:A. πB. 2πC. π/2D. π/47. 函数f(x) = arctan(x)的值域为:A. (-∞, +∞)B. (-π/2, π/2)C. (-π/4, π/4)D. [0, π/2)8. 设函数f(x) = ln(x),则f'(x)的导数为:A. 1/xB. xC. x - 1D. 1/(x - 1)9. 函数f(x) = x^3在闭区间[0, 1]上的最大值为:A. 27B. 9C. 1D. 310. 函数f(x) = sqrt(x)在闭区间[0, 4]上的最小值为:A. 0B. 1C. 2D. 4第二部分:解答题解答题共有3道题,共60分。
实变函数测试题与答案实变函数测试题⼀,填空题1. 设1,2n A n ??=, 1,2n =, 则lim nn A →∞= .2. ()(),,a b -∞+∞,因为存在两个集合之间的⼀⼀映射为.3. 设E是2R 中函数1c o s ,00,0xy x x ?≠?=?? =?的图形上的点所组成的集合,则E '= ,E ?= .4. 若集合nE R ?满⾜E E '?, 则E 为集.5. 若(),αβ是直线上开集G 的⼀个构成区间, 则(),αβ满⾜: , .6. 设E 使闭区间[],a b 中的全体⽆理数集, 则mE = .7. 若()n mE f x →()0f x ??=?, 则说{}()n f x 在E 上.8. 设nE R ?, 0n x R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上⼏乎处处有限的可测函数列,, 则称{}()n f x 在E 上依测度收敛于()f x .10. 设()()n f x f x ?,x E∈, 则{}()n f x 的⼦列{}()jn fx , 使得.⼆, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <.2. 设E 为点集, P E ?, 则P 是E 的外点.3. 点集11,2,,E n=是闭集. 4. 任意多个闭集的并集是闭集.5. 若n ER ?,满⾜*m E =+∞, 则E 为⽆限集合.三, 计算证明题 1. 证明:()()()A B C A B A C --=-2. 设M 是3R 空间中以有理点(即坐标都是有理数)为中⼼, 有理数为半径的球的全体, 证明M 为可数集. 3. 设n E R ?,i E B ?且i B 为可测集, 1,2i =.根据题意, 若有2ln 1,(),0,1x x P f x x x P ?+ ∈?=? ∈-??. 求1(L)()f x dx ?.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3 x , ⽽在0P 的余集中长为13n的构成区间上取值为16n , ()1,2n =, 求10()f x dx ?.6. 求极限: 13230lim(R)sin 1n nx nxdx n x →∞+?.实变函数试题解答⼀填空题 1.[]0,2.2. ()()()tan ,,.2x x a x a b b aππ=--∈??-??3.{}1(,)cos ,0(0,)1x y y x y y x ??=≠≤??; ?.4. 闭集.5. (),.,.G G G αβαβ? ? ?6.7. ⼏乎处处收敛于()f x 或 a.e.收敛于()f x .8. 对000,(,)U x δδ?> 有{}()0E x -=?.9.lim ()()0n n mE f x f x σ→∞-≥= 10.()()n f x f x → a.e.于E .⼆判断题 1. F . 例如, (0,1)A =, []0,1B =, 则A B ?且A B ≠,但1mA mB ==. 2. F . 例如, 0(0,1)?, 但0不是(0,1)的外点.3. F . 由于{}0E E '=.4. F . 例如, 在1R 中, 11,1n F nn ??=-, 3,4n =是⼀系列的闭集, 但是3(0,1)n n F ∞==不是闭集.5. T . 因为若E 为有界集合, 则存在有限区间I ,I <+∞, 使得E I ?, 则**,m E m I I ≤=<+∞ 于*m E =+∞ .三, 计算证明题. 1. 证明如下:()()()()()()()()SSS S S A B C A B CAB C A B C A B A C A B A C --=- = = = =-2. M 中任何⼀个元素可以由球⼼(,,)x y z , 半径为r 唯⼀确定, x ,y , z 跑遍所有的r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集. 3. 令1i i BB ∞==, 则i E B B ??且B 为可测集, 于是对于i ?, 都有i B E B E -?-, 故()()**0i m B E m B E ≤-≤-,令i →∞, 得到()*0m B E -=, 故B E -可测. 从⽽()E B B E =--可测. 4. 已知0mP =, 令[]0,1G P = -, 则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==.5. 将积分区间[]0,1分为两两不相交的集合: 0P , 1G , 2G , 其中0P 为Cantor 集,n G 是0P 的余集中⼀切长为1n的构成区间(共有12n -个)之并. 由L 积分的可数可加性,并且注意到题中的00mP =, 可得101111111()()()()()1()61126631112916nn P G P G n n P G n n n n n nn n n n f x dx f x dx f x dxf x dx f x dxf x dx dxmG ∞=∞=∞=-∞∞==∞==+ =+ =+ =0+=? =?=∑∑?∑∑∑6. 因为323sin 1nx nx n x +在[]0,1上连续, 13 230(R)sin 1nx nxdx n x+?存在且与13230(L)sin 1nx nxdx n x+?的值相等. 易知 32232323211sin .11122nx nx nx nx n x n x n x x x≤≤?≤+++ 由于12x在()0,1上⾮负可测,且⼴义积分112dx x收敛,则12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+, ()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++?? = ?+?? ==.。
华屮师范大学2002——2003学年第二学期期(中、末)考试试卷(A、R卷)课程名称实变函数课程编号42111300 任课教师_________题型判断题叙述题简答题解答题总分分值151********得分一、判断题(判断正确、错课,并改正。
共5题,共5X3=15分)1、可数个冇限集的并集是可数集。
.(X )改正:可数个有限集的并集不一定是可数集。
2、存在开集使具余集仍为开集。
(V )co3、若可测集列E“单调递减,则m A E n = limrnE, o( X )n=\ ns改正:若可测集列乞单调递减,且存在〃0,使加£心<008则m A E n = lim mE n <>n=\n—4、若E是可测集,/(兀)是£上的实函数,则/(x)在E上可测的充要条件是:0 实数a,b(a<b) , E[x\a<f<b]都是可测集。
(X )改正:若£是可测集,/(Q是E上的实函数,则/(x)在E上可测的充耍条件是: 0实数a, E[x\f>a]都是可测集。
5、若E是可测集, /(兀)是E上的非负可测函数,则于(兀)在E上一定可积。
改正:若E是可测集, /(X)是E上的非负可测函数,则/(x)在E上不一定可积。
二.叙述题(共5题,共5X3=15分)1、集合的对等。
答:设A、B是两个集合,若A、BZ间存在一一对应,则称A与B对等。
2、可测集。
答:设E u R”,如果对任意T uR”,总有mV=/77*(Tn£) + m*(Tn£c),则称E为可测集。
3、可测集与几型集的关系。
答:设E为可测集,则存在人型集F,使F uE且加E二加F、加(E — F) = O。
4、叶果洛夫定理。
答:设mE < +oo , { f n(x))为E上儿乎处处有限的可测函数列,/(兀)也为E上儿乎处处有限的可测函数,如果AU)^/(x) a.e.于E,则对任意£>0,存在可测了集E£^E 使在E&上,f n (兀)一致收敛于/*(兀),而m{E-E G)< 8 o5、九(兀)在可测集E上依测度收敛于/(兀)的定义。
《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
---《实变函数》试卷一一、单项选择题( 3 分×5=15 分)1、下列各式正确的是()( A) lim A n A k ;(B) lim A nn 1 k n A k ;n n 1 k n n( C) lim A n A k ;( D) lim A nn 1 k A k ;n n 1 k n n n2、设 P 为 Cantor 集,则下列各式不成立的是()(A)P c (B)mP 0(C)P'P(D)P P3、下列说法不正确的是()(A)凡外侧度为零的集合都可测( B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n ( x) 是 E 上的a.e.有限的可测函数列 , 则下面不成立的是()(A)若f n(x) f ( x) ,则f n( x) f ( x)(B)sup f n ( x) 是可测函数(C)inf f n (x) 是可测函数 ; ( D)若n nf n (x) f (x) ,则 f (x) 可测5、设 f(x) 是[ a,b]上有界变差函数,则下面不成立的是()(A) f (x) 在 [ a, b] 上有界(B)f ( x) 在 [ a,b] 上几乎处处存在导数(C)f'( x)在[ a, b]上 L 可积 (D)bf '(x)dx f (b) f (a)a二.填空题 (3 分× 5=15 分 )1、(C s A C s B) ( A ( A B))_________2、设 E 是 0,1 上有理点全体,则oE' =______, E =______, E =______.3、设 E 是 R n中点集,如果对任一点集T 都,则称 E是L可测的4、f ( x)可测的 ________条件是它可以表成一列简单函数的极限函数 . (填“充分”,“必要”,“充要”)5、设f (x)为 a, b 上的有限函数,如果对于a, b 的一切分划,使_____________________________________则,称f ( x)为a, b 上的有界变差函数。
《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
《实变函数》试题题库参考答案一、选择题1、D2、C3、D4、D5、A6、B7、C8、A9、B 10、C 11、C 12、D 13、C 14、B 15、C 16、D 17、A 18、D 19、C 20、A 21、B 22、C 23、B 24、C 25、A 26、C 27、D 28、D 29、B 30、D 31、A 32、B 33、C 34、A 35、B 36、D 37、C 38、B 39、C 40、B 41、B 42、D 43、B 44、A 45、A 46、D 47、D 48、B 49、A 50、B 51、A 52、D 53、C 54、D 55、B 56、A 57、D 58、C 59、A 60、D 61、A 62、B 63、D 64、C 65、C 66、D 67、B 68、A 69、B 70、C 71、D 72、C 73、C 74、B 75、A 76、B 77、A 78、C 79、C 80、D 81、B 82、A 83、B 84、C 85、C 86、B 87、C 88、D 89、A 90、A二、填空题1、n 2 ;2、c ;3、c ;4、c ;5、c ;6、c ;7、{x:对于任意的I ∈α,有αA x ∈};8、{x:存在I ∈α,使得αA x ∈};9、ααA C s I∈⋃;10、ααA C s I ∈⋂;11、n kn k A ∞=∞=⋃⋂1;12、n kn k A ∞=∞=⋂⋃1;13、211)(∑=nk k x ;14、|})()({|sup ],[t y t x b a x -∈;15、2112})({∑∞=-k k k y x ;16、21222211})(){(y x y x -+-;17、21233222211})()(){(y x y x y x -+-+-;18、21244233222211})()()(){(y x y x y x y x ++-+-+-;19、}1:),{(22≤+=y x y x E ;20、}1:),,{(222≤++z y x z y x ;21、}1:),{(22=+y x y x ; 22、}1:),{(22≤+y x y x ;23、}1:),,{(222=++z y x z y x ; 24、}1:),,{(222=++z y x z y x ; 25、2;26、0;27、1;28、)},({inf ,y x d By A x ∈∈;29、)},({sup ,y x d Ay A x ∈∈;30、1;31、∑∞=1||infi i I ;32、n n mS ∞→lim ;33、)(a f E >可测;34、0>∀σ有 ∞=<1i i I E ;35、C B D A ⊂⊂⊂;36、||x ;37、可测函数;38、点态收敛与一致收敛;39、)(*||E I m I --;40、次可数可加性;41、可测函数;42、可测函数;43、单调性;44、 ∞=1i i G (i G 开);45、推广;46、测度;47、)(*)(**CE T m E T m T m +=;48、 ∞=1n n F ,(n F 闭集);49、常数;50、可测函数,连续函数;51、n n mS ∞→lim ;52、零测集; 53、可测函数;54、依测度; 55、0; 56、0; 57、0; 58、0; 59、0;60、0三、判断题 1、( √ )理由: 集合具有无序性 2、( × )理由: 举一反例, 比如: 取A={1}, B={2} 3、( √ )理由: 空集Φ是任意集合的子集. 4、( × )理由:符号⊂表示集合间的关系,不能表示元素和集合的关系. 5、( × )理由:Φ表示没有任何元素的集合,而{Φ}表示单元素集合,这个元素是Φ6、( × )理由: Φ表示没有任何元素的集合,而{0}表示单元素集合,这个元素是07、( √ )理由: 根据内点的定义, 内点一定是聚点8、( × )理由: 举一反例,比如: E=(0,1),元素1不是E的外点,但却属于E的余集分9、( √ )理由: 有内点的定义可得.10、( √ )理由: 有内点的定义可得.11、( × )理由: 举例说明,比如: E=(0,1),元素1是E的边界点,但属于E.12、( × )理由: 举一反例,比如: E=(0,1),元素1是E的内点,但不属于E13、(×)理由: 因有若]1,0[]1,0)([-可测⊂E,E不可测,而EE14、(√)理由: 因)eaggf=>=≠E>f()(E()()gg(agaff>E==≠E>((())()f))g)(g((a两可测集的并可测。
2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。
考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就试卷 共 8 页 第 2 页得到列维定理的结论:。
一、单项选择题1.下列命题或表达式正确的是 DA .}{b b ⊂B .2}2{=C .对于任意集合B A ,,有B A ⊂或A B ⊂D .φφ⊂ 2.下列命题不正确的是 AA .若点集A 是无界集,则+∞=A m *B .若点集E 是有界集,则+∞<E m *C .可数点集的外测度为零D .康托集P 的测度为零 3.下列表达式正确的是 DA.}0),(m ax {)(x f x f -=+B .)()()(x f x f x f -++= C.)()(|)(|x f x f x f -+-=D .}),(min{)]([n x f x f n = 4.下列命题不正确的是 BA .开集、闭集都是可测集B .可测集都是Borel 集C .外测度为零的集是可测集D .σF 型集,δG 型集都是可测集 5.下列集合基数为a (可数集)的是 CA .康托集PB .)1,0(C .设i n nx x x x x A R A |),,,({,21 ==⊂是整数,},,2,1n i =D .区间)1,0(中的无理数全体二、计算题1. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰.解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰2. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰三、判断题 1. 若,A B 可测, A B ⊂且A B ≠,则mA mB <.(×)2. 设E 为点集, P E ∉, 则P 是E 的外点. (×)3. 点集11,2,,E n⎧⎫=⎨⎬⎩⎭的闭集.(×) 4. 任意多个闭集的并集是闭集.(×) 5. 若n ER ⊂,满足*m E =+∞, 则E 为无限集合.(√)6.非可数的无限集为c 势集。
2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)试卷共8 页第 1 页实变函数期末考试卷(A)2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分)1 我们将定义在可测集q E ⊂¡上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:试卷 共 8 页 第 2 页()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx fx x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =L ).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就得到列维定理的结论:。
6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足()()lim n n f x f x a e →∞=g g 于E 或n f f ⇒两个条件之一。
或 的结论:(1);(2)。
7 富比尼定理的表述过程比较长,但它给出了定义在两个可测子集,p qA B ⊂⊂ 上的笛卡尔积P qA B +⨯⊂¡上的可测函数()(),f P f x y =的积分可化为累次积分 ()()(),,A BABBAf P dP dx f x y dy dy f x y dx ⨯==⎰⎰⎰⎰⎰的条件却非常简单。
只要下列两个简单条件之一成立就行了:(1) ;(2)。
两个累次积分都存在且相等是()f P 在A B ⨯上可积的条件,但不是条件。
8 斯蒂尔切斯积分的定义是:。
二 多项选择题 下列各题中正确的结论有些可能不止一个,请把正确结论的编号填在左边的方括号内。
(每小题3分,满分15分) [ ] 1定义在pE ⊂¡上的实函数()f x 的正部()f x +和负部()f x -的取值情况有:(A )x E ∀∈,()f x +与()f x -不同时取正值,但可能同时为零;(B )x E ∀∈,()f x +与()f x -可能同时取正值,也可能同时为零;(C )E 上任意两个非负实函数都构成E 上第三个实函数的正部与负部; (D )E 上任意两个不同时取正值的非负函数都构成E 上第三个实函数的正部与负部。
[ ] 2 设12k E E E E =U UL U 是q ¡中有限个互不相交的可测集的并集,函数ϕ在i E 上的值恒等于常数i c (1,2,,i k =L ),则ϕ在E 上L 可积的充要条件有: (A )mE <+∞; (B )当i mE =+∞时0i c =; (C )12,,,k E E E L 均为测度有限集; (D )每个i i c mE 均为有限数。
[ ] 3 ()M E 中的非负函数f 都是积分确定的,这是因为:(A )()Ef x dx <+∞⎰;(B )()Ef x dx +⎰和()Ef x dx -⎰都是有限数; (C )()()00E fx f x dx --≡⇒=<+∞⎰;(D )()0.Ef x dx --∞≤<⎰ [ ] 4 [],a b 上的有界变差函数()f x 的任一个变差()()11ni i i f x f x -=-∑()01n a x x x b =<<<=L都不会超过全变差()baV f ,而且当[][]12,,a x a x ⊂时有()()12x x aaV f V f ≤.由这两条结论可以推知: (A )()f x 在[],a b 上的振幅()()[]{}()sup,,baf x f y x y a b V f -∈≤;(B )[],x a b ∀∈有()()()b af x f a V f ≤+;(C )有界变差函数一定可以表为两个增函数的差;(D )有界变差函数至多有可数个不连续点,不可导点构成零测度集。
[ ] 5 关于[],a b 上的绝对连续函数()F x 及其导数,下列结论正确的有:(A )用每个在[],a b 上L 可积的函数()f x 都可构造一个绝对连续函数 ()()x aF x f t dt =⎰,满足()()F x f x a e '=g g 于[],a b ;(B )每个绝对连续函数()F x 都在[],a b 上几乎处处有可积的导函数()F x ',而且满足牛氏公式()()()baF x dx F b F a '=-⎰;(C )每个在[],a b 上几乎处处有导数的函数()F x 都是绝对连续函数,同时满足牛氏公式()()()baF x dx F b F a '=-⎰;(D )在[],a b 上几乎处处有导数的有界函数()F x 不一定连续,但()F x 本身一定可积。
而它的导函数()F x '就不一定可积了。
即使可积也不一定满足牛氏公式。
三 设q E ⊂¡满足:0ε∀>,∃闭集F E ε⊂使()*m E F εε-<. 试证明E 是可测集。
(8分)试卷 共 8 页 第 4 页四 我们也可以这样来定义可测函数:定义在可测集q E ⊂¡上的实函数称为是可测的,如果它能表达成E 上一列简单函数的极限函数.现在请你用这个定义证明:E 上两个可测函数()(),f x g x 的乘积()()f x g x 还是E 上可测函数。
(7分)五 设(){}n f x 是q E ⊂¡上的L 可积函数列,并且正项级数()1n n Ef x dx∞=∑⎰收敛。
试证明函数项级数()1n n f x ∞=∑几乎处处收敛,它的和函数()()1n n S x f x ∞==∑在E 上L 可积,而且满足逐项积分公式:()()1n n EES x dx f x dx ∞==∑⎰⎰. (12分)试卷 共 8 页 第 5 页六 设f 是[],a b上的连续函数g 使 (12分)七 设(){}k f x 是pE ⊂¡上非负可测函数列, ()()lim k k f x f x →∞=,并且()()()12k f x f x f x ≥≥≥≥L L .若有某个()0k f x 在E 上L 上可积。
试证明()f x 也在E 上可积,并且()()lim k EEk f x dx f x dx →∞=⎰⎰. (10分)八 设()f x 在1E ⊂¡上L 可积,()0Ef x dx a =>⎰,试证明:()0,1μ∀∈,存在E的可测子集e 使()ef x dx μ=⎰ (12分)试卷 共 8 页 第 7 页实变函数期末考试卷(A)参考答卷2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分)1 我们将定义在可测集q E ⊂¡上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()()()f x fx f x +-=-,()()()f x f x f x +-=+。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =L ).ϕ在E 上的L 积分定义为:()1122k k Ex dx c mEc mE c mE ϕ=+++⎰L ,这个积分值可能落在区间[]0,+∞中,但只有当()Ex dx ϕ<+∞⎰时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()()()(){}sup 0EEf x dx x dx E x f x ϕϕϕ=∀∈≤≤⎰⎰是简单函数,且有, 这个积分值可能落在区间[]0,+∞中,但只有当()Ex dx ϕ<+∞⎰时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -至少有一个可积, 即()Efx dx +⎰和()E f x dx -⎰的值+∞不全为;但只有当f f +-和都可积时才能说f是L 可积的,这时将它的积分定义为:()()()EEE f x dx fx dx f x dx +-=-⎰⎰⎰.5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:试卷 共 8 页 第 8 页()()lim lim nn E E n n fx dx f x dx →∞→∞≤⎰⎰;如果再添上条件()()()12n f x f x f x ≤≤≤≤L L 和()()lim n n f x f x →∞=就得到列维定理的结论: ()()lim n EEn f x dx f x dx →∞=⎰⎰.6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足()()lim n n f x f x a e →∞=g g 于E 或n f f ⇒两个条件之一。
或 ()(),n mE M n f x F x a e E <+∞≤⋅⋅而且存在正数使对任何自然数有于,就可得到勒贝格控制收敛的结论: (1)()()lim 0n En f x f x dx →∞-=⎰;(2)()()lim n EEn f x dx f x dx →∞=⎰⎰.7 富比尼定理的表述过程比较长,但它给出了定义在两个可测子集,p qA B ⊂⊂ 上的笛卡尔积P qA B +⨯⊂¡上的可测函数()(),f P f x y =的积分可化为累次积分()()(),,A BABBAf P dP dx f x y dy dy f x y dx ⨯==⎰⎰⎰⎰⎰的条件却非常简单。