实变函数期末考试卷A卷
- 格式:docx
- 大小:294.47 KB
- 文档页数:6
华中师范大学 2006 –2007 学年第一学期期末考试试卷(A 卷)(解答)课程名称 实变函数 课程编号 83410014 任课教师判断题(判断正确、错误,请在括号中填“对”或“错”。
共5小题,每题3分,共5×3=15分)1、可数个可数集的并集是可数集。
( 对 )2、可测集E 上的非负可测函数必Lebesgue 可积。
( 错 )3、R n 上全体Lebesgue 可测集所组成的集类 具有连续势。
( 错 )4、非空开集的Lebesgue 测度必大于零。
( 对 )5、若()n f x (1n =,2,)和()f x 都为可测集E 上的可测函数,且lim ()()n n f x f x →∞=,..a e E ,则()()n f x f x ⇒,x E ∈。
( 错 )二、叙述题 (共5小题 , 每题3分,共5×3 =15分)1、单调收敛定理(即Levi 定理)答:设E 是Lebesgue 可测集,()n f x (1n =,2,)为E 上的非负可测函数,若{()n f x }是单调递增的,记()lim ()n n f x f x →∞=,则lim()()n n EEf x dx f x dx →∞=⎰⎰。
2、R n中开集的结构定理答:R n中的任一非空开集总可表示成R n中至多可数个互不相交的半开半闭区间的并。
(或R n中的任一开集或为空集或可表示成R n中至多可数个互不相交的半开半闭区间的并。
)3、R n中的集合E 是Lebesgue 可测集的卡氏定义(即C .Caratheodory 定义)答:设n E R ⊂,如果对任意nT R ⊂,总有***()()c m T m T E m T E =⋂+⋂则称E 为R n 中的Lebesgue 可测集,或称E 是Lebesgue 可测的。
4、F .Riesz 定理(黎斯定理)答:设E 为Lebesgue 可测集,()n f x (1n =,2,)和()f x 都是E 上的几乎处处有限的可测函数,如果()()n f x f x ⇒ x E ∈,则存在{()n f x }的一个子列{()k n f x },使得lim ()()k n k f x f x →∞=..a e 于E 。
实变函数期末考试题考试题目:本次实变函数期末考试题旨在考察学生对实变函数的理解、分析和应用能力。
考试时间为120分钟,共分为两部分,选择题和解答题。
请同学们仔细阅读每个问题,并在考试纸上作答。
祝各位同学好运!第一部分:选择题选择题共有10道题,每题4分,共40分。
请在A、B、C、D四个选项中选择正确答案,并填涂在答题纸上。
1. 设函数f(x) = x^2 + 2x - 1,那么f'(x)的导函数是:A. 2x + 2B. 2x + 1C. 2x - 1D. 2x + 22. 实变函数f(x) = e^x,则f''(x)的导函数是:A. e^xB. e^x - 1C. e^x + 1D. e^x + e^x3. 设函数f(x) = 3x^2 + 5,那么f(0)的值为:A. 5B. 3C. 0D. 84. 函数f(x) = |x - 2|的定义域为:A. (2, +∞)B. (-∞, 2)C. [2, +∞)D. (-∞, +∞)5. 函数f(x) = log(2x - 1)的定义域为:A. (1/2, +∞)B. (-∞, 1/2)C. [1/2, +∞)D. (-∞, +∞)6. 函数f(x) = sin(2x)的最小正周期为:A. πB. 2πC. π/2D. π/47. 函数f(x) = arctan(x)的值域为:A. (-∞, +∞)B. (-π/2, π/2)C. (-π/4, π/4)D. [0, π/2)8. 设函数f(x) = ln(x),则f'(x)的导数为:A. 1/xB. xC. x - 1D. 1/(x - 1)9. 函数f(x) = x^3在闭区间[0, 1]上的最大值为:A. 27B. 9C. 1D. 310. 函数f(x) = sqrt(x)在闭区间[0, 4]上的最小值为:A. 0B. 1C. 2D. 4第二部分:解答题解答题共有3道题,共60分。
华屮师范大学2002——2003学年第二学期期(中、末)考试试卷(A、R卷)课程名称实变函数课程编号42111300 任课教师_________题型判断题叙述题简答题解答题总分分值151********得分一、判断题(判断正确、错课,并改正。
共5题,共5X3=15分)1、可数个冇限集的并集是可数集。
.(X )改正:可数个有限集的并集不一定是可数集。
2、存在开集使具余集仍为开集。
(V )co3、若可测集列E“单调递减,则m A E n = limrnE, o( X )n=\ ns改正:若可测集列乞单调递减,且存在〃0,使加£心<008则m A E n = lim mE n <>n=\n—4、若E是可测集,/(兀)是£上的实函数,则/(x)在E上可测的充要条件是:0 实数a,b(a<b) , E[x\a<f<b]都是可测集。
(X )改正:若£是可测集,/(Q是E上的实函数,则/(x)在E上可测的充耍条件是: 0实数a, E[x\f>a]都是可测集。
5、若E是可测集, /(兀)是E上的非负可测函数,则于(兀)在E上一定可积。
改正:若E是可测集, /(X)是E上的非负可测函数,则/(x)在E上不一定可积。
二.叙述题(共5题,共5X3=15分)1、集合的对等。
答:设A、B是两个集合,若A、BZ间存在一一对应,则称A与B对等。
2、可测集。
答:设E u R”,如果对任意T uR”,总有mV=/77*(Tn£) + m*(Tn£c),则称E为可测集。
3、可测集与几型集的关系。
答:设E为可测集,则存在人型集F,使F uE且加E二加F、加(E — F) = O。
4、叶果洛夫定理。
答:设mE < +oo , { f n(x))为E上儿乎处处有限的可测函数列,/(兀)也为E上儿乎处处有限的可测函数,如果AU)^/(x) a.e.于E,则对任意£>0,存在可测了集E£^E 使在E&上,f n (兀)一致收敛于/*(兀),而m{E-E G)< 8 o5、九(兀)在可测集E上依测度收敛于/(兀)的定义。
《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
实变函数 一、 判断题(每题2分,共20分)1.若A 是B 的真子集,则必有B A <。
(×)2.必有比a 小的基数。
(√)3.一个点不是E 的聚点必不是E 的内点。
(√)4.无限个开集的交必是开集。
(×)5.若φ≠E ,则0*>E m 。
(×)6.任何集n R E ⊂都有外测度。
(√)7.两集合的基数相等,则它们的外测度相等。
(×)8.可测集的所有子集都可测。
(×)9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。
(×)10.)(x f 在E 上可积必积分存在。
(×)1.设E 为点集,E P ∉,则P 是E 的外点.( × )2.不可数个闭集的交集仍是闭集. ( × )3.设{}n E 是一列可测集,且1,1,2,,n n E E n +⊂=则1()lim().n n n n m E m E ∞→∞==(× )4.单调集列一定收敛. (√ )5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ⊂-=,()f x 在F 上连续.( × )二、填空题(每空2分,共20分)1.设B 是1R 中无理数集,则=B c 。
2.设1,1,,31,21,1R n A ⊂⎭⎬⎫⎩⎨⎧= ,则=0A φ ,='A }0{ 。
3.设 ,2,1,0),11,11(=++-=n n n A n ,则=⋃∞=n n A 0 )1,1(- ,=⋂∞=n n A 1 }0{ 。
4.有界变差函数的不连续点构成的点集是 至多可列 集。
5.设E 是]1,0[上的Cantor 集,则mE 0 。
6.设A 是闭集,B 是开集,则B A \是 闭 集。
7.闭区间],[b a 上的有界函数)(x f Rimann 可积的充要条件是 )(x f 是],[b a 上的几乎处处的连续函数 。
实变函数历年考试真题汇总线号学订名装姓封级班密系卷院试陇东学院2022—2022学年第一学期实变函数(A)3.下列关系式中成立的是()一.填空.(每空2分,共20分)①AB\\BA,②A\\BBA,③ABAB,1给出自然数集N与整数集Z之间的一一对应关系.④ABAB,⑤ABAB,其中A,B是二集合.2设A,B是两集合,AB是指.A.①②B.③④⑤C.③⑤D.①②③④⑤1某,y)y某,在R内求E,E,4.设ERn3E(in,某02,mE,fn(某)在E上几乎处处收敛于f(某).则().0,某0A.fn(某)在E上处处收敛于f(某);4.设f(某)某,某P,其中P是Cantor集,则e某,某[0,1]\\P.0,1f(某)d某________.B.存在fn(某)的子列fni(某),使得fni(某)在E上一致收敛于f(某).5.设ERn,则称E是L可测的是指:.C.fn(某)在E上一致收敛于f(某);6.设f(某)in某,某[0,2],则f(某);D.fn(某)在E上依测度收敛于f(某);f(某).5.设ERq为可测集,fn(某)是E上的一列非负可测函数,则()7.称f(某)为可测集E上的简单函数是指AElimfnn(某)d某limfn(某)d某BnEElimfnn(某)d某limfn(某)d某nE8.设⑴mE;⑵fn(某)是E上一列几乎处处有限的可测函数;⑶CElimf某)d某limnn(fn(某)d某DnEElimnfn(某)d某nlimEfn(某)d某lim三.判断题(每题2分,共10分)nfn(某)f(某)a.e.于E,且f(某)a.e.于E.则0,EE,使得1.mE0E是有限集或可数集.()mE,而fn(某)在上一致收敛于f(某).2.若开集G1是开集G2的真子集,则mG1mG2()二.选择(每题2分,共10分)3.直线上的开集至多是可数多个互不相交的开区间的并()1.若A是有限集或可数集,B是不可数集,则以下不对的是().4.设f(某),g(某)是可测集E上的可测函数,则f(某)g(某)也是E上的可测函数A.AB是可数;B.AB是不可数;C.ABc;D.ABB()2.设E是任一可测集,则().5.可测函数f(某)在E上L可积f(某)在E上L可积()四.证明题(每题8分,共40分)A.E是开集;B.0,存在开集GE,使得m(G\\E);C.E是闭集;D.E是F设f(某)是(,)上的实值连续函数,则aR,E某f(某)a是型集或G型集.1.证明:第1页共6页一开集.q某某2.设ER,证明存在G型集GE,使得mGmE0,某为0,1及0,1中的无理数,是0,1上的可测函数4.设函数列fn(某)(n1,2,222某P,某,其中P是Cantor集,则f(某)d某________.某0,1e,某[0,1]\\P.)在有界集E上“基本上”一致收敛于f(某)(即5.设ER,则称E是L可测的是指:.6.设f(某)co某,某[0,2],则f(某);n0,EE,使得fn(某)在E上一致收敛于f(某)且m(EE).)证明:fn在E上a.e.收敛于f.5.设mE0,f(某)在E上可积,如果对于任何有界可测函数(某),都有f(某).7.称f(某)为可测集E上的简单函数是指8.设⑴mE;⑵Ef(某)(某)d某0,则f(某)0a.e.于E.五.计算题(每题10分,共20分)3某,某Q[0,1],1.设f(某)问f(某)在[0,1]上黎曼可积吗?勒贝格可积吗?1,某Q[0,1].fn(某)是E上一列几乎处处有限的可测函数;⑶limfn(某)f(某)a.e.于E,且f(某)a.e.于E.则0,EE,使得n若可积,则计算其积分值.2.limmE,而fn(某)在上一致收敛于f(某).二.选择.每题2分,共10分)1.若A是有限集或可数集,B是不可数集,则以下不对的是().A.AB是可数;B.AB是不可数;C.ABc;D.A设E是任一可测集,则().n某in5某d某22n01n某1BB2.A.E是开集;B.0,存在开集GE,使得m(G\\E);C.E是闭集;D.E是F型集或G型集.3.下列关系式中成立的是()①AB\\BA,②A\\BBA,③ABAB,陇东学院2022—2022学年第一学期实变函数论期末试题(B)一.填空.(每空2分,共20分)线第2页共6页④ABAB,⑤ABAB,其中A,B是二集合.2.证明:若E可测,则0,存在开集G,使EG,而m(GE)A.①②B.③④⑤C.③⑤D.①②③④⑤A.fn(某)在E上处处收敛于f(某);B.存在fn(某)的子列fni(某),使得fni(某)在E上一致收敛于f(某).4.设mA0,B为任一点集,则有m某(AB)m某B.5.设mE0,f(某)在E上可积,如果对于任何有界可测函数(某),都有C.fn(某)在E上一致收敛于f(某);D.fn(某)在E上依测度收敛于f(某);5.设ER为可测集,fn(某)是E上的一列非负可测函数,则()qEf(某)(某)d某0,则f(某)0a.e.于E.五.计算题(每题10分,共20分)某,某Q0,1,2.设f(某)问f(某)在[0,1]上黎曼可积吗?勒贝格可积吗?若1,某Q0,1.可积,则计算其积分值.2.limAlimfEnn(某)d某limfn(某)d某BnElimfEnn(某)d某limfn(某)d某nEnEClimfEnn(某)d某limfn(某)d某DnElimfEnn(某)d某limfn(某)d某三.判断题(每题2分,共10分)1.mE0E是有限集或可数集.()2.若开集G1是开集G2的真子集,则mG1mG2()3.直线上的开集至多是可数多个互不相交的开区间的并()4.设f(某),g(某)是可测集E上的可测函数,则f(某)g(某)也是E上的可测函数()25.可测函数f(某)在E上L可积f在E上L可积()n某d某01n2某2n1四.证明题(每题8分,共40分)1.证明:设f(某)是(,)上的实值连续函数,则aR,E某f(某)a是一闭集.陇东学院2022—2022学年第二学期实变函数论期末试题(A)一.填空.(每空2分,共20分)线第3页共6页A.E是开集B.0,存在开集GE,使得m(G\\E)1.给出0,1与0,10之间的一一对应关系.C.E是闭集D.E是F型集或G型集2.设A1n0,1n,n1,2,.则limnAn.3.设En是一列可测集合,且E1E2En,则有().3.设E是平面上单位正方形[0,1][0,1]中坐标都是有理数的点组成的集合,则A.mEmEnmElimn;B.mEnlimmEn;__________.n1nn1n4.设E1是[0,1]中的全部有理点,则E1在R1内的E1,E1C.mEnlimnmEn;D.mEnlimmEn.n1n1nE.4.设fn(某)在E上依测度收敛于f(某).则().5.举出一个在[0,1]上Lebegue可积但不Riemann可积的函数A.fn(某)在E上处处收敛于f(某)f(某)______.B.fn(某)在E上几乎处处收敛于f(某)6.设ERn,则称E是L可测的是指:.C.fn(某)在E上一致收敛于f(某);7.设f(某)是定义在可测集ERn上的广义实值函数,则称f(某)在E上是可测的是指:.D.存在fn(某)的子列fni(某),使得fni(某)在E上几乎处处收敛于f(某)8.设f(某)是可测集ERn上的可测函数,若Ef(某)d某与Ef(某)d某中至少有5.设ERq为可测集,fn(某)是E上的一列非负可测函数,则()一个是有限数,则f(某)在E上的L积分定义为AElimf(某)d某limd某B)d某limnnnEfn(某)Elimfnn(某fn(某)d某nEEf(某)d某.C某)d某Elimf某)d某limDnn(nEfn(某)d某Elimnfn(某)d某nlimEfn(二.选择.每题2分,共10分)三.判断题(每题2分,共10分)1.设E11.不是A的聚点必不是A的内点()1是(0,1)中的无理点集,E2是R中的有理点集,E3是(0,1),P是康托集,其2.mE0则E是至多可数集.()中基数最小的是().3.设E是可测集,A是可数集,则m(EA)mE()A.E1B.E2C.PD.E34.设f(某)是可测集E上的可测函数,则f(某)也是E上的可测函数()2.设E是任一可测集,则().5.设f(某)是E上的有界可测函数,则f(某)在E上L可积()第4页共6页四.证明题(每题8分,共40分)1.证明:A\\BCA\\BA\\C2.设f(某)是,上的实值连续函数,则对于任意常数a,E某f(某)a总是一闭集.3.设mA0,B为任一点集,则有m某(AB)m某Bq4.设ER为可测集,f(某)为E上的非负可测函数.若1.给出0,1与,之间的一一对应关系.222.设A,B是两集合,AB是指.3.E(某,y)某y1,在R内求E,E,4.设ER,则称点集E是L可测的是指: n222Ef(某)d某0,则.5.设f(某)是定义在可测集E上的广义实值函数,则称f(某)在E上是可测的是指:.f(某)0a.e.于E5.设函数列fn(某)(n1,2,)在有界集E上“基本上”一致收敛于f(某),即6.称f(某)为可测集E上的简单函数是指:7.设ERq为可测集,f(某)为E上的可测函数,若一个有限,则称f(某)在E上;若f(某)在E上.0,EE,使得fn(某)在E上一致收敛于f(某)且m(EE).证明:fn在E上a.e.收敛于f.Ef(某)d某与Ef(某)d某中至少五.计算题(每题10分,共20分)某2,某Q0,1,1.设f(某)问f(某)在[0,1]上黎曼可积吗?勒贝格可积.1,某0,1Q,吗?若可积,则计算其积分值.2.limEf(某)d某与Ef(某)d某都有限,则称8.设ERq为可测集,(某)为E上的非负可测简单函数,即n某con某d某01n2某2n1(某)cii1kEi且E(某),E1,E2,,Ek为互不相交的可测集,Ei1ki,Ei(某)是Ei上的特征函数,则(某)d某.E二.选择(.每题2分,共10分)1.若A是有限集或可数集,B是不可数集,则以下不对的是.()A.AB是可数;B.AB是不可数;C.ABc;D.ABB陇东学院2022—2022学年第二学期变函数论期末试题(A)一.填空.(每空2分,共20分)线2.设E是任一可测集,则()A.E是开集;B.0,存在开集GE,使得m(G\\E);C.E是闭集;D.E是F型集或G型集.第5页共6页3.设A,B是二集合.下列关系式中成立的是()3.设S1,S2为可测点集,S1S2,且mS1,则mS2\\S1mS2mS1.4.设f(某)是E上的可测函数,并且f(某)g(某)a.e.于E,则g某也是E上的可测函数.5.设mE0,f(某)在E上可积,如果对于任何有界可测函数(某),都有A.AB\\BAB.A\\BBAC.ABABD.ABAB4.设En是一列可测集合,单调递减,且mE1,则有().Ef(某)(某)d某0,则f(某)0a.e.于E.A.mE;B.nlimmEnmEnlimmEn;五.计算题(每题10分,共20分)n1nn1n3.设f(某)某,某P,1,某0,1\\P,其中P为cantor集,EC.mnlimmEn;D.mEnlimmEn.勒贝格可积吗?若可积,则计算其积分值.n1nn1n2.lim1n某n01n2某2d某5.设ERq为可测集,fn(某)是E上的一列非负可测函数,当某E时对于任一自然数n,有fn(某)fn1(某),令nlimfn(某)f(某),某E,则()AElimf某)d某limnn(Efn(某)d某B(某)d某limnElimfnnEfn(某)d 某nCElimf)d某lim)d某nn(某)d某limEfn(某)d某DnEf(某nEfn(某三.判断题(某”每题2分,共10分)1.任何无限集合必有可数真子集..()2.设E为R1的可测子集,若mE0,则mE0.()3.直线上的开集至多是可数多个互不相交的开区间的并()4.若f(某)是可测集E上的L可积函数,则f(某)是E上的有界函数.()5.可测函数f(某)在E上L可积f在E上L可积()四.证明题(每题8分,共40分)1.证明:AB(AB).2.设f(某)是(,)上的实值连续函数,则aR,则E某f(某)a是一开集.第6页共6页问f(某)在[0,1]上黎曼可积吗?。
实变函数期末考试卷A卷 The final edition was revised on December 14th, 2020.
实变
函数
一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。
(×)
2.必有比a 小的基数。
(√)
3.一个点不是E 的聚点必不是E 的内点。
(√)
4.无限个开集的交必是开集。
(×)
5.若φ≠E ,则0*>E m 。
(×)
6.任何集n R E ⊂都有外测度。
(√)
7.两集合的基数相等,则它们的外测度相等。
(×)
8.可测集的所有子集都可测。
(×)
9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。
(×) 10.)(x f 在E 上可积必积分存在。
(×)
1.设E 为点集,E P ∉,则P 是E 的外点.( × )
2.不可数个闭集的交集仍是闭集. ( × )
3.设{}n E 是一列可测集,且1,1,2,,n n E E n +⊂=则
1(
)lim ().n n n n m E m E ∞
→∞
==(× ) 4.单调集列一定收敛. (√ )
5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ⊂-=,()f x 在F 上连续.( × )
二、填空题(每空2分,共20分)
1.设B 是1R 中无理数集,则=B c 。
2.设1,1,,3
1,21,1R n A ⊂⎭⎬⎫⎩⎨⎧= ,则=0A φ ,='A }0{ 。
3.设 ,2,1,0),1
1,11(=++-=n n n A n ,则=⋃∞=n n A 0 )1,1(- ,=⋂∞=n n A 1 }0{ 。
4.有界变差函数的不连续点构成的点集是 至多可列 集。
5.设E 是]1,0[上的Cantor 集,则mE 0 。
6.设A 是闭集,B 是开集,则B A \是 闭 集。
7.闭区间],[b a 上的有界函数)(x f Rimann 可积的充要条件是 )(x f 是],[b a 上的几乎处处的连续函数 。
8. Rimann 函数是 Rimann 可积也是Lebesgue 可积的。
三、计算题(每题10分,共20分)
1.计算dx nx x n nx R n ⎰+∞→1032221sin 1)(lim 。
(提示:使用Lebesgue 控制收敛定理) 解:设nx x n nx x f n 3222
1sin 1)(+=),2,1( =n ,则 (1) 因)(x f n 在]1,0[上连续,所以是可测的;
(2)]1,0[,0)(lim ∈=∞
→x x f n n ; (3)因为
显然)(x F 在]1,0[上可积。
于是由Lebesgue 控制收敛定理,有
2. 设⎪⎩
⎪⎨⎧=为有理数,的无理数;为小于的无理数为大于x x x x x x f ,01,;1,)(2试计算⎰]2,0[)(dx x f 。
解:因为有理数集的测度为零,所以
2)(x x f = ..e a 于]1,0[, x x f =)( ..e a 于]2,1[。
于是
四、证明题(每题8分,共40分)
1. 证明:)\()(\11n n n n A A A A ∞
=∞==
证明:)(\1n n A A ∞=( A =n n A ∞
=1c )
=)(1c
n n A A ∞= 2. 设M 是直线上一族两两互不相交的非空开区间组成的集合,证明M 是至多可列集。
证明:由有理数集的稠密性可知,每一个开区间中至少有一个有理数,从每个开区间中取定一个有理数,组成一个集合A 。
因为这些开区间是互不相交的,所以此有理数集A 与开区间组成的集合M 是一一对应的。
则A 是有理数集的子集,故至多可列,所以M 也是至多可列集。
3. 证明:若0=*E m ,则E 为可测集。
证明:对任意点集T ,显然成立着
)()(c E T m E T m T m ***+≤。
另一方面,因为0=*E m ,而E E T ⊂ ,所以E m E T m **≤)( ,于是
)(E T m *0=。
又因为c E T T ⊃,所以)(c E T m T m **≥,从而
)()(c E T m E T m T m ***+≥。
总之,)()(c E T m E T m T m ***+=。
故E 是可测集。
4. 可测集E 上的函数)(x f 为可测函数充分必要条件是对任何有理数r ,集合])([r x f E <是可测集。
一、填空题(每小题2分,共10分)
( D )1、()()\\\A B C A B C =成立的充分必要条件是( )
A 、A
B ⊂ B 、B A ⊂
C 、A C ⊂
D 、C A ⊂
( A )2、设E 是闭区间[]0,1中的无理点集,则( )
.C E 是不可测集 .D E 是闭集
( C )3、设E 是可测集,A 是不可测集,0mE =,则E A 是( )
.A 可测集且测度为零 .B 可测集但测度未必为零
.C 不可测集 .D 以上都不对
( B )4、设mE <+∞,(){}n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}n f x 几乎处处收敛于()f x 是(){}n f x 依测度收敛于()f x 的( )
.A 必要条件 .B 充分条件
.C 充分必要条件 .D 无关条件
( D )5、设()f x 是E 上的可测函数,则( )
.A ()f x 是E 上的连续函数
.B ()f x 是E 上的勒贝格可积函数
.C ()f x 是E 上的简单函数
.D ()f x 可表示为一列简单函数的极限
设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。
证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞,
0||()x x f x a δ-<>就有, …………………………(5分)
即任意00U(,),,U(,),x x x E x E E δδ∈∈⊂就有所以是开集…………………………(10分)
若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,
0()lim ()n n f x f x a →∞
=≥, 即0x E ∈,因此E 是闭集。
(1)设2121(0,),(0,),1,2,,n n A A n n n
-==求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞=∞………………………………………………………………………(5分)
设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即2n x A ∈,所以x 属于下标比N 大的
一切偶指标集,从而x 属于无限多n A ,得lim n n x A →∞
∈, 又显然
lim (0,),lim (0,)n n n n A A →∞→∞
⊂∞=∞所以…………………………………………………(7分)
lim n n A φ→∞
=…………………………………………………………………………………(12分) 若有lim n n x A →∞
∈,则存在N ,使任意n N >,有n x A ∈,因此若21n N ->时,
211,0,00n x A x n x n
-∈<<→∞<≤即令得,此不可能,所以lim n
n A φ→∞=………………(15分)
(2)可数点集的外测度为零。
证明:证明:设{|1,2,}i E x i ==对任意0ε>,存在开区间i I ,使i i x I ∈,且||2i i I ε
=(8分)
所以
1i i I E ∞
=⊃,且1||i i I ε∞
==∑,由ε的任意性得*0m E =………………………………(15。