基于FLUENT的离心泵水力性能预测技术
- 格式:pdf
- 大小:288.21 KB
- 文档页数:4
基于ANSYS FLUENT的双吸泵水力模型性能分析作者:杨溢来源:《科技创新导报》2019年第25期摘 ; 要:双吸离心泵作为通用机械,具有流量大、扬程高、维修方便等特点,应用领域广泛,涉及行业面广。
随着迅猛发展的计算流体动力学(CFD)技术,数值模拟技术已经作为一种重要手段来研究流体机械的内部流动规律以及预测流体外部性能参数。
本文基于ANSYS FLUENT对某S型双吸离心泵进行分析,从而获得外部参数与内部流动特征。
关键词:双吸离心泵 ;数值模拟 ;网格划分中图分类号:TP391.77 ; ; ; ; ; ; ; ; ; ; ; ; ; ; 文献标识码:A ; ; ; ; ; ; ; ; ; ; ; ;文章编号:1674-098X(2019)09(a)-0089-02随着双吸离心泵在国内应用的领域越来越广,目前开始重视对双吸泵的全面深入研究工作。
国内常用的双吸离心泵型号有 S型、SH 型、SA型等中开双吸离心泵[1],较早的双吸泵产品性能能否满足市场的高指标高要求有待研究。
本文正是对某S型双吸泵模型进行数值模拟分析,从而得出其性能能否满足要求。
1 ;双吸泵实体建模与网格划分某S型双吸离心泵的性能参数为流量Q=280m3/h,扬程H=45m,转速n=2950r/min,效率η=79.0%。
根据水力模型木模图应用SolidWorks软件,主要采用放样的方法对叶轮、压水室、吸水室进行三维水体建模。
由于双吸泵流道的几何结构复杂,本文应用ANSYS ICEM CFD的非结构化网格中的四面体单元对其进行网格划分,为了液体流动更加平稳,本文在吸水室的前端和压水室的后端分别增加进出口延长段,主要步骤如下:(1)创建计算域、Part。
本文为5个计算域,对每个计算域划分3~5个Part,并对每个Part进行命名区分。
(2)设置网格尺寸并生成网格。
既可以设置模型的整体尺寸,如果需要也可以对Part进行加密划分。
(3)合并网格。
基于Fluent 14.5离心泵内部流场数值模拟教程内容摘要:一、描述随着科学技术的进步,许多领域对水泵要求越来越高。
传统的设计方法已无法满足快节奏、高要求的现代社会。
随着计算流体力学(CFD)技术的发展,为水泵设计也带来了更好的研究方法。
应用CFD技术,通过计算机对水泵内部流场进行虚拟试验,可以快速获得外特性曲线,...一、描述随着科学技术的进步,许多领域对水泵要求越来越高。
传统的设计方法已无法满足快节奏、高要求的现代社会。
随着计算流体力学(CFD)技术的发展,为水泵设计也带来了更好的研究方法。
应用CFD技术,通过计算机对水泵内部流场进行虚拟试验,可以快速获得外特性曲线,并且能够更好的在设计阶段预测泵内部流动所产生的漩涡、二次流、边界分离、喘振、汽蚀等不良现象,通过改进以提高产品可靠性。
本教程采用IS80-65-125型水泵的水力模型,通过具体步骤希望广大同行能快速掌握运用Fluent对水泵进行CFD模拟的步骤方法。
二、建模采用Creo 2.0 M020(Peo/Engineer)进行建模。
本次教程不考虑叶轮前后盖板与泵腔间的液体(事实证明对实际结果有一定影响,为了教程方便因此不予考虑,大家可以在实际工作中加入对前后腔体液体),建模只考虑进口管部分、叶轮旋转区域部分、蜗壳部分。
对于出口管,可以根据模型的特征进行判别,本次模拟是由于出口管路对实际模拟结果影响很小,不存在尺寸急变等特征,因此去掉了出口管段,以减少网格数量。
建模如图所示:图1 建立流道模型三、网格划分建模完成后,导出*.x_t(或其他格式)格式,导入网格划分软件中进行网格划分。
网格划分软件有很多,各有各的优势,主要采用自己熟练的一种即可。
本次教程采用ICEM进行网格划分。
进口段为直锥型结构,采用六面体网格。
叶轮和蜗壳部分采用四面体非结构网格(也可以采用六面体网格,划分起来比较麻烦)。
对于工程应用,可以采用不划分边界层网格,划分边界层网格比较费时间,生成的网格数量也很高,但是从模拟的外特性曲线来看,差别不是很大,但是对于研究边界层流动对性能的影响,就必须划分边界层,对于采用有些壁面条件,也必须划分边界层(该部分查看其它教程)。
CFD 数值计算模型软件平台:PRO-E3.0理论上,水泵的进口到出口的流动区域就是我们的计算模型。
一般,全流场算域分为5部分:1. 叶轮进口段2. 叶轮内流动域3. 泵体前腔4. 泵体后腔5. 泵体(涡壳)6. 出口段通常我们计算的时候运用流动域1、2、5、6, 最简化的为流动域2、5.计算模型可以运用PRO-E ,UG ,CATIA 等三维造型软件,具体的造型过程和步骤请点击三维造型培训,模型通常保存为STP 和IGS 文件格式.各流动域可以分别造型,然后进行装配.简单的模型可以运用FLUENT 前处理软件GAMBIT 中进行.下图为某型号纸浆泵,计算模型包括:1. 叶轮进口段,2. 叶轮内流动域,3. 泵体前腔,4. 泵体后腔,5. 泵体(涡壳)某型号纸浆泵计算模型下图为某型号低比速离心泵计算模型,包括:1. 叶轮内流动域,2. 泵体(涡壳)。
模型作了简化,没有考虑腔体中的流动。
某型号低比速离心泵计算模型下图为某型号的循环泵全流场计算模型,包括所有的流动区域。
某型号循环泵计算模型计算模型的造型是CFD 工作中非常重要的一部分,由于造型可能影响到网格划分和网格生成质量,因此,科学合理的造型将达到事半功倍的效果。
网格划分计算模型导入步骤 File--Import, 见下图。
导入计算模型, 轮廓图见下图。
网格划分界面a 面合并界面b 网格分界面c 网格质量检查模型处理好后, 分别对流动区域进行网格划分通常, 叶轮和泵体的几何现状不规则,运用T-Grid 类型进行网格划分,网格间距根据模型大小和计算机性能配置进行设置,一般取1-10.在进行全流场计算时,您可以在口环、涡壳隔舌、压力梯度大的区域进行局部加密,局部加密时,需要注意网格变化不能太剧烈。
为了提高计算精度和粘性底层的影响,先画好边界层网格,再画体网格。
在FLUENT 中,您可以根据计算的结果,用Adapt-Gradient 对压力梯度大的区域进行加密,如下图所示。
二维离心泵的数值模拟与性能预测一、实验目的熟悉和掌握CFD数值模拟的基本方法,能够独立进行简单二维水力模型的CFD数值模拟。
二、研究对象研究如图所示的二维离心泵,该泵由旋转的叶轮和静止的蜗壳两部分构成。
流体从叶轮中央的圆形进口沿径向均匀进入叶轮,经过旋转的叶片作用后,得到能量,从蜗壳出口排出。
已知叶轮的叶片数为6,叶轮进、出口直径分别为120mm和220mm,叶片进口安放角(叶片与圆周方向夹角)和出口安放角分别(叶轮中心至蜗壳螺旋线起点为20 和25 ,叶片厚度为3mm。
蜗壳隔舌角的连线与水平夹角)为35 ,出口段扩散角为8 。
图表1 二维离心泵示意图图表2 UG NX所绘二维离心泵三、计算步骤1、利用Gambit 对计算区域离散化和指定边界条件类型步骤1:导入几何模型生成几何模型的方式有许多种,如Autocad,Pro/E,UG NX等,Gambit也自带简单的绘图功能,在这里UG NX绘图。
如下图,我们将会给出绘图文件。
在UG NX绘完图后,需将结果导出以便Gambit使用,这里导出为Parasolid,生成后缀名为x_t的文件。
主要内容:在Gambit中选择File/Import/Parasolid命令,选取先前生成的文件11.x_t,则二维离心泵模型被装入到Gambit。
结果如图:图表 3 导入到Gambit的二维离心泵几何模型步骤2:网格划分为了对几何区域划分网格,单击Operation / Mesh / Face / Mesh Face按钮,弹出如图所示的Mesh Faces对话框。
在Faces列表框中选取蜗壳区域,在Elements 列表框中选择Tri(三角形单元),在Type列表框中选拌Pave(非结构网格),选中Scheme命令组中的Apply复选框,然后,从Spacing区域的列表框中选择Interval Size(指定网格间隔),在文本框中输入10,选中该区域中的Apply复选框,最后选中Options区域中的Mesh复选框,单击Apply按钮,则生成蜗壳内流体区域的网格。