离心泵的性能参数与特性曲线
- 格式:doc
- 大小:303.50 KB
- 文档页数:6
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
2-4离心泵的特性曲线一、离心泵的特性曲线压头、流量、功率和效率是离心泵的主要性能参数。
这些参数之间的关系,可通过实验测定。
离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。
以供使用部门选泵和操作时参考。
特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。
图上绘有三种曲线,即1.H-Q曲线H-Q曲线表示泵的流量Q和压头H的关系。
离心泵的压头在较大流量范围内是随流量增大而减小的。
不同型号的离心泵,H-Q曲线的形状有所不同。
如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。
2.N-Q曲线N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。
显然,当Q=0时,泵轴消耗的功率最小。
因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。
3.η-Q曲线η-Q曲线表示泵的流量Q和效率η的关系。
开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。
该曲线最大值相当于效率最高点。
泵在该点所对应的压头和流量下操作,其效率最高。
所以该点为离心泵的设计点。
选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。
但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。
高效率区的效率应不低于最高效率的92%左右。
泵在铭牌上所标明的都是最高效率下的流量,压头和功率。
离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。
二.离心泵的转数对特性曲线的影响离心泵的特性曲线是在一定转速下测定的。
当转速由n1改变为n2时,其流量、压头及功率的近似关系为, , (2-6)式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。
关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。
要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。
离心泵知识、性能参数与特征曲线要正确地选择和使用离心泵,就必要认识泵的性能和它们之间的互相关系。
离心泵的主要性能参数有流量、压头、轴功率、效率等。
离心泵性能间的关系通常用特征曲线来表示。
一、离心泵的概念?:水泵是把 ?动机的机械能变换成抽送液体能量的机器。
来增添液体的位能、压能、动能。
动机经过泵轴带动叶轮旋转,对液体作功,使其能量增添,进而使需要数目的液体,由吸进口经水泵的过流零件输送到要求的高处或要求压力的地方。
二、离心泵的?本结构离心泵的本结构是由六部分构成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封置,础等?。
1、叶轮是离心泵的中心部分,它转速高输卖力大,叶轮上的叶片又起到主要作用,叶轮在配前要经过静均衡实验。
叶轮上的的表?要求圆滑,以减少水流的摩擦损失。
2、泵壳,它是水泵的主体。
起到支撑固定作用,并与安轴承的托架相连结。
3、转轴的作用 ?是借联轴器和电动机相连结,将电动机的转距传给叶轮,所以它是传达机械能的主要零件。
4、轴承是套在泵轴上支撑泵轴的构件,有转动轴承和滑动轴承两种。
轴承的托?为轴承箱。
转动轴承使用牛油作为润滑剂加油要适合一般为 2/3 ~3/4 的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的, 加油到油位线。
太多油要沿泵轴溢出,利热 ?;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在 85 度一般运行在 0 度左右,假如高了就要查找因(能否有杂质,油质能否发黑,能否进水)并实时办理!5、密封置。
叶轮进口与泵壳间的间隙过大会造成泵高压区的水经此空隙流向低压区,影响泵的出水量,效率降低!空隙过小会造成叶轮与泵壳摩擦产生磨损。
为了增添回流阻力减少漏,延缓叶轮和泵壳的所使用寿命,在泵壳缘和叶轮援联合处有密封置,密封的空隙保持在~之间为宜。
三、泵的分类泵的种类很多,可按其各样特色加以分类,见表 1-1 。
四、离心泵的主要性能参数1、流量:离心泵的流量 Q--- 离心泵在单位时间排送到管路系统的液体3体积,常用单位为 L/s 或 m/h 。
二、离心泵的性能参数与特性曲线1.离心泵的主要性能参数(1)离心泵的流量(送液能力)——单位时间内泵排到管路系统中的液体体积。
符号:v q ,单位:m ³/h 或m ³/s 。
其大小主要取决于泵的结构、尺寸和转速等。
(2)离心泵的扬程(泵的压头) ——泵对单位重量(1N )的液体所提供的有效能量。
符号:H ,单位:m 液柱。
扬程的确定: 实验测定:如图所示泵出、入口截面间垂直距离为0h 泵吸入口处真空表的读数真p 泵出口处压力表的读数表P在此两截面1与2间列柏努利方程得损H gp g u Z H g p g u Z +++=+++ρρ2222121122式中损H 为两截面间管路中的压头损失,由于两表所在截面间的管路很短,因而损H 值很小,可忽略不计。
故上式可简化为guu gp p h H gu u g p p p p h H 222122021220-+++=-+--++=ρρ真表真大大表)()(讨论:①泵的扬程等于泵出口的总压头减去泵入口的总压头;② d 1↓, u 1↑,H 功↓,一般d 1> d 2 ; ③当d 1 = d 2 时, gp p h H ρ真表++=0例:用清水测定某离心泵的主要特性。
实验装置如附图所示。
当调节出口阀使管路流量为25m 3/h 时,泵出口处压力表读数为0.28MPa (表压),泵入口处真空表读数为0.025MPa ,测得泵的轴功率为3.35kW ,电机转速为2900转/分,真空表与压力表测压截面的垂直距离为0.5m 。
试求该泵在此流量下泵的压头H 、有效功率有p 和总效率η。
(3量。
符号:有p ,单位:W 或kW 。
有效功率为: Hg q p v ρ=有泵的轴功率——指泵轴所需的功率即电动机传给泵轴的功率。
符号:轴p ,单位:W 或kW , 则轴p 为: ηρgH q p v 功轴=(4)离心泵的效率 ——有效功率和泵的轴功率之比。
介绍离心泵的几条重要的性能曲线水泵的性能参数如流量Q扬程H轴功率N转速n效率η之间存在的一定的关系。
他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
A、流量—扬程特性曲线它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
B、流量—功率曲线轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。
这个功率主要消耗于机械损失上。
此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。
C、流量—效率曲线它的曲线象山头形状,当流量为零时,效率也等于零,随着流量的增大,效率也逐渐的增加,但增加到一定数值之后效率就下降了,效率有一个最高值,在最高效率点附近,效率都比较高,这个区域称为高效率区。
五、合理配置、安全运行、优质供水以上四个方面了解了离心泵构造,工作原理、特性曲线以后,如何合理配置电机水泵的功率,是保证水泵的安全运行,优质供水,降低生产成本的关键,合理配置水泵功率,发挥水泵最佳工作区域的安全运行,我厂供水的实际情况,足已说明设备合理配置的重要性、可靠性和经济性。
离心泵的特性曲线知识介绍一、离心泵的特性曲线定义离心泵的扬程(H)、功率(P)、效率(η)与流量(qv)之间的关系曲线称为特性曲线。
其数值通常是指额定转数和标准状况(大气压101.325kPa,20℃清水)下的数值,可用实验测得。
二、下图为某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,效率某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,离心泵的特性曲线有3条,分别表示如下:(1)H-qv曲线表示H与qv的关系,通常H随qv的增大而减小。
不同型号的离心泵,H-qv曲线的形状有所不同。
有的离心泵)H-qv曲线较平坦,其特点是流量变化较大而压头变化不大;而有的泵H-qv 曲线陡降,当流量变动很小时扬程变化很大,适用于扬程变化大而流量变化小的情况。
(2)P-qv曲线表示P与qv 的关系,P随qv的增大而增大。
显然,当qv=0 时,P最小。
因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电动机。
待转动正常后再开启出口阀,调节到所需的流量。
(3)η-qv曲线表示与qv的关系,开始η随qv的增大而增大,达到最大值后,又随qv的增大而下降。
曲线上最高效率点即为泵的设计工况点,在该点所对应的扬程和流量下操作最为经济。
实际生产中,泵不可能正好在设计工况点下运转,所以各种离心泵都规定一个高效区,一般取最高效率以下7%范围内为高效区。
工程上也将离心泵最高效率点定为额定点,与该点对应的流量称为额定流量。
三、离心泵的转速对特性曲线的影响离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量qv、扬程H及功率P也相应改变。
对同一型号泵、同一种液体,在效率η不变的条件下,扬程(H)、功率(P)、流量(qv)随n的变化关系如下式所示:qv2/qv1=n2/n1H2/H1=(n1/n2)2P2/P1=(n1/n2)3上式称为比例定律表达式。
当泵的转速变化小于20%时,效率基本不变。
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数
1、流量
离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)
离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率
离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即
(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即
η=ηvηhηm(2-14)
离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N
由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有
Ne = HgQρ(2-15)
式中
Ne------离心泵的有效功率,W;
Q--------离心泵的实际流量,m3/s;
H--------离心泵的有效压头,m。
由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即
(2-16)
式中
N ----轴功率,kW。
(二)离心泵的特性曲线
离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。
在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q
等曲线,列入产品样本或说明书中,供使用部门选泵和操作时参考。
各种型号的离心泵都有其本身独有的特性曲线,且不受管路特性的影响。
但它们都具有一些共同的规律:
(1)离心泵的压头一般随流量加大而下降(在流量极小时可能有例外),这一点和离心泵的基本方程式相吻合。
(2)离心泵的轴功率在流量为零时为最小,随流量的增大而上升。
故在启动离心泵时,应关闭泵出口阀门,以减小启动电流,保护电机。
停泵时先关闭出口阀门主要是为了防止高压液体倒流损坏叶轮。
(3)额定流量下泵的效率最高。
该最高效率点称为泵的设计点,对应的值称为最佳工况参数。
离心泵铭牌上标出的性能参数即是最高效率点对应的参数。
离心泵一般不大可能恰好在设计点运行,但应尽可能在高效区(在最高效率的92%范围内,如图中波折号所示的区域)工作。
(三)影响离心泵性能的因素分析和性能换算
影响离心泵的性能的因素很多,其中包括液体性质(密度ρ和粘度μ等)、泵的结构尺寸(如D2和β2)、泵的转速n等。
当这些参数任一个发生变化时,都会改变泵的性能,此时需要对泵的生产厂家提供的性能参数或特性曲线进行换算。
1.液体物性的影响
(1)密度的影响
离心泵的流量、压头均与液体密度无关,效率也不随液体密度而改变,因而当被输送液体密度发生变化时,H-Q与η-Q曲线基本不变,但泵的轴功率与液体密度成正比。
此时,N-Q曲线不再适用,N需要用式2-16重新计算。
(2)粘度的影响
当被输送液体的粘度大于常温水的粘度时,泵内液体的能量损失增大,导致泵的流量、压头减小,效率下降,但轴功率增加,泵的特性曲线均发生变化。
当液体运动粘度γ大于20cSt(厘沲)时,离心泵的性能需按下式进行修正,即
(2-17)
式中
cQ、cH、cη——分别为离心泵的流量、压头和效率的校正系数,其值
从图2-13、2-14查得;
Q、H、η——分别为离心泵输送清水时的流量,压头和效率;
Q’、H’、η’——分别为离心泵输送高粘度液体时的流量,压头和
效率。
粘度系数换算图是在单级离心泵上进行多次试验的平均值绘制出来的,用于多级离心泵时,应采用每一级的压头。
两图均适用于牛顿型流体,且只能在刻度范围内使用,不得外推。
图2-13中的QS表示输送清水时的额定流量,单位为m3/min。
粘度系数换算图的使用方法见例2-3。
2.离心泵转速的影响
由离心泵的基本方程式可知,当泵的转速发生改变时,泵的流量、压头随之发生变化,并引起泵的效率和功率的相应改变。
当液体的粘度不大,效率变化不明显,不同转速下泵的流量、压头和功率与转速的关系可近似表达成如下各式,即
(2-18)
式中
Q1、H1、N1------转速为n1时泵的性能;
Q2、H2、N2------转速为n2时泵的性能;
式2-18称为离心泵的比例定律。
其适用条件是离心泵的转速变化不大于±20%。
3.离心泵叶轮直径的影响
当离心泵的转速一定时,泵的基本方程式表明,其流量、压头与叶轮直径有关。
对于同一型号的泵,可换用直径较小的叶轮(除叶轮出口其宽度稍有变化外,其它尺寸不变),此时泵的流量、压头和功率与叶轮直径的近似关系为
(2-19)
式中
Q’、H’、N’------转速为D2’时泵的性能;
Q、H、N------转速为D2时泵的性能;
式2-19称为离心泵的切割定律。
其适用条件是固定转速下,叶轮直径的车削不大于±5%D2。