心电去噪方法研究
- 格式:ppt
- 大小:194.00 KB
- 文档页数:22
心音信号去噪方法比较研究2016 年 01 月 06 日摘要 (1)关键词 (1)第一章绪论 (2)1.1研究背景 (2)1.1.1心音信号基础知识 (2)1.1.1.1心音的形成机制 (2)1.2心音信号的特性 (3)1.2.1心音的时域特性 (3)1.2.2心音的频率特性 (3)第二章去噪方法分析 (4)2.1 巴特沃斯滤波器 (4)2.2 切比雪夫低通滤波器 (5)2.3 小波变换 (6)第三章心音信号的获取及预处理 (12)3.1 心音信号的采集 (13)3.2 心音信号的预处理 (14)第四章心音信号去噪的实验过程 (14)4.1 常规方法 (14)4.2 小波去噪 (17)第五章滤波方法比较 (21)第六章实验总结 (21)参考文献 (22)附录 (24)摘要心音是最重要的信号之一。
然而,许多外界因素会影响心音信号的采集。
心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。
因此对心音信号去噪的研究非常重要。
本文研究并比较了几种基于matlab的心音去噪的方法。
首先我们采用经典的butterworth低通滤波器和切比雪夫低通滤波器对心音信号进行去噪,结果表明这两种滤波器对高频噪声的消除效果明显,但不能滤除低频噪声。
其次,我们采用了小波变换对含噪心音信号进行处理。
一种方法中丢弃分解信号的高频部分和部分细节,将分解后的信号近似和第四层细节相加作为样本信号的代替。
这种方法简单且能有效的消除高频噪声,但由于丢失了部分细节,易使信号失真。
然后,我们采用haar小波阈值法对信号去噪,取得的较好的去噪效果,但高频噪声残留较多。
最后,我们db6小波进行去噪,得到了很好的信号波形,而且高频噪声残留较少。
通过实验,我们得出结论,无论哪种去噪方式都有其自身的局限性,单独的使用一种去噪方法很难将噪声完全滤除。
应该采用综合滤波方法,结合各个方法的优势联合滤波。
首先使用巴特沃斯低通滤波器或切比雪夫滤波器低通滤波器滤除高频噪声,再用db小波阈值或haar小波阈值法去噪法进行去噪。
心电信号预处理原理
心电信号预处理是指在对心电信号进行分析和处理之前,对原始心电信号进行一系列的处理步骤,以提高信号质量、减少噪音和干扰,使信号更适合后续的分析和应用。
预处理的原理涉及到多个方面:
1. 滤波,心电信号通常包含各种频率的噪音和干扰,滤波是预处理的重要步骤。
常用的滤波器包括高通滤波器和低通滤波器,用于去除基线漂移和高频噪音。
滤波的原理是通过设定合适的截止频率,只保留心电信号中有用的频率成分。
2. 去噪,心电信号可能受到各种干扰,如肌肉运动、电源干扰等,需要采用去噪技术。
常用的去噪方法包括小波变换去噪、均值滤波、中值滤波等,去噪的原理是通过数学模型或统计学方法,将噪音信号与心电信号分离或抑制。
3. 基线漂移校正,心电信号中常常存在基线漂移,即信号整体偏离基准线的现象。
基线漂移校正的原理是通过计算信号的均值或斜率,将信号整体平移或调整,使得信号整体回归到基准线附近。
4. 放大,在预处理中,有时需要对心电信号进行放大,以增强信号的幅度,使得信号更易于观察和分析。
放大的原理是通过调节放大倍数或增益,使得信号幅度适合后续处理和分析的要求。
总的来说,心电信号预处理的原理是通过滤波、去噪、基线漂移校正和放大等技术手段,对原始心电信号进行处理,以提高信号质量,减少干扰和噪音,为后续的心电信号分析和诊断提供更可靠的数据基础。
心电信号处理中的噪声干扰消除算法研究引言:心电信号是一种重要的生物电信号,对于研究心血管疾病和诊断心脏健康状态具有重要价值。
然而,心电信号在采集和传输过程中会受到各种类型的噪声干扰,干扰对信号质量的影响不可忽视。
因此,开发有效的噪声干扰消除算法成为心电信号处理的关键任务。
一、噪声干扰的类型在心电信号处理中,常见的噪声干扰类型包括基线漂移、肌电干扰、交流干扰、呼吸运动干扰和电极偏移等。
这些噪声干扰会降低心电信号的质量,使得信号处理和分析的结果不可靠。
1. 基线漂移是指心电信号在采集过程中由于传感器运动、电极与皮肤接触状态的变化或电极质量的差异产生的缓慢漂移。
基线漂移使得心电信号的幅值动态范围受限,对于心电信号的精确分析产生重大影响。
2. 肌电干扰是指由心脏周围的肌肉活动引起的干扰信号。
人体的骨骼肌活动、瞬间肌肉收缩或其他无意义的运动会导致肌电干扰。
肌电干扰信号的频谱与心电信号重叠较大,极大地增加了信号处理的难度。
3. 交流干扰是指来自电力线的干扰信号,通过电极和电缆传导到心电信号中附带的干扰。
交流干扰信号的频率通常为50/60 Hz,并且幅度可能随距离电力线的远近而变化。
这种干扰不仅会引起心电信号的偏移,也会造成噪声信号的增加。
4. 呼吸运动干扰是指由于呼吸而引起的胸部和腹部肌肉活动所产生的机械振动。
这种干扰信号的频率范围通常为0.15 Hz至0.5 Hz,与心电信号的频率范围有一定的重叠。
呼吸运动干扰会使心电信号的幅值和形态发生明显变化。
5. 电极偏移是指心电信号采集电极安装不当或电极脱落引起的干扰。
电极偏移会导致心电信号的形态异常,使得信号处理结果不可靠。
二、噪声干扰消除算法的研究为了消除心电信号中的噪声干扰,研究人员开发了多种算法和方法。
以下介绍几种常见的噪声干扰消除算法。
1. 基线漂移补偿算法基线漂移是心电信号中常见的干扰源,为了有效去除基线漂移,研究人员提出了许多补偿算法。
其中一种常用的方法是高通滤波器。
心音信号去噪方法比较研究2016 年 01 月 06 日摘要 (1)关键词 (1)第一章绪论 (2)1.1研究背景 (2)1.1.1心音信号基础知识 (2)1.1.1.1心音的形成机制 (2)1.2心音信号的特性 (3)1.2.1心音的时域特性 (3)1.2.2心音的频率特性 (3)第二章去噪方法分析 (4)2.1 巴特沃斯滤波器 (4)2.2 切比雪夫低通滤波器 (5)2.3 小波变换 (6)第三章心音信号的获取及预处理 (12)3.1 心音信号的采集 (13)3.2 心音信号的预处理 (14)第四章心音信号去噪的实验过程 (14)4.1 常规方法 (14)4.2 小波去噪 (17)第五章滤波方法比较 (21)第六章实验总结 (21)参考文献 (22)附录 (24)摘要心音是最重要的信号之一。
然而,许多外界因素会影响心音信号的采集。
心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。
因此对心音信号去噪的研究非常重要。
本文研究并比较了几种基于matlab的心音去噪的方法。
首先我们采用经典的butterworth低通滤波器和切比雪夫低通滤波器对心音信号进行去噪,结果表明这两种滤波器对高频噪声的消除效果明显,但不能滤除低频噪声。
其次,我们采用了小波变换对含噪心音信号进行处理。
一种方法中丢弃分解信号的高频部分和部分细节,将分解后的信号近似和第四层细节相加作为样本信号的代替。
这种方法简单且能有效的消除高频噪声,但由于丢失了部分细节,易使信号失真。
然后,我们采用haar小波阈值法对信号去噪,取得的较好的去噪效果,但高频噪声残留较多。
最后,我们db6小波进行去噪,得到了很好的信号波形,而且高频噪声残留较少。
通过实验,我们得出结论,无论哪种去噪方式都有其自身的局限性,单独的使用一种去噪方法很难将噪声完全滤除。
应该采用综合滤波方法,结合各个方法的优势联合滤波。
首先使用巴特沃斯低通滤波器或切比雪夫滤波器低通滤波器滤除高频噪声,再用db小波阈值或haar小波阈值法去噪法进行去噪。
心电信号的噪声去除及其应用心电信号是指记录人体心脏活动产生的电信号,在临床应用中,心电图是一种常见的检测方法,而信号噪声会直接影响到心电图的精确度。
因此,在对心电图进行分析和诊断时,必须对信号进行噪声去除。
心电信号噪声的种类心电信号噪声种类主要有三种,分别为基线漂移、交流电干扰和肌电干扰。
1. 基线漂移基线漂移是指信号低频部分的偏移,由于人体的呼吸、体位变化等因素引起,它会通过采集传感器传输到信号中。
由于基线漂移偏移程度比较小,通常采用直流耦合方式,将信道中的低频内容全部去除,以达到去除基线漂移的目的。
2. 交流电干扰由于电源线受电网电压的影响,会发生电压波动,从而产生交流电干扰。
在采集信号的传感器中与电源线联系紧密的接口,更容易受到干扰。
在处理信号时,可以使用电源线分离器来消除干扰。
3. 肌电干扰肌电干扰产生于人体肌肉的运动中,会通过皮肤传感器的引导进入心电信号中。
在采集信号时,应尽可能地减少肌电干扰,可以采用差分式滤波器、暂态抑制器等技术,消除或削弱肌电干扰。
心电信号噪声去除技术1. 滤波技术滤波技术是常见的信号去噪技术之一。
根据信号的不同特征,可以对信号进行高通、低通、带通、带阻滤波。
同时,滤波技术也有局限性,过滤程度过高会影响信号特性,因此应根据实际情况选择合适的滤波器。
2. 小波变换技术小波变换技术是目前应用较为广泛的处理心电信号噪声的一种方法。
小波变换可以使本质上非稳态的信号更易于处理,同时也可以剖析出信号的不同频度成分,从而找到并去除信号中的噪声。
3. 自适应噪声估计技术自适应噪声估计技术是一种新型的信号去噪技术,可以根据信号本身对噪声进行自适应估计,从而实现噪声去除。
自适应噪声估计技术需要基于统计方法进行模型建立,需要对信号有较深入的了解和研究。
心电信号噪声去除的应用1. 心脏疾病诊断心电信号是诊断心脏疾病的重要依据之一,精确且清晰的信号可以有效地帮助医生进行准确判断。
在去除噪声后,可以更准确地看到心电图中的异常波形,从而更准确地进行疾病诊断。
心电数据处理与去噪一、引言心电图(Electrocardiogram,简称ECG)是一种测量心脏电活动的重要方法。
由于心脏电信号受到各种干扰和噪声的影响,准确地识别和分析ECG信号变得至关重要。
本文将介绍心电数据处理与去噪的标准格式,包括信号预处理、去基线漂移、去除肌电干扰、滤波和降噪等内容。
二、信号预处理1. 数据采集:使用心电图仪器采集心电信号,确保信号质量良好,并记录相关信息,如采样率和采样位数等。
2. 数据导入:将采集到的心电数据导入计算机中,准备进行后续的处理和分析工作。
三、去基线漂移1. 基线漂移的定义:基线漂移是指心电信号中由于呼吸、体位变化等因素引起的低频干扰。
2. 基线漂移的检测:通过观察心电图波形,识别出基线漂移的存在与否。
3. 基线漂移的去除:使用滑动平均、小波变换等方法对心电信号进行平滑处理,去除基线漂移的影响。
四、去除肌电干扰1. 肌电干扰的定义:肌电干扰是指由于肌肉活动引起的高频噪声。
2. 肌电干扰的检测:通过观察心电图波形,识别出肌电干扰的存在与否。
3. 肌电干扰的去除:使用带通滤波器对心电信号进行滤波处理,去除肌电干扰的影响。
五、滤波1. 滤波的定义:滤波是指对心电信号进行频率选择性的处理,去除不需要的频率成份。
2. 滤波的分类:根据滤波器的特性,可以将滤波分为低通滤波、高通滤波、带通滤波和带阻滤波等。
3. 滤波的选择:根据实际需求和信号特点,选择合适的滤波器进行滤波处理。
六、降噪1. 噪声的定义:噪声是指心电信号中除了心电活动以外的其他非生理成份。
2. 噪声的检测:通过观察心电图波形,识别出噪声的存在与否。
3. 噪声的降低:使用去噪算法,如小波降噪、自适应滤波等方法,对心电信号进行降噪处理,提高信号质量。
七、总结心电数据处理与去噪是心电信号分析的重要环节,通过信号预处理、去基线漂移、去除肌电干扰、滤波和降噪等步骤,可以提高心电信号的质量和准确性。
在实际应用中,根据具体需求和信号特点,选择合适的方法和算法进行处理,以达到更好的分析效果。
专利名称:一种基于K-SVD与OMP算法结合的心电信号去噪方法
专利类型:发明专利
发明人:汤伟,王权,刘嫣,王玲利
申请号:CN201811476879.1
申请日:20181205
公开号:CN109635699A
公开日:
20190416
专利内容由知识产权出版社提供
摘要:本发明涉及一种基于稀疏分解的心电信号去噪方法,主要解决采集心电信号时其含有多种噪音对心电信号的影响。
步骤如下:第一步,获取含有噪音的原始心电信号;利用近似奇异值分解的稀疏K‑SVD算法对超完备字典进行训练;在此字典基础上,利用基于残差比迭代方式的OMP算法对信号进行稀疏表示得出稀疏编码系数,利用训练好的字典与稀疏编码系数来重构去噪后的信号。
本发明有效地解决了不同强度噪音下心电信号去噪问题。
申请人:陕西科技大学
地址:710021 陕西省西安市未央区大学园区陕西科技大学
国籍:CN
代理机构:西安西达专利代理有限责任公司
代理人:刘华
更多信息请下载全文后查看。