图形变化与图形上点的坐标之间的关系
- 格式:pptx
- 大小:1.25 MB
- 文档页数:16
关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
图形在坐标中的平移(基础)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、点在坐标中的平移1.写出下列各点平移后的点的坐标:(1)将A(-3,2)向右平移3个单位;(2)将B(1,-2)向左平移3个单位;(3)将C(4,7)向上平移2个单位;(4)将D(-1,2)向下平移1个单位.(5)将E(2,-3)先向右平移1个单位,再向下平移1个单位.【思路点拨】根据平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【答案与解析】解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4)平移后点的坐标为:(-1,1);(6)平移后点的坐标为:(3,-4).【总结升华】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.2.(荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【答案】(0,﹣3).解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).类型二、图形在坐标中的平移3.(2015春•邵阳县期末)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,1),B(1,3).把线段AB平移后得到线段A′B′,A与A′对应,B与B′对应.若点A′的坐标是(﹣1,﹣1),则点B′的坐标为.【思路点拨】各对应点之间的关系是横坐标加2,纵坐标减2,那么让点B的横坐标加2,纵坐标减2即为点B′的坐标.【答案】(3,1).【解析】解:由A(﹣3,1)的对应点A′的坐标为(﹣1,﹣1 ),坐标的变化规律可知:各对应点之间的关系是横坐标加2,纵坐标减2,∴点B′的横坐标为1+2=3;纵坐标为3﹣2=1;即所求点B′的坐标为(3,1).故答案为(3,1).【总结升华】此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.举一反三:【变式】按要求平移下面的图形.(1)将图形①先向右平移3个格,再向下平移5个格.(2)将图形②先向左平移2个格,再向上平移3个格.【答案】解:作图如下:4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).。
第26课时图形与坐标【基础知识梳理】 1.位置的确定一般地,在平面内确定物体的位置需要个数据. 2.平面直角坐标系 在平面内,两条互相垂直有的数轴组成平面直角坐标系。
通常把其中水平的一条数轴叫做(或),取为正方向;铅直的数轴叫做(或),取为正方向;x 轴和y 轴统称为,它们的公共原点O 叫做直角坐标系的。
3.a 、b 分别叫做点P 4._______x (3)(4)点点点5.(1)x (2)y (3). 6.(1). (2)关于(3)横向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n〉或;纵向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n 〉或.【基础诊断】1、在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为() A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)2、在平面直角坐标系中,将点A(-2,1)向左平移2个单位到点Q ,则点Q 的坐标为A.(-2,3) B.(0,1) C.(-4,1) D.(-4,-1)3、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2).B.(2,1).C.(2,2).D.(3,1).【精典例题】例1如果点P(-3,2m-1)关于原点的对称点在第四象限,求m的取值范围;如果Q(m+1,3m-5)到x轴的距离与到y轴的距离相等,求m的值。
号为正,的值。
要例2、(为.【点拨】并1,纵例3△ABC①把△②以原点平【1A2(A)(-3图23、若点P(a,a﹣2)在第四象限,则a的取值范围是()A 、﹣2<a <0B 、0<a <2C 、a >2D 、a <04、在平面直角坐标系中,?AB CD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4.2),则顶点D 的坐标为()A.(7,2)B.(5,4)C.(1,2)D.(2,1)5、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是() A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)6则点A A .(-47.已知点8.点(1P 9.已知点5,那么点N 10.三、解答题11、△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于x 轴对称的的坐标; (22C .12的中心在直角坐标系的原点,一条边AD 与x 轴平行,已知点的坐标分别是(-13、(夹角为B 提升训练 一、选择题1、点P (m -1,2m +1)在第二象限,则m 的取值范围是()A.121>->m m 或B.121<<-m C.m<1D.21->m第6题图第10题图第10题2、点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是() A.12)B.(12-)C.(12)D.(12-, 3、在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为()??三、解答题11、如图,已知平行四边形ABCD 的对角线AC 、BD 相交于坐标原点O ,AC 与x 轴夹角∠COF =30°,DC ∥x 轴,AC =8,BD =6.求平行四边形ABCD 的四个顶点的坐标.12.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),求点D 的坐标. 13、【阅读】 第8题图 第10题第9题图在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).【运用】(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C 第261、B2、7、-1811、12、B(13.∵矩形BE=2∴则点B,)B提升训练一、选择题1、B2、B3、B4、D5、D二、填空题6、-4或67、18、(3,4)9、(12,)10、210三、解答题11、55,-2) 12、过点D 作DF⊥OA 于F ,∵四边形OABC 是矩形,∴OC∥AB 。
平面直角坐标系中的变换彳----------- 必标系屮的对称平而l'i角坐标系屮的变换坐标系中的平移\------------ 怡标系屮的面枳和规律问题编写思路:本讲求而积时主要让学生掌握将点坐标转化为线段长度的过程•让学生亲自动手在坐标系中画出某个点关于横轴、纵轴以及原点的对应点,并且让他们自己总结两个对称点的横.纵坐标关系。
二:(1)对于点的平移:让学生亲自动手将某个点进行上、下、左、右平移,并且自己总结点的坐标变化规律。
对于任意的平移,可以将貝理解先上下平移、后左右平移的组合。
(2)对于图形的平移:让学生充分认识本质就是图形上的每个点都进行同一过程的平移,即对应点之间的平移过程完全一样。
从而将图形的平移转化成为点的平移。
并让学生体会平移前后的两个图形完全一样。
三、简单的数形结合:求三角形而积问题。
让学生充分掌握割补法求三角形而积,并理解为何要用割补法。
让学生熟练掌握并体会坐标与线段长的讣算关系。
四.找规律问题:老师可带着学生探索常见找规律问题的思路和方法.点P(-b)关于X轴的对称点是叫,-巧,即横坐标不变,纵坐标互为相反数.点P(a,b)关于y轴的对称点是P©,b),即纵坐标不变,横坐标互为相反数.点P(a.b)关于坐标原点的对称点是P'(—d),即横坐标互为相反数,纵坐标也互为相反数.【引例】在平而直角坐标系中,卩(-4 5)关于X 轴的对称点的坐标是 __________ 坐标是 ________ ,关于原点的对称点是 ___________【例1】(1)点P(3, -5)关于x 轴对称的点的坐标为()⑵点"-2, 1)关于y 轴对称的点的坐标为()⑶ 在平而直角坐标系中,点P(2, -3)关于原点对称点P 的坐标是 _____________ ⑷ 点P(2, 3)关于直线x = 3的对称点为 ________ ,关于直线y = 5的对称点为 ________ ⑸已知点P(“ + l,加-1)关于x 轴的对称点在第一彖限,求d 的取值范围.【例2】如图,在平而直角坐标系中,直线/是第一、三象限的角平分线.实验与探究:(1) 由图观察易知A(2, 0)关于直线/的对称点/V 的坐标为(0,2),请在图中分别标明3(5,3), C(-2,5)关于直线/的对称点X 、C'的位置,并写岀它们的坐标: B' __________ ,C ____________ ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平而内任一点关于第一、三象限的角平分线/的对称点P 的坐标为 ______________ (不必证明): ⑶点A(a , b)在直线/的下方,则d, 〃的大小关系为 ________________ :若在直线/的上方,则 __________ ・h + d\丁 >・(选讲),关于y 轴的对称点的A. (—3, —5)B. (5, 3)C. (一3, 5) D ・(3, 5)B. (2,1)C. (2, -1)D. (-2, 1)点P(a ,b)和点Q(c , d)的中点是M(1)点平移:①将点(x, y)向右(或向左)平移4个单位可得对应点(x + a t y)或(x-“, y).②将点(x, y)向上(或向下)平移〃个单位可得对应点(x,>'+/?)或(x, y-h).⑵图形平移:①把一个图形%个点的横坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向右(或向左)平移Q个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向上(或向下)平移a个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化.【弓I例】点M(-3, -5)向上平移7个单位得到点M,的坐标为:再向左平移3个单位得到【例3】(1)平而直角坐标系中,将P(-2,l)向右平移4个单位,向下平移3个单位,得到P __________ ,□平而直角坐标系中,线段虫妨'是由线段佔经过平移得到的,点A(-1,-4)的对应点为人(1, -1),那么此过程是先向________ 平移____ 个单位再向______ 平移 _____ 个单位得到的,则点B (1, 1)的对应点$坐标为______________ .⑶将点P(m-2,” + 1)沿求轴负方向平移3个单位,得到P^i-rn, 2),则点P坐标是_____________⑷ 平而直角坐标系中,线段A'B'是由线段初经过平移得到的,点A(-2, 1)的对应点为A f (3. 4),点B 的对应点为B'(4,0),则点B 的坐标为()A ・(9,3) B. (一 1,一3) C ・(3, — 3) D. (一3, —1)【例4】二如下左图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案 中左.右眼睛的坐标分别是(-4, 2), (-2, 2),右边图案中左眼的坐标是(3, 4),则右边 图案中右眼的坐标是 _____________________ .-如下右图是由若干个边长为1的小正方形组成的网格,请在图中作岀将“蘑菇”ABCDE 绕A点逆时针旋转奸 再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).二如图,把图1中的04经过平移得到00(如图2),如果图1中04上一点P 的坐标为伽皿),那么平移后在图2中的对应点P 的坐标为 __________ ・大图形的总而积减去周用小三角形的面积.一般方法有割补法和等积变换法.找规律的题目一左要先找/7 = 1、2、3几个图形规律,再推广到“的情况.从简单情形入手,从中发现规律,猜想、推测.归纳出结论,这是创造性思维的特点.i/\ V1例题精讲A ・v图1 图2在平面直角坐标系或网格中求而积,一般将难以求解的图形分割成易求解的图形的面积,可以用F二兀一 - —【引例】如图,直角坐标系中,△ABC的顶点都在网格点上,英中点A坐k标为(2,-1),则△4BC 的而积为 _____________ 平方单位.二如上右图,AABC,将△ABC 向右平移3个单位长度,然后再向上平移2个单位长度,可 以得到△ ・ ① 画出平移后的△人妨6 :② 写出△ AB.C,三个顶点的坐标:(在图中标岀)③ 已知点P 在x 轴上,以B“ P 为顶点的三角形面积为4,求P 点的坐标.【探究1】如图所示,4(1,4),B(4,3),(7(5,0),求图形如C 的面积.【例5】□直角坐标系中,已知人(-1,0)、5(3, 0)两点,点C 在y 轴上,△ABC 的而积是4,则点C 的坐标是 ___________ ■0如右图,已知直角坐标系中A(-1,4)、B(0,2),平移线段初,使点B 移到点C(3,0),此时点A 记作点D ,贝IJ 四边形ABCD 的 而积是 ___________ .【例6】□如下左图,在平而直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0), 8(9,0), C(7,5),D(2, 7)・求四边形ABCD 的而积.「41「J 1_1 T 丿r k —厂」I 厂 11- T 4—n T klrLIr典题精练L LIL」I- T -I- +• -1 ~J_L J•V A【探究2】如下图所示,A(-3,5), B(4,3),求图形OAB的而积.【教师备选】方法三、转化法:平行线,一边转到轴上【探究4】如图所示,求三角形AOB的而积.解析:过点A做0B的平行线,交y轴于点C,连接BC由一次函数知识可求出直线OB:y=-x t设直线AC:y=-x+b -2 - 2 求得y=l x+2 ,得C(0,2)由等积变换可知S厶AOB = S^Bg. ―― x 2x 4=4解析:过点A作BC的平行线交y轴于点D,连接DC利用一次函数求得BC:y=2x+2 ,设直线AD:y=2x+b 求得尸2x+7, D(0,7) 由等积变换可知S沁=S沁弓x 1 x 5=|【变式】已知,在平而直角坐标系中,A「B两点分别在才轴、y轴的正半轴上,且OB = OA = 3. ⑴直接写出点A、B的坐标:⑵若点C(-2, 2),求△BOC的面积;⑶点P是与〉,轴平行的直线上一点,且点P的横坐标为1.若的面积是6,求点P的坐标.【例7】□任平而直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有_______ 个.□如图,在平而直角坐标系中,第1次将MAB变换成△ OA.B.,第二次将变换成第3次将MAB 变换成△0比尽・已知A(l, 3), 4(2, 3), 4(4, 3), A(8, 3), B(2, 0), $(4, 0) , BJ8, 0),耳(16, 0)观察每次变化前后的三角形,找岀规律,按此变化规律再将△OA&3变换成△ O儿则点比的坐标是 _____ ,点厲的坐标是 _____ ,点人的坐标是_______ ,点乞的坐标是 ___________ ・【例8】一个粒子在第一象限内及x轴、y轴上运动,在第lmin内它从原点运动到(1, 0),而后接着按如图所示方式在与X轴、轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2013min后,求这个粒子所处的位置坐标・【变式】将正整数按如图所示的规律在平而直角坐标系中进行排列,每个正整数对应一个整点坐标(X, y)9且x, y均为整数.如数5对应的坐标为(-1,1),则数_________________ 对应的坐标是(-2,3),数2012对应的坐标是__________________【拓展】数1950对应的坐标是______________ ・【教师备选】【备选1】类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1 个单位,用实数加法表示为3 + (-2) = 1.若坐标平而上的点作如下平移:沿*轴方向平移的数屋为d (向右为正,向左为负,平移冋 个单位),沿y 轴方向平移的数量为方(向上为正,向下为负,平移问个单位),则把有序 数对{“,b}叫做这一平移的“平移量”;“平移量” {a, b}与“平移量” {c, d}的加法运算 法则为{“,b} + {c, d} = {a+c, b + d}. 解决问题:(1) 计算:{3, 1} + {1, 2};(2) 动点P 从坐标原点O 出发,先按照"平移量”{3, 1}平移到A,再按照"平移量”{1, 2} 平移到若先把动点P 按照“平移量” {1, 2}平移到C,再按照“平移量” {3, 1}平 移,最后的位置还是点B 吗?在图1中画出四边形OABC.(3) 如图2, 一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头0(5, 5),最后回到出发点O,请用“平移量”加法算式表示它的航行过程.37 36 35 34 3332 31 30 297 16 15 1413 12 11 18 19 61 2 2() 78 ,10 27 2122 23 2425 26图1【备选2】观察下列有规律的点的坐标:儿(1, 1), 4(2, -4), 4(3, 4),人(4, 一2),人(5, 7),肩6, -寸,4(7, 10), 4(8, —1)依此规律,人|的坐标为______________ ,州2的坐标为 ______________________________【备选3】一个动点P在平而直角坐标系中作折线运动,第一次从原点运动到(b 1)>然后按图中箭头所示方向运动,每次移动三角形的一边长•即(1, 1)-* (2, 0) - (3, 2) - (4, 0)-(5, 1)—........... ,按这样的运动规律,经过第17次运动后,动点P的坐标是___________ ,经过第2011次运动后,动点P的坐标是 __________ .【备选4】如图,在长方形网格中,每个小长方形的长为2,宽为1, B 两点在网格格点上,若点C也在网格格点上,以A、3、C为顶点的三角形面积为2,则满足条件的点C个数是( )A. 5B. 4B AD・2【备选5】在平而直角坐标系中,已知八(2・-2),任y轴上确左点P.使8"为等腰三角形,则符合条件的点P共有( )A. 2个B. 3个C. 4个D. 5个题型一坐标系中的对称巩固练习【练习1】□在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是( )A. (—5,—2)B. (一2, —5)C. (一2,5)D. (2, —5)□已知点P(x, y), n),如果x +加=0, y + 〃= 0 ,那么点P, Q ( )A・关于原点对称 B.关于x轴对称C・关于y轴对称D・关于过点(0,0), (1,1)的直线对称□已知:lx-ll+(.y + 2『=0,则(x, y)关于原点对称的点为_________________ .□已知点P(" + 3b,3)与点0(-5,“ + 2b)关于x轴对称,贝比= ______________ , b = _________ .题型二坐标系中的平移巩固练习【练习2】⑴线段CD是由线段初平移得到的,点A(-l, 5)的对应点是C(4, 2),则点B(4, -1)的对应点D的坐标为__________ ・⑵在平面直角坐标系中有一个已知点A ,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标为(-1,2),在旧的坐标系下,点A的坐标为_______ ・【练习3】如图,在平而直角坐标系中,若每一个方格的边长代表一个单位.□线段DC是线段经过怎样的平移得到的?□若C点的坐标是(4, 1), A点的坐标是(-1,-2),你能写岀B、D两点的坐标吗?□求平行四边形ABCD的而积.题型三坐标系中的面积和规律问题巩固练习【练习4】□已知A(0,—2), B(5,0), C(4,3),求△ABC的而积.□已知:A(4,0), 3(1-斗0), 0(1, 3), ZVWC 的而积=6,1)A B求代数式2A-2-5X + X2+4X-3X2 -2 的值.【练习5】如图,长为1,宽为2的长方形ABCQ以右下角的顶点为中心顺时针旋转90°,此时A点的坐标为________ :依次旋转2009次,则顶点A的坐标为___________ ・。
23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。
2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。
知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。
现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。
除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。
建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。
平面上的点也可以用一个角度来描述其位置。
2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。
向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。
关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。
关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。
在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。
【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。
二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质教学目标1.能解释二次函数y=ax2+k和y=ax2的图象的位置关系.2.掌握y=ax2上、下平移规律.3.体会图形的变化与图形上的点的坐标变化之间的关系,领悟y=ax2与y=ax2+k相互转化的过程.教学重难点重点:抛物线y=ax2+k的图象与性质.难点:理解抛物线y=ax2与y=ax2+k之间的位置关系.教学过程与方法知识点一:y=ax2+k的图象1.回顾与思考(5分钟)(1)回顾:抛物线y=x2和y=-x2的图象和性质及它们之间的关系.(2)思考:y=x2+1,y=x2-1的图象怎样?它们与y=x2之间又有怎样的关系呢?2.自主学习(15分)(1)参照教材P32例2的填表、描点.(2)讨论①抛物线y=x2+1,y=x2-1的开口方向、对称轴、顶点各是什么?②抛物线y=x2+1,y=x2-1与抛物线y=x2有什么位置关系?(3)归纳与交流①把抛物线y=x2向__上__平移__1__个单位,就得到抛物线y=x2+1,把抛物线y=x2向__下__平移__1__个单位,就得到抛物线y=x2-1.②一般情况:当k>0,把抛物线y=ax2向__上__平移__k__个单位,可得y=ax2+k;当k<0时,把抛物线y=ax2向__下__平移__|k|或-k__个单位,可得y=ax2+k.③y=ax2+k的开口方向、对称轴、顶点坐标、最值分别是什么?解:a>0时,开口向上,对称轴是y轴,顶点(0,k),最小值为k.a<0时,开口向下,对称轴是y轴,顶点(0,k),最大值为k.知识点二:y=ax2+k的性质3.合作与探究(5分钟)(1)抛物线y=ax2+k与y=ax2的图象的异同点是什么?(2)抛物线y=ax2+k与y=ax2的增减性又是怎样?4.课堂小结(5分钟)1.二次函数y=ax2+k的图象和性质(包括开口方向、对称轴、顶点坐标).2.抛物线y=ax2+k与y=ax2之间的联系与区别(包括平移、开口、对称轴、顶点等).处理方法:可以让学生围绕这两个问题先小结,然后教师进行补充或强调.5.独立作业(15分钟)(1)必做题:P33练习.(2)选做题:习题22.1第5题(1).(3)备用题:①二次函数y =ax 2+k 的图象经过点A (1,-3),B (-2,-6),求这个二次函数的解析式. 解:该二次函数的解析式为:y =-x 2-2.②已知二次函数y =-2x 2+3,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小?解:当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.③二次函数y =ax 2+k (a ,k 为常数),当x 取值x 1、x 2时(x 1≠x 2),函数值相等,则当x 取x 1+x 2时,函数值为__0__.④函数y =ax 2-a 与y =a x(a ≠0)在同一平面直角坐标系中的图象可能为( A )第2课时 二次函数y =a (x -h )2的图象和性质教学目标1.会用描点法画二次函数y =a (x -h )2的图象.2.理解抛物线y =a (x -h )2与y =ax 2之间的位置关系.3.在图象的平移过程中,渗透变与不变的辩证思想.教学重难点重点:二次函数y =a (x -h )2的图象和性质.难点:把握抛物线y =ax 2通过平移后得到y =a (x -h )2时平移的方向和距离.教学过程与方法1.师生互动,提出问题(3分钟)(1)抛物线y =-12x 2+3与y =-12x 2的位置有什么关系? (2)抛物线y =-12x 2+3的开口方向、对称轴、顶点坐标分别是什么? 2.探究新知(10分钟)知识点一:y =a (x -h )2的图象和性质(1)在同一坐标系中画出二次函数y =-12x 2、y =-12(x +1)2、y =-12(x -1)2的图象. ①列表时怎样取值才能使抛物线具有对称性?②这三条抛物线的对称轴、顶点坐标分别是什么?③这三条抛物线能否经过相互的平移得到?怎样平移?3.交流探究:教材P 34~P 35(5分钟)4.归纳总结(5分钟)抛物线y =a (x -h )2与抛物线y =ax 2的形状相同,只是位置不同,它可以由抛物线y =ax 2平移得到:当h >0时,向右平移h 个单位,当h <0时,向左平移|h |个单位,它的对称轴是直线x =h ,顶点坐标为(h ,0).知识点二:y =a (x -h )2的性质5.讨论(5分钟)(1)a >0,开口__向上__,当x =__h __时,函数y 有最__小__值=__0__,在对称轴的左侧,y 随x 的增大而__减小__,在对称轴的右侧,y 随x 的增大而__增大__.(2)a <0,开口__向下__,当x =__h __时,函数y 有最__大__值=__0__,在对称轴的左侧,y 随x 的增大而__增大__,在对称轴的右侧,y 随x 的增大而__减小__.6.课堂练习(3分钟)(1)抛物线y =2(x +1)2可以由抛物线__y =2x 2__向__左__平移1个单位得到.(2)抛物线y =-23(x -4)2可以由抛物线__y =-23x 2__向右平移__4__个单位得到. (3)已知二次函数y =-13(x -2)2,说出函数图象的对称轴和顶点及最值、增减性. 解:二次函数y =-13(x -2)2的对称轴为x =2,顶点为(2,0),有最大值0.当x <0时,y随x的增大而增大,当x>0时,y随x的增大而减小.7.课堂小结(3分钟)(1)抛物线y=a(x-h)2与y=ax2的关系.(2)抛物线y=a(x-h)2的对称轴、顶点.(3)平移规律:“左加右减”.(4)你还有哪些困惑和收获?8.独立作业(11分钟)(1)必做题:习题22.1第5题(2).(2)备用题:①已知抛物线y=a(x+h)2的顶点是(-3,0),它是由抛物线y=-4x2平移得到的,则a =__-4__,h=__3__.②把抛物线y=(x+1)2向__右__平移__4__个单位后得到抛物线y=(x-3)2.③把抛物线y=x2+mx+n向左平移4个单位,得到抛物线y=(x-1)2,则m=__-10__,n=__25__.第3课时二次函数y=a(x-h)2+k的图象和性质教学目标1.会用描点法画出二次函数y =a (x -h )2+k (a 、h 、k 是常数,a ≠0)的图象,掌握抛物线y =a (x -h )2+k 与y =ax 2的图象之间的关系,熟练掌握函数y =a (x -h )2+k 的有关性质,并能用函数y =a (x -h )2+k 的性质解决一些实际问题.2.经历探索y =a (x -h )2+k 的图象及性质的过程,体验y =a (x -h )2+k 与y =ax 2、y =ax 2+k 、y =a (x -h )2之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.3.通过观察函数的图象,归纳函数的性质等活动,感受学习数学的价值.教学重难点重点:二次函数y =a (x +h )2+k 的性质.难点:教材P 36例4的解答需要选取合适的坐标系,有一定的难度,是本节教学的难点. 教学过程与方法1.回顾与思考(3分钟)我们已经学习了形如y =ax 2,y =ax 2+k ,y =a (x -h )2的函数,知道了它们可以经过互相平移得到.二次函数y =a (x -h )2+k 又是一条怎样的抛物线呢?它与这三条抛物线之间有什么关系?知识点一:y =a (x -h )2+k 的图象和性质2.合作与探究:教材P 35例3(15分钟)(1)在同一坐标系内,画出二次函数y =-12x 2,y =-12x 2-1,y =-12(x +1)2-1的图象. 处理方法:师生一起完成列表,再由学生画出图象,如图.(2)指出y =-12(x +1)2-1的开口方向、对称轴、顶点坐标、最值、增减性. (3)y =-12(x +1)2-1可以由y =-12x 2怎样平移而得到? (4)归纳:y =a (x -h )2+k 的图象和性质及由y =ax 2平移得到函数图象的规律.知识点二:y =a (x -h )2+k 的实际运用3.解决问题,交流思想(16分钟)(1)读懂教材P 36例4题意.(2)怎样建立平面直角坐标系?(3)怎样才能与二次函数联系起来?4.课堂练习:教材P 37练习(3分钟)5.课堂小结(4分钟)(1)本节课我们学习了哪些内容?引导学生从以下几个方面去回顾:①二次函数y =a (x -h )2+k 的性质;②抛物线y =a (x -h )2+k 与y =ax 2的平移关系;③选取坐标系的方法.(2)谈一谈你的收获或困惑.6.独立作业(10分钟)(1)必做题:习题22.1第5题(3),第7题(1).(2)备用题:已知y =a (x -h )2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.①求出a 、h 、k 的值;②在同一坐标系中,画出y =a (x -h )2+k 与y =-12x 2的图象; ③观察y =a (x -h )2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;④观察y =a (x -h )2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:①a =-12,h =1,k =2 ②图略 ③当x <1时,y 随x 的增大而增大;当x >1时,y 随x 的增大而减小;当x =1时,函数有最大值2 ④对于一切x 的值y ≤2.。
第三章位置与坐标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.在实际问题中,能建立适当的直角坐标系,描述物体的位置,体会可以用直角坐标系画一个简单图形.3.能结合具体情境灵活运用多种方式确定物体的位置.4.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.经历探索图形位置变化与图形坐标变化之间关系的过程,进一步发展数形结合意识和应用意识,初步建立几何直观.从事对现实世界中确定位置的现象进行观察、分析、抽象和概括的活动,进一步发展空间观念.一、《标准》要求1.探索并理解平面直角坐标系及其应用.2.在研究确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观.3.结合实例进一步体会用有序数对表示物体的位置.4.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.5.在实际问题中,能建立适当的直角坐标系,描述物体的位置.6.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会用坐标刻画一个简单图形.7.在平面上,能用方位角和距离刻画两个物体的相对位置.8.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教材分析“图形与坐标”是“图形与几何”领域的重要组成部分,它是发展学生空间观念的重要载体.作为第一、二学段“图形与位置”的发展,本章是第三学段“图形与坐标”的主体内容,将引领学生感受确定物体位置方法的多样性,抽象出平面直角坐标系的概念,进而利用平面直角坐标系确定物体的位置,并从坐标的角度描述学习过的轴对称图形,进一步认识轴对称.同时,平面直角坐标系是表示变量之间关系的重要工具,因此本章是以后学习“一次函数”的重要基础.本章首先结合学生的生活实际,选择了丰富多彩、形式多样的确定位置的现实背景,力图使学生感受平面上确定位置的共同特征:不管用什么方法确定位置,都需要两个数据.然后,通过实际背景认识确定位置的一个常用方法,引入平面直角坐标系,建立直角坐标系中的点与坐标之间的一一对应关系,学习根据坐标描出点的位置、由点的位置写出它的坐标,同时能建立适当的直角坐标系刻画图形上各点的位置.最后,在同一个直角坐标系里,探索图形的变化(轴对称)与坐标的变化之间的关系.【重点】1.确定物体位置的方法.2.认识和画出直角坐标系,在给定的直角坐标系中,能够根据坐标描出点的位置,由点的位置写出它的坐标.3.探索坐标变换与图形变换的关系.【难点】1.灵活运用各种方法确定物体的位置.2.认识图形与坐标的关系.3.正确确定坐标变换与图形变换的关系,进一步发展空间观念和审美意识.1.结合实际创造性地选用现实题材进行教学.教学中要立足于学生的生活经验和已有的数学活动经验,创造性地选用现实生活中的有关题材,丰富教学内容,生活中,确定位置的方法是多样的,有点定位、区域定位、极坐标定位、直角坐标定位等.教科书从学生熟悉的情境出发,选取了“电影院中找座位”“航海中找目标”“地图上确定城市的位置”等素材,教学中教师既可以利用教科书上已有的题材,也可以根据本地的生活实际和学生的认知实际,选取更为贴近学生的教学素材(如确定学校的位置、校园中旗杆的位置、学生在班级的位置等),鼓励学生用自己的方式来确定位置.2.恰当把握教学重点与要求.教学中应让学生充分经历确定物体位置的活动过程,在过程中体会到:不管用什么方法来确定一个物体在平面上的位置,都需要两个数据.要引导学生理解轴对称与坐标变化之间的联系,形成对图形变换的整体认识,进一步发展学生的数形结合意识、空间观念,建立几何直观.3.恰当运用多种教学手段.本章的教学需要大量的坐标纸、地图等材料,课前的准备是必需的.同时,建议有条件的地区使用计算机进行动态演示,以保证教学的效果.1确定位置1.要求学生在现实情境中感受物体定位的多种方法.2.初步学会根据实际情况找出具体的位置.3.能较灵活地运用不同的方式对物体定位.4.能了解在平面上确定物体位置的方法的统一性:都需要两个数据.1.通过现实事例,让学生了解到位置的重要性,引导学生进入新课.2.使学生置身情境中,研究物体的位置,对位置形成初步的认识.3.引导学生探索确定物体位置的方法.4.通过讨论交流等方式给学生讲解例题,掌握确定物体位置的方法.5.让学生经历探索、操作等过程,在实践中体会和掌握如何运用各种方法来确定物体的位置.6.通过课后练习、讨论交流等方式组织学生小结本课,回忆和巩固知识.1.通过现实生活中的有关题材,使学生体会生活中位置的确定离不开数据,数学与生活有着密切关系.2.使学生在合作与交流的过程中获得情感体验,培养学生的合作意识.【重点】1.使学生能在具体的情境中,根据行和列确定并描述物体的位置.2.能了解在平面上确定物体位置的方法:一般需要两个数据.【难点】能灵活运用不同方式准确确定物体的位置.【教师准备】教材情境图,带磁力的方格板和黑白棋.布置学生收集两张废旧电影票,准备学生尺、量角器.【学生准备】按教师的布置收集两张废旧电影票,准备学生尺、量角器.导入一:【问题】秦始皇兵马俑在什么位置呢?你能告诉我陕西省西安市的位置吗?[设计意图]通过上述图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?导入二:【问题】在数轴上,确定一个点的位置需要几个数据呢?【答】一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.总结得出结论:在数轴上, 确定一个点的位置一般需要一个数据.一、探究(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?(3)如果将“3排6座”记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义?[设计意图]较好地体现数学的现实性,有利于学生良好数学观的形成.(4)在只有一层的电影院内,确定一个座位一般需要几个数据?(5)在生活中,确定物体的位置还有其他的方法吗?与同伴进行交流.[设计意图]及时总结学生的经验,并要求学生自主寻找生活中的定位问题,进而可以选用学生所举的例子开展下面的教学活动,这样的课才是生动的,交互的.结论:生活中常常用“排数”和“座数”来确定位置.二、学有所用下表中是无序排列的汉字,小明拿到一张写有密码的字条,你能帮他破译吗?结论:生活中常常用“行数”和“列数”来确定位置.三、例题讲解下图是某次海战中敌我双方舰艇对峙示意图(图中1 cm表示20 n mile).对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20 n mile的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?[设计意图]本例用方位角和距离刻画两个物体的相对位置,实际上,这就是极坐标定位.当然,这里并不严格地介绍极坐标,而是意在渗透极坐标的思想.解:(1)对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛.要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需要知道敌舰B距我方潜艇的距离.(2)距我方潜艇20 n mile的敌舰有两艘:敌舰A和敌舰C.(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角.例如,对我方潜艇来说,敌舰A在正南方向,距离为20 n mile处;敌舰B 在北偏东40°的方向,距离为28 n mile处;敌舰C在正东方向,距离为20 n mile处.结论:生活中常常用“方位角”和“距离”来确定位置.四、做一做(1)据新华社报道,2008年5月12日14:28,我国四川省发生里氏8.0级强烈地震,震中位于阿坝州汶川县境内,即北纬31°,东经103.4°.这是新中国成立以来破坏性最强、波及范围最大的一次地震.你能在图中找到震中的大致位置吗?[设计意图]这是根据经纬度来确定位置的.结论:生活中常常用“经度”和“纬度”来确定位置.(2)如图所示的是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园”所在的区域?“广州火车站”呢?[设计意图]这种确定位置的方法属于区域定位.生活中没有绝对的点,为了寻找点的方便,常将点框定在一定的区域内.结论:生活中常常用“区域定位”来确定位置.五、议一议(1)你能举出生活中需要确定位置的例子吗?与同伴进行交流.(2)在平面内,确定一个物体的位置一般需要几个数据?结论:在平面内,确定一个物体的位置一般需要2个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位……b表示:座数、列数、纬度、距离……[知识拓展]确定平面上的点的方法很多,不管采用哪种方法,平面内确定位置都需要两个量,特别是用一对数表示位置时,应该注意数是有顺序的.顺序不同表示点的位置就不同.不同方式确定物体的位置.2.在数轴上,确定一个点的位置一般需要一个数据.在平面内,确定一个物体的位置一般需要两个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位……b表示:座数、列数、纬度、距离……1.在平面内,下列数据不能确定物体位置的是()A.3楼5号B.北偏西40°C.解放路30号D.东经120°,北纬30°解析:在平面中,确定物体的位置一般需要两个数据,B选项只有一个数据,故不能确定物体的位置.故选B.2.海事救灾船前去救援某海域失火轮船,需要确定()A.方位角B.距离C.失火轮船的国籍D.方位角和距离解析:在海上确定物体的位置一般需要方位角和距离.故选D.沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是;(2)写出“马”下一步可以到达的所有位置,并在图中标出.解析:(1)结合图形写出即可.(2)根据网格结构找出与“马”现在的位置成“日”字的点,然后写出即可.解:(1)(5,3)(2)如图所示,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).1确定位置1.在平面内,确定一个点的位置一般需要两个数据.2.生活中常见的几种确定位置的方式.(1)用“排数”和“座数”.(2)用“行数”和“列数”.(3)用“经度”和“纬度”.(4)用“方位”和“距离”.(5)用区域定位.一、教材作业【必做题】教材第56页随堂练习.【选做题】教材第57页习题3.1第3,4题.二、课后作业【基础巩固】1.下列说法:①数轴上的每一个点的位置都可以用一个数来确定;②平面内任何一个点的位置都可以用一个数来确定;③若用两个数表示平面内一个点的位置,则(2,3)和(3,2)表示的是同一个点的位置.其中正确的有()A.0个B.1个C.2个D.3个2.如图所示的是某学校的平面示意图,如果用(2,5)表示校门的位置,那么图书馆的位置如何表示?图中(10,5)表示哪个地点的位置?【能力提升】3.小明家在学校的北偏东30°方向,距学校1000 m处,则学校在小明家的什么位置?【拓展探究】4.如图所示,一只甲虫在10×10的网格(每一格边长为1)上沿着网格线运动,它从C处出发想去看望A,B,D,E处的其他甲虫,规定其行动为:向下向左走为正,向上向右走为负,如果从C到B记为:C→B(+5,+2)(第一个数表示左、右方向,第二个数表示上、下方向). (1)C→D(),C→A(),D→(+5,-6),E→D(,-4);(2)若这只甲虫的行走路线是C→A→B→D→E,请计算该甲虫走过的路程;(3)这只甲虫去P点处的行走路线为(-2,+2)→(+3,-4)→(-4,+2)→(+7,+3),请在图上标出P点的位置,想一想,有没有简便的计算方法? 【答案与解析】1.B(解析:只有①正确.)2.解:图书馆的位置表示为(2,9).图中(10,5)表示旗杆的位置.3.解:南偏西30°方向,距小明家1000 m处.4.解:(1)(+2,+4)(+7,-2) A +5(2)由题意可知:甲虫所走过的路程为7+2+4+2+2+3+4+5=29. (3)标点P的位置略.简便的计算方法为:左、右方向:(-2)+(+3)+(-4)+(+7)=4,上、下方向:(+2)+(-4)+(+2)+(+3)=3,由此可知自点C处出发,向左走4格,向下走3格就到P点处.本节内容与现实生活联系紧密,学生在生活中经常能遇到相关的知识,因此在教学时建议尽量让学生参与进来.学生在亲身体验中学习知识,加深印象,并培养认真的学习态度.在教学中要让学生有条理地思考和表达.在确定位置的活动中,学生不仅自己要明白物体的位置,而且要能有条理地向别人表述.这种表达可以反映学生的表达水平、有关知识的掌握程度和空间观念.在确定位置的方法中渗透了“极坐标”的思想,只要学生能直观地理解就行,不需要深入理解此概念.可以让学生多注意生活中需要确定位置的地方,发现身边的公共设施或广告中定位不清的问题.让他们在生活中学习,并明白知识源于生活的道理.随堂练习(教材第56页)1.解:答案不唯一.如:青年之家餐厅在A1区;水阁云天在B1区;工人疗养院在C2区.2.解:(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列. (2)第7行第4列.习题3.1(教材第57页)1.解:先确定北京等四个城市的位置,估计它们的经纬度.然后按照要求,在经度线或纬度线上寻找符合要求的城市.2.解:(1)“经五纬一”在广播大厦旁边的十字路口.(2)从“经七纬五”出发,经过“经六纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬三”到达“经五纬一”或“经七纬五”“经六纬五”“经六纬三”“经六纬一”到达“经五纬一”. (3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.平面内确定物体的位置时应注意:(1)用行列定位法表示平面内某点的位置必须有两个数据,缺一不可.(2)经纬定位法既适合在球面上定位,也适合在平面上定位,利用地理学上的经纬度来确定物体的位置的定位方法,指明一点的经度和纬度就可以确定物体在地球上的位置.(3)弄清区域定位法中字母及数字分别表示的含义,依照已知建筑物的表示方法表示建筑物的位置.(4)用直角坐标系定位法确定一个物体的位置也需要两个数据,一个是横坐标,另一个是纵坐标,两者缺一不可(下节课讲).(5)用一对数表示位置时要注意这对数是有顺序的,一般先写横格所表示的数,再写竖格所表示的数(简称“先横后纵”).如图所示,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路径,请你用同样的方式写出由家到学校的另外一种路径.解:答案不唯一,如:(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4).2平面直角坐标系1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系.2.能建立适当的坐标系,描述物体的位置.3.在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标.1.通过两个找点、连线、观察、确定图形的大致形状的问题,使学生能在给定的直角坐标系中根据坐标描出点的位置,进一步掌握平面直角坐标系的基本内容.2.通过讨论交流的方式讲解例题.学生掌握根据已知条件建立适当的坐标系来描述物体位置的方法.1.培养学生发现问题和主动探索的能力.在与同伴的合作交流中,培养学生的责任心.2.培养学生细致、认真的学习习惯.3.通过教学,向学生渗透“数形结合”的数学思想,并培养学生将实际问题抽象为“数学模型”的能力.【重点】1.能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标找出点,由点求出坐标.【难点】1.理解平面内的点与有序数对之间的一一对应关系.2.在直角坐标系中,根据坐标找出点,由点求出坐标.第课时1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.认识并能画出平面直角坐标系.3.能在给定的直角坐标系中,由点的位置写出它的坐标.1.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念.2.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实生活的密切联系,让学生认识数学与生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.【重点】学生能正确画出平面直角坐标系,并能在平面直角坐标系中,根据定义写出给定点的坐标,以及根据坐标描出点的位置.【难点】理解坐标和平面上的点的一一对应的关系,体会数形结合思想.【教师准备】多媒体课件,画图工具,教材图3 - 4,3 - 5,3 -6的情境图.【学生准备】画图工具,方格纸.导入一:同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该市的几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流.大成殿:;中心广场:;碑林:.[设计意图]试图通过介绍景点回顾前一节中确定位置的方法,体会不同的介绍方法中的共性——一般需要两个数据.导入二:你是怎样确定各个景点的位置的?[处理方式]学生口答完成,对于回答不完整的由学生补充改正!教师引导性地进行语言说明,在数轴上我们能够用一个数字来表示点的坐标,那么平面内能否用一个数来表示景点的具体的位置呢?既复习了旧知识,又为下面用类比的方法学习新知识做铺垫.此处学生回答的方法多种多样,只要合理即可,还有没有更好的方法,进而提出问题.一一感受建立平面直角坐标系的必要性.[设计意图]通过播放图片,调动学生的热情,既复习回顾了旧知识,又激发起进一步学习的兴趣,吸引学生的注意力,用类比的方法学习平面直角坐标系,为学习新知识进行铺垫.引导学生猜想、探索,鼓励学生积极思考,调动学习积极性,并在活动中培养学生的探究、合作、交流的能力.一、做一做(一)(1)小红在旅游示意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?(通常将(0,0)点称为原点)如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位置吗?[设计意图]以方格纸为背景,可以方便地利用有序数对描述各景点的位置.生活中用两个距离表示位置时,一般不用负数,而直角坐标系中的坐标是可正可负的,为此,设计了本问题.二、相关概念思路一:给出定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.如图所示,对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.如图所示,在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.坐标轴上的点不在任何一个象限内.思路二:活动内容1:认识平面直角坐标系.(多媒体展示)问题1什么是平面直角坐标系?简称什么?两条数轴如何放置?如何称呼?方向如何确定?它们的交点叫什么?问题2坐标轴将平面分为哪几个部分?它们的名称分别是什么?坐标轴上的点属于哪个部分?问题3在方格纸上画出平面直角坐标系.问题4象限是怎样划分的?[处理方式]给学生5~8分钟的时间先结合自学提纲自学课本,然后根据自己的理解在方格纸上画出平面直角坐标系,并标出各部分名称.学生之间相互提问解答.最后找学生代表发言,教师要求学生尽量不看课本,对于问题1和问题2,学生根据课本内容回答应该问题不大,但是此处教师应该补充正方向的确定不是唯一的,我们为了习惯,通常取向右与向上的方向分别为两条数轴的正方向.对于数轴的名称,多找几位学生回答,最后教师强调画平面直角坐标系应注意:①两条数轴互相垂直;②原点重合;③标注两坐标轴名称;④单位长度一般取相同的.问题3直接要求学生在所画平面直角坐标系中标出各个象限的名称,并引导学生得出坐标轴上的点不在任何一个象限内.(多媒体出示,同时给学生1分钟时间改正反思,查找错误的原因)注意:坐标轴上的点不属于任何象限,原点既在横轴上又在纵轴上.在上图建立的平面直角坐标系中,两条坐标轴将坐标平面分成四个部分(按逆时针方向)分别叫第一象限、第二象限、第三象限、第四象限.[设计意图]平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及的概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识,培养学生自学能力、合作交流能力,体现学生主动学习的理念,对学生进行数学文化方面的熏陶和理想教育.培养作图能力和对概念的进一步认识,强化理解.活动内容2:点的坐标的定义.(多媒体出示)问题1直角坐标系内,如何根据点的位置确定点的坐标?写出A点的坐标(如图(1)所示).问题2在平面直角坐标系内,如何根据点的坐标确定点的位置?找出坐标为(2,4)的C点(如图(2)所示).[处理方式]给学生3~4分钟的时间自学课本,然后根据自己的理解,写出A点的坐标,然后同桌比较写出的答案是否一样.找出不同的原因,然后再一次自学课本,小组内讨论得出正确答案:A(3,4).教师引导学生说明怎样得到点A的坐标,例如:①过点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,。
轴对称与坐标变化教学目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
3.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学方法:引导发现法教学过程设计引入新课我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
两面小旗之间有怎样的位置关系?对应点A与A 1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。
3.如果关于x轴对称呢?在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?4.关于x轴对称的两点,它们的横坐标,纵坐标;关于y轴对称的两点,它们的横坐标,纵坐标。
5.已知点P(2a-3,3),点A(-1,3b+2),(1)如果点P与点A关于x轴对称,那么a+b=;(2)如果点P与点A关于y轴对称,那么a+b=。
探究新知例1 在坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:先根据题意把变化前后的坐标作一对比。
苏科版数学八年级知识点整理苏科版数学八年级知识点整理第一章三角形全等 1 全等三角形的对应边、对应角相等 2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
性质:(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
判定:边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”) 证明两个三角形全等的基本思路:(1)、已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).、已知一边一角:①找夹角(AAS);②找夹角(SAS);③找是否有直角(HL).、已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).第二章轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,那么这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫对称轴,两个图形中对应点叫做对称点轴对称图形把一个图形沿某条直线折叠,如果直线两旁的部分能够完全重合,那么成这个图形是轴对称图形,这条直线式对称轴垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线轴对称性质:1、成轴对称的两个图形全等2、如果两个图形成轴对称,那么对称轴是对应点连线的垂直平分线3、成轴对称的两个图形的任何对应部分成轴对称4、成轴对称的两条线段平行或所在直线的交点在对称轴上线段的对称性:1、线段是轴对称图形,线段的垂直平分线是对称轴2、线段的垂直平分线上的点到线段两端距离相等3、到线段两端距离相等的点在垂直平分线上角的对称性:1、角是轴对称图形,角平分线所在的直线是对称轴2、角平分线上的点到角的两边距离相等3、到角的两边距离相等的点在角平分线上等腰三角形的性质:1、等腰三角形是轴对称图形,顶角平分线所在直线是对称轴2、等边对等角3、三线合一等腰三角形判定:1、两边相等的三角形是等边三角形2、等边对等角直角三角形的推论:直角三角形斜边上中线等于斜边一半30°角所对的边是斜边的一半等边三角形判定及性质:1、三条边相等的三角形是等边三角形2、等边三角形是轴对称图形,有3条对称轴3、等边三角形每个角都等于60° 判定:三条边都相等、三个角都是60°、有一个角是60°的等腰三角形是等边三角形等腰梯形:两腰相等的梯形是等腰梯形等腰梯形性质:1、等腰梯形是轴对称图形,过两底中点的直线是对称轴2、等腰梯形在同一底上的两个角相等3、等腰梯形对角线相等等腰梯形判定:1.、两腰相等的梯形是等腰梯形 2、在同一底上两个角相等的梯形是等腰梯形第三章勾股定理直角三角形两直角边的平方和等于斜边的平方a²+b²=c² 勾股定理逆定理:如果一个三角形三边a、b、c满足a²+b²=c²,那么这个三角形是直角三角形勾股数:满足a²+b²=c²的三个正整数a、b、c称为勾股数第四章实数平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,也称二次方根如果_²=a,那么_叫做a的平方根平方根的性质:1、一个正数有两个平方根,它们互为相反数2、0只有一个平方根,是03、负数没有平方根算术平方根:正数a的正的平方根叫a的算术平方根 0的算术平方根是0 开平方:求一个数a的平方根的运算,叫做开平方立方根:如果一个数的立方等于a,那么这个数叫做a的立方根,也称三次方根如果_³=a,那么a是_的立方根立方根的性质:1、正数的立方根是正数2、负数的立方根是负数3、 0的立方根是0 开立方:求一个数的立方根的运算,叫做开立方有效数字:对于一个近似数,从左边第一个不是0的数字起,到末尾数字止,所有的数字都称为这个近似数的有效数字补充:平方根和立方根 1、算术平方根:一般地,如果一个正数_的平方等于a,即_2=a,那么这个正数_就叫做a的算术平方根。
点的坐标与形的旋转在几何学中,点的坐标和形的旋转是两个基本概念。
点的坐标表示了点在坐标系中的位置,而形的旋转则描述了一个图形绕某一点旋转的变化过程。
本文将分别介绍点的坐标和形的旋转,并探讨它们之间的关系。
一、点的坐标点的坐标是指点在平面直角坐标系中的位置。
平面直角坐标系由两条相互垂直的坐标轴组成,通常称为x轴和y轴。
点的位置可以用有序数对(x, y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
通过坐标,我们可以明确描述点的位置关系和进行几何计算。
例如,两点之间的距离可以通过坐标差的绝对值来计算,即d = √((x2-x1)^2 + (y2-y1)^2)。
另外,点的坐标还可以表示向量,向量的方向和大小可以通过坐标表示。
二、形的旋转形的旋转指的是图形沿着某一点旋转一定角度后的变化。
在二维空间中,旋转可以按照顺时针和逆时针的方向进行,旋转的角度可以是任意的实数。
图形的旋转可以通过变换矩阵来表示。
变换矩阵是一个二维矩阵,可以对图形的坐标进行变换,使得图形绕指定点旋转。
旋转变换矩阵可以表示为:R = |cosθ -sinθ||sinθ cosθ|其中θ表示旋转的角度。
三、点的坐标与形的旋转的关系点的坐标和形的旋转之间存在着紧密的联系。
在形的旋转过程中,围绕旋转中心点的坐标会发生改变。
假设点P(x, y)绕点O(a, b)逆时针旋转θ角后的新坐标为P'(x', y'),则有以下公式:x' = (x-a)cosθ - (y-b)sinθ + ay' = (x-a)sinθ + (y-b)cosθ + b类似地,顺时针旋转可以通过将θ取负值来表示。
通过以上公式,我们可以计算出点P在给定旋转角度下的新坐标。
这使得我们能够方便地描述图形的旋转、变换和运动。
结论点的坐标和形的旋转是几何学中的两个基本概念。
点的坐标表示了点在平面直角坐标系中的位置,形的旋转描述了图形绕某一点旋转的变化过程。
八年级位置与坐标知识点总结归纳位置和坐标是数学中的基础概念,而在八年级的数学学习中,位置与坐标更是一个重要的知识点。
通过掌握位置和坐标的相关知识,我们可以更好地理解几何形状和图像之间的关系,解决实际问题,以及为进一步学习代数和几何打下坚实的基础。
本文将对八年级位置与坐标知识点进行总结归纳。
一、平面直角坐标系的建立及简单应用平面直角坐标系是描述位置和坐标的常用工具。
在平面直角坐标系中,我们通过确定一个原点及与原点相垂直的两条轴线来建立坐标系。
水平轴称为 x 轴,垂直轴称为 y 轴。
根据这个坐标系,我们可以用有序数对 (x, y) 来表示一个点的位置。
例如,点A在平面直角坐标系中的坐标为 (2, 3),其中2表示在 x轴上的位置,3表示在 y 轴上的位置。
平面直角坐标系的应用场景很多,比如在地图上确定一个城市的位置,或者描述电商平台中的商品坐标等。
通过了解坐标系的建立和使用,我们可以更好地处理这些实际问题。
二、点的位置关系及区域划分在平面直角坐标系中,点与点之间有着不同的位置关系,这些关系对我们理解图像形状的变化和判断图形位置都非常重要。
1. 同一直线上的点:如果两个点在同一条直线上,那么它们的 x 坐标相同或者它们的 y 坐标相同。
这个概念对于解决线段和直线问题非常有用。
2. 垂直线和水平线:垂直线与 x 轴正交,而水平线与 y 轴正交。
这种关系在确定直角的情况下非常常见。
3. 区域划分:平面直角坐标系可以将平面划分为四个象限,分别是第一象限、第二象限、第三象限和第四象限。
根据坐标的正负关系,我们可以判断一个点在哪个象限。
通过掌握点的位置关系及区域划分的知识,我们可以在解决问题时更准确地确定坐标的范围和位置。
三、图形的位置和运动在平面直角坐标系中,我们可以通过点的坐标来描述和判断图形的位置和运动。
以下是几种常见的图形情况:1. 点:点的位置由其坐标确定,点的运动就是坐标的变化。
2. 线段:线段是由两个点确定的,可以根据这两个点的坐标求解线段的长度、斜率等。
知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。
11.2 图形在坐标系中的平移【知识与技能】在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系.【过程与方法】经历图形在坐标系中的平移过程,培养学生形象思维能力和数形结合意识.【情感与态度】调动学生学习的主动性,培养合作探究的意识,体会坐标系中的图形平移的实际应用价值.【教学重点】重点是探究点或图形的平移引起的坐标变化的规律,另一个是研究图形上的点的坐标的某种变化引起的图形的平移变换.【教学难点】难点是对图形在坐标中的平移变化的理解.一、创设情境,导入新知1.复习回顾探究:根据下面条件画一副示意图,标出学校和小强家、小敏家、小刚家的位置.小刚家:出校门向东走150m,再向北走200m.小强家:出校门向西走200m,再向北走350m,最后向东走50m.小敏家:出校门向南走100m,再向东走300m,最后向南走75m.选取直角坐标系的方法很多,在让学生充分交流的基础上,引导学生选择最优方案,那就是:选学校所在位置为原点,分别取正东、正北方向为x轴、y轴正方向建立直角坐标系,并取比例尺1:10000(图中1cm相当于实际中10000cm即100m).依题目所给的已知条件,取得小刚家的位置是(150, 200),类似地,小强和小敏家的位置分别是(-150, 350)和(300,-175).2.教师归纳利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立直角坐标系,选择一个适当的参照为原点,确定x轴、y轴的正方向.(2)依据具体问题确定适当的比例尺,在坐标轴上标出单位长度.(3)在坐标平面的内部画出这些点,写出各点的坐标和各个地点的名称.二、问题牵引,引入研究【问题】如图,△ABC在坐标平面上平移后得到新图形△A1B1C1.(1)△ABC移动的方向怎样?(2)写出△ABC与△A1B1C1各点的坐标,比较对应点坐标,看有怎样的变化?(3)如果△ABC向下平移2个单位,得到△A2B2C2.写出这时各顶点坐标,比较两者对应点坐标,看有怎样的变化?观察比较△ABC与△A1B1C1:对应点的纵坐标都不变,横坐标移动后改变了,即:将横坐标都减去5可得到移动后的点的坐标.请同学们解答完第(3)个问题后,将图形向上平移2个单位再探究一下.【归纳结论】平移规律:描述平移的一个方法是用图形上任一点的坐标(x,y)的变化来表示.(1)在坐标系内,左右平移的点的坐标规律:(x,y)→(x±a, y)(a>0)(2)在坐标系内,上下平移的点的坐标规律:(x,y)→(x, y±b)(b>0)(3)在坐标系内,上下、左右平移的点的坐标规律:(x,y)→(x±a, y±b)(a>0,b >0)三、范例学习,理解新知例1如图,将△ABC先向右平移6个单位,再向下平移2个单位,得到△A1B1C1,写出各顶点变动前后的坐标.【解】得到结论有:A(-2, 6)→(4, 6)→A1(4, 4)B(-4, 4)→(2, 4)→B1(2, 2)C(1, 1)→(7, 1)→C1(7, -1)例2说出下列由点A到点B是怎样平移的?(1)A(x, y)B(x-1, y+2)(2)A(x, y)B(x+3, y-2)(3)A(x+3, y-2)B(x, y)【解】(1)点A向左平移1个单位长度,再向上平移2个单位长度,得到点B;(2)点A向右平移3个单位长度,再向下平移2个单位长度,得到点B;(3)点A向左平移3个单位长度,再向上平移2个单位长度,得到点B.【教学说明】逆向思维训练,给出变化的坐标,让学生了解点的位置的变化,会使学生更为清晰地掌握图形在平面上平移的意义.四、运用新知,深化理解1.(内蒙古呼伦贝尔中考)将点A(-2, -3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,将点P(-2, 1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2, 4)B.(1, 5)C.(1, -3)D.(-5, 5)3.(广西梧州中考)已知线段AB的A点坐标是(3,2),B点坐标是(-2, -5),将线段AB平移后得到点A的对应点A′的坐标是(5,-1),则点B的对应点B′的坐标是 .4.如图,把△ABC放置在网格中,点A的坐标为(-3,1),现将△ABC先向右平移4个单位,再向上平移2个单位后得到△A′B′C′,则点A′的坐标是.5.三角形ABC中,A(-2, 2),B(-4, -2),C(1, 0),把三角形平移后,三角形某一边上的点P(x, y)对应点为P′(x+4, y-2),求平移后所得三角形各顶点的坐标.【参考答案】1.D 2.B3.(0, -8)4.(1, 3)5.解:∵点P(x, y)的对应点为P′(x+4, y-2),∴平移变换规律为向右平移4个单位,向下平移2个单位,∵A(-2, 2),B(-4, -2),C(1, 0),∴平移后A的对应点坐标为(2, 0),B的对应点坐标为(0, -4),C的对应点坐标为(5,-2).五、师生互动,课堂小结1.本节课学习了哪些内容?2.把平面直角坐标系中的一个图形,按下面的要求平移,那么图形上任一点的坐标(x, y)是如何变化的?①向左或向右移动a(a>0)个单位;②向上或向下移动b(b>0)个单位;③向左或向右移动a个单位,再向上或向下移动b个单位(a>0,b>0).1.课本第14页练习2、3.2.完成练习册中的相应作业.本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律.主要是引导学生运用分类思想,依次通过对点和图形的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系、图形各个点的坐标变化与图形平移的关系.然而,一堂课下来,我感触颇深,认为本节课离高效课堂“把课堂还给学生、激发学生自主学习的积极性、提高学生自主学习的能力、切实提高课堂教学效益”的要求还很远.2.5 矩形2.5.1 矩形的性质【知识与技能】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.【过程与方法】经历探索矩形的概念和性质的过程,发展学生合理推理的意识;掌握几何思维方法.并渗透运动联系、从量变到质变的观点.【情感态度】培养严谨的推理能力,以及自主学习的精神,体会逻辑推理的思维价值.【教学重点】矩形的性质.【教学难点】矩形的性质灵活应用.一、创设情境,导入新课在小学,我们初步认识了长方形,你能举出日常生活中有关长方形的例子吗?观察教材图2-41的长方形,它是平行四边形吗?它有什么特点呢?我们这节课就来学习它.【教学说明】用学生身边熟悉的例子入手,同时以提问的方式引起学生的思考和注意,激发学生的求知欲望,让他们愉快地投入到学习中去.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1 矩形的定义做一做用教具演示活动平行四边形的变化过程,当变化到有一个角是直角时停止,让学生观察这是什么图形?引出矩形的定义.【教学说明】这里既复习了四边形的不稳定性,又通过演示操作观察得出矩形的概念,学生一目了然.问题2 矩形的性质提问 ①当□ABCD 变为矩形时,它的四个角有什么变化?对边、对角有什么关系? ②沿矩形对边中点折叠,你有什么发现?绕着对角线的交点旋转180°呢?【教学说明】让学生经历知识形成的过程,动手操作得出的结论既直观,印象又深刻,更易于理解.思考 教材第59页“动脑筋”【教学说明】利用三角形全等得出矩形的另一条性质对角线相等,让学生明白它的由来.例:教材第59页“例1”【教学说明】利用所学的矩形的性质进行有关的证明与计算,一方面学生熟练运用,另一方面加深理解.三、运用新知,深化理解1.如图,在矩形ABCD 中,对角线AC 、BD 相交于O 点,∠AOB=60°,AB=5,则AD 的长是( )A.52B.53C.5D.102.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在D′处,若AB=3,AD=4,则ED 的长为()A.23B.3C.1D.433.如图,在Rt△ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=cm.4.如图,已知矩形ABCD 中,F 是BC 上一点,且AF=BC ,DE⊥AF,垂足为E ,连接DF.求证:(1)△ABF≌△DEA;(2)DF是∠EDC的平分线.【教学说明】让学生自主完成,加深对所学知识的理解和运用以及检查学生的掌握情况,对有困难的学生及时给予帮助,及时纠正出现的错误,并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.答案:1.B 2.A 3.54.证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠DEA=∠B=90°,∵AF=BC,∴AF=AD,∴△ABF≌△DEA.(2)由(1)知△ABF≌△DEA,∴DE=AB.∵四边形ABCD是矩形,∴∠C=90°,DC=AB,∴DC=DE,∴Rt△DEF≌Rt△DCF(HL),∴∠EDF=∠CDF,即DF是∠EDC的平分线.四、师生互动,课堂小结通过今天的学习,你掌握了矩形的哪些性质?还有什么心得与大家共享?存在哪些困难?与大家共同讨论.【教学说明】引导学生回顾所学知识点,加深印象,相互学习,共同提高.1.布置作业:习题2.5中的第1、5题.2.完成练习册中本课时练习的作业部分.通过学生动手操作,观察实验得出结论,既有理性思考,又能让数学活动与知识的学习有机的结合.在教学中要注意学生的薄弱环节,对于学习中出现的问题及时矫正,同时进行必要的补充.14.1.3 积的乘方1.掌握积的乘方的运算法则.(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.二、合作探究探究点一:积的乘方【类型一】 直接利用积的乘方法则进行计算计算:(1)(-5ab )3;(2)-(3x 2y )2; (3)(-43ab 2c 3)3;(4)(-x m y 3m )2.解析:直接应用积的乘方法则计算即可.解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3;(2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m =x 2m y 6m.方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】 积的乘方在实际中的应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3=43×π×(6×105)3=8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 【类型三】 含积的乘方的混合运算计算:(1)-4xy 2·(12xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=4xy 2·14x 2y 4·8x 6=8x 9y 6;(2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,最后算加减,然后合并同类项.探究点二:积的乘方的逆运算【类型一】 利用积的乘方的逆运算进行简便运算计算:(23)2015×(32)2016.解析:将(32)2016转化为(32)2015×32,再逆用积的乘方公式进行计算.解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.方法总结:对公式a n·b n=(ab )n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.运用此公式可进行简便运算.【类型二】 利用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,23<32,∴213×310<210×312. 方法总结:利用积的乘方,转化成同底数的同指数的幂是解答此类问题的关键.三、板书设计积的乘方积的乘方公式:(ab )n =a n b n(n 为正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n ·b n =(ab )n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n 为奇数时,(-a )n =-a n(n 为正整数);当n 为偶数时,(-a )n =a n(n 为正整数).。
图形变换与坐标规律总结一、图形变换与坐标变化点的坐标的变化与图形的变换的关系,通过点的坐标的变化可得到图形变换的规律.总结如下:问题:在直角坐标系中描出点(1,2)、(2,6)、(3,2)、(4,6)、(5,2),并将各点用线段依次连接起来,观察所得的图形,你认为它是一个什么图形?解析:通过正确的作图可得,按题目的要求连接后,得到一个图形,如图1所示,这是一个“M”型。
图1 图2变换1:将图1中的点A、B、C、D、E的纵坐标不变,横坐标分别变成原来的2倍,再将所得的点A1、B1、C1、D1、E1按题目中的连接方式连接,所得的图形与原来的图形相比有什么变化?解析:点A1(2,2),B1(4,6),C1(6,2),D1(8,6),E1(10,2),按要求连接起来如图2所示.和原图形比较,M字图被横向拉长为原来的2倍.总结规律:(1)当纵坐标不变,横坐标变为原来的n(n>1)倍时,则图形被横向拉长原来n倍;(2)当横坐标不变,纵坐标变为原来的n(n>1)时,则图形被纵向拉长原来的n倍.(3)当横坐标、纵坐标分别变为原来的n(n>1)倍,则所得图形形状不变,大小变为原来的n2倍.变换2:将图1中的点A,B,C,D,E的点横坐标不变,纵坐标都加上3,再将所得A2,B2,C2,D2,E2点按题目的要求连接,所得的图形与原图形比较有什么变化?解析:点A2(1,5)、B2(2,9)、C2(3,5)、D2(4,9)、E2(5,5).按要求连接后,所得的图形如图3所示,与原来的图形相比,M字形大小、形状不变,而向上平移了3个单位长度.图3总结规律:(1)横坐标不变,纵坐标分别增加(或减少)n个单位长度,则图形向上(或向下)平移了n个单位长度.(n>0);(2)当纵坐标不变,横坐标分别增加(或减少)n个单位长度,则图形向右(或左)平移了n个单位长度.(n>0)变换3:将图1中的点A,B,C,D,E的横坐标,纵坐标都乘以-1,再将所得A3,B3,C3,D3,E3点按题目的要求连接,所得的图形与原图形比较有什么变化?图4解析: A3(-1,-2)、B3(-2,-6)、C3(-3,-2)、D3(-4,-6)、E3(-3,-2).所得的图形如图4所示,与原图形相比,M字形绕O点旋转了180度,即两个图形关于O点成中心对称.总结规律:(1)横、纵坐标分别乘以-1,则所得图形与原图形关于原点成中心对称;(2)当横坐标不变,纵坐标都乘以-1时,所得图形与原图形关于横轴成轴对称;(3)当纵坐标不变,横坐标都乘以-1时,所得的图形与原图形关于纵轴成轴对称.二、图形变换与坐标变化的应用例1如图5,已知△ABC三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2),这三个顶点的纵坐标不变,将横坐标都加上5,得到A′、B′、C′,写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比发生了怎样的变化?解析:A(-2,5)、B(-4,3)、C(-1,2)的纵坐标不变,横坐标都加上5,得到对应点的坐标分别是:A′(3,5)、B′(1,3)、C′(4,2),顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′C′B′与△ABC可以发现:△ABC向右平移5个单位长度后,得到的△A′B′C′.图5 图6例2如图6,已知△ABC三个顶点A(-2,4),B(-4,2),C(-1,1),将点A、B、C的横坐标,纵坐标都乘以-1,得对应点A′、B′、C′.写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比,发生了怎样的变化?解析:A(-2,4),B(-4,2),C(-1,1)的横、纵坐标都乘以-1,得对应点的坐标分别为:A′(2,-4),B′(4,-2),C′(1,-1).作出点A′、B′、C′,顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC绕坐标原点顺时针旋转180°后得到.例3如图7,已知△ABC,A(1,4),B(3,1),C(-2,2).将点A、B、C三点的纵坐标都乘以-1,横坐标不变,得对应点A′、B′、C′,写出点A′、B′、C′点的坐标,并画出△A′B′C′,比较△A′B′C′与△ABC,△A′B′C′与△ABC相比发生了怎样的变化?图7解析:A(1,4),B(3,1),C(-2,2)的纵坐标都乘以-1,得A′(1,-4),B′(3,-1),C′(-2,-2).顺次连接A′B′、B′C′、C′A′,得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC关于x轴对称得到的.例4已知△ABC各顶点的坐标分别是A(0,2),B(1,3),C(2,-2),各点的纵坐标不变,横坐标都乘以2,所得的对应点分别是A′、B′、C′,写出A′、B′、C′点的坐标,并连接A′B′、B′C′、C′A′,比较所得△A′B′C′与原△ABC,发生了怎样的变化?解析:A(0,2),B(1,3),C(2,-2)各点的横坐标分别乘以2,得对应点的坐标分别是A′(0,2),B′(2,3),C′(4,-2),顺次连结A′B′、B′C′、C′A′,得△A′B′C′′,可以发现△ABC 被横向拉伸了2倍.图8 图9例5 如图9,已知△ABC .各顶点的坐标分别是A (-4,0),B (1,0),C (-1,4),将各点的横坐标不变,纵坐标都乘以21后,得对应点为A ′、B ′、C ′,作出△A ′B ′C ′,将 △A ′B ′C ′与△ABC 比较,发生了怎样的变化? 解析:A (-4,0),B (1,0),C (-1,4)纵坐标乘以21,得对应点的坐标分别为A ′(-4,0),B ′(1,0),C ′(-1,2),顺次连结A ′B ′、B ′C ′、C ′A ′得△A ′B ′C ′,比较△A ′B ′C ′与△ABC ,△ABC 被纵向压缩了21. 试一试身手1、在直角坐标系中,(1)描出下列各点,并将这些点用线段依次连接起来.(-5,0),(-5,4),(-8,7),(-5,6),(-2,8),(-5,4);(2)把(1)中的图案向右平移10个单位,作出平移后的图案.2、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3……已知:A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.参考答案1、解析:首先根据题意在下面的坐标系中描出各点,再依次用线段将其连接起来,即可得出坐标系中y轴左边的图形,再依据要求将各点分别向右平移10个单位,并依次连接各点即可得出y轴左边的图形向右平移10个单位后的图形,如下图所示.2、解析:观察给出的各点的坐标可知:对A、A1,A2,A3而言,后面各点的横坐标分别是前面点的横坐标的2倍,为2n(其中n为各点的下标序数).而纵坐标不变都为3;对2 n(其中n为B、B1,B2,B3而言后面各点的横坐标分别是前面点的横坐标的2倍,为1各点的下标序数),纵坐标不变都为0,由此可知第五次变换后A5的坐标为(32,3),B5的坐标为(64,0).。
第三章图形的平移与旋转3.1图形的平移第1课时平移的认识1.通过具体实例理解平移的概念,掌握平移的基本性质(重点).2.通过观察、分析、操作、欣赏以及抽象、概括等过程,体会平移来源于生活.自学指导:阅读教材P65~66内容,完成下列问题.知识探究1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫平移.平移不改变图形的形状和大小,改变的是位置.2.平移的性质:(1)平移前后的两个图形大小、形状一样;(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.自学反馈1.下列现象中,属于平移的是(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)人随电梯上升;(4)钟摆的摆动;(5)飞机起飞前在直线跑道上滑动.2.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是平行且相等.活动1小组讨论例1如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.解:如图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连接DE,DF,EF,则△DEF就是△ABC平移后的图形.设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.例2如图,点A,B,C,D分别平移到了点E,F,G,H;点A与点E,点B与点F,点C与点G,点D与点H 分别是一对对应点,AB与EF是一对对应线段,∠BAD与∠FEH是一对对应角.(1)在下图中,线段AE、BF、CG、DH有怎样的位置关系?(2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)(2)两个问题,你能归纳出什么结论?解:(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.图中相等的角:∠ABC=∠EFG、∠BAD=∠FEH、∠ADC=∠EHG、∠BCD=∠FGH.(3)平移的基本性质:经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.活动2跟踪训练如图,四边形ABCD平移后得到四边形EFGH.填空:(1)CD=GH;(2)∠F=∠B;(3)HE=DA;(4)∠D=∠H.活动3课堂小结1.通过本节课的学习,我们明白了什么叫平移.(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.)2.总结出了平移的性质.(平移不改变图形的形状和大小.经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.)第2课时沿x轴或y轴方向平移的坐标变化探究横向或纵向平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.(重点)自学指导:阅读教材P68~69内容,完成下列问题.知识探究在平面直角坐标系中,一个图形沿x轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标加上(减去)a,纵坐标不变;图形沿y轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标不变,纵坐标加上(减去)a.自学反馈1.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.将点M(-1,-5)向左平移3个单位长度得到点N,则点N所处的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例1在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A(C) A.向右平移2个单位长度B.向左平移2个单位长度C.向右平移4个单位长度D.向左平移4个单位长度解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,∴点A(-2,3)平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.例2点P(-2,1)向下平移2个单位长度后,关于x轴对称的点P′的坐标为(C)A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)沿x轴或y轴方向平移的坐标变化可简记为“横坐标,右移加,左移减;纵坐标,上移加,下移减”.活动2跟踪训练1.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC(B) A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的2.将点P(2m+3,m-2)向上平移1个单位长度得到P′,且P′在x轴上,则m=1.3.线段AB是由线段CD平移得到,点A(-2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).活动3课堂小结1.图形沿x轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.第3课时沿x轴,y轴方向两次平移的坐标变化探究一次平移既有横向又有纵向时坐标的变化特点.(重点)自学指导:阅读教材P71~73内容,完成下列问题.知识探究一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.自学反馈1.将点A(3,2)沿x轴向左平移4个单位长度,再沿y轴向下平移4个单位长度后得到点A′,则点A′的坐标是(D) A.(1,2)B.(1,-2)C.(-1,2) D.(-1,-2)2.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D) A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例如图所示,四边形ABCD各顶点的坐标为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3,A′(1,8),B′(0,6),C′(3,4),D′(3,7).(2)连接AA′,由图可知,AA′=32+42=5,四边形A′B′C′D′可认为是由四边形ABCD沿着由A到A′的方向,平移5个单位长度得到的.一个图形一次沿x轴方向,y轴方向平移后所得的图形,可以看成是由原来图形经过一次平移得到的.活动2跟踪训练1.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C) A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度2.在平面直角坐标系中,将点(3,-1)向下平移3个单位长度,可以得到对应点(3,-4);将得到的点向右平移2个单位长度,可以得到对应点(5,-4).3.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,且点A1的坐标为(3,1),请分别写出点B1,C1的坐标.解:B1(1,-3),C1(7,-2).活动3课堂小结学生试述:这节课你学到了些什么?3.2图形的旋转第1课时旋转的认识掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.(重点)自学指导:阅读教材P75~76内容,完成下列问题.知识探究1.在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所组成的角都等于旋转角;对应线段相等,对应角相等.自学反馈1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.线段MN绕点P进行旋转后,得到线段M1N1,则点M与点P距离=点M1与点P的距离.(填“>”“<”或“=”)活动1小组讨论例1如图,点A,B,C,D都在方格纸的点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.例2如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.正确的理解旋转的定义和性质.活动2跟踪训练如图,已知P是等边△ABC内的一点,连接AP,BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,△BPP′是什么三角形?解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.又∵将△ABP旋转后能与△CBP′重合,∴AB与CB重合.∴旋转中心是点B.(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,∴旋转角等于∠ABC=60°.(3)△BPP′是等边三角形.理由如下:∵旋转角为60°,即∠PBP′=60°,BP=BP′,∴△BPP′是等边三角形.活动3课堂小结1.旋转的概念:将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.第2课时旋转作图能画出简单图形旋转后的对应图形.(重点)自学指导:阅读教材P78~79内容,完成下列问题.知识探究旋转作图的步骤:(1)确定旋转中心,旋转方向,旋转角;(2)找出图形的关键点;(3)作出关键点经旋转后的对应点;(4)按图形的顺序连接对应点,得到旋转后的图形.自学反馈1.如图,将左边叶片图案旋转180°后,得到的图形是(D)2.把如图所示的图形绕着O点顺时针旋转90°后,得到的图形是(C)活动1小组讨论例如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.解:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC就是线段AB绕点A按顺时针方向旋转60°后的线段.解决这类作图题,紧扣旋转的特征即可.活动2跟踪训练1.对如图所示的图形,下列说法错误的是(C)A.图1绕点“O”顺时针旋转270°到图4B.图1绕点“O”逆时针旋转180°到图3C.图3绕点“O”顺时针旋转90°到图2D.图4绕点“O”顺时针旋转90°到图12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(C)A.(1,4)B.(4,1)C.(4,-1)D.(2,3)3.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1,请用直尺和圆规作出旋转中心O.(不写作法,保留作图痕迹)解:如图所示,点O为所作.4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),将△ABC 绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.解:如图所示,△A′BC′即为所求.活动3课堂小结根据旋转的性质,掌握旋转作图的步骤.3.3中心对称1.理解中心对称、对称中心、中心对称图形等概念,能识别中心对称图形.(重点)2.通过作图探索成中心对称的两个图形的性质.(重点)3.能运用中心对称的性质作出一个图形关于某点对称的图形,并确定对称中心的位置.(重点)自学指导:阅读教材P81~82内容,完成下列问题.知识探究1.如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.3.把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.自学反馈1.下列手机软件图标中,属于中心对称图形的是(D)2.关于中心对称的两个图形中,对应线段的关系是(D)A.相等B.平行C.相等且平行D.相等且平行或相等且在同一直线上活动1小组讨论例1如图,在中心对称的两个图形中,对称点A,A′和对称中心O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有B,O,B′和C,O,C′,并且BO=B′O,CO=C′O.在成中心对称的两个图形中,连接对称点的连线都经过对称中心,并且被对称中心平分.也就是:(1)对称中心在任意两个对称点的连线上.(2)对称中心到一对对称点的距离相等.根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连接中心对称图形上的一对对应点,所得线段的中点就是对称中心,同时在证明线段相等时也有应用.例2如图,四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称.解:(1)连接AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′.(2)同样画出点B、点C和点D的对称点B′,C′和D′.(3)顺次连接A′B′,B′C′,C′D′,D′A′.四边形A′B′C′D′即为所求的四边形.活动2跟踪训练1.下列图形中,是中心对称图形但不是轴对称图形的是(B)2.如图,四边形ABCD与四边形FGHE关于点O成中心对称,则AD=EF,∠ABC=∠FGH.3.如图,已知六边形ABCDEF是以点O为对称中心的中心对称图形,画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.4.下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.活动3课堂小结1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心.2.识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3.4简单的图案设计1.能利用平移、旋转或轴对称以及它们的组合解决一些简单的图案设计问题,并会利用它们分析图案.(重点) 2.通过观察、交流、创作,培养学生的动手操作能力和创新能力.(难点)自学指导:阅读教材P85的内容,完成下列问题.自学反馈1.平移、旋转、对称的联系:都是平面内的变换,都不改变图形的形状和大小,只改变图形的位置.2.如图所示的图案由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?解:可以.归纳:图形的平移、旋转、对称是图形变换中最基本的三种变换方式.活动1小组讨论例欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到的;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.活动2跟踪训练1.国旗上的四个小五角星,通过怎样的移动可以相互得到(D)A.轴对称B.平移C.旋转D.平移和旋转2.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(C)A.30°B.45°C.60°D.90°3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和旋转等.活动3课堂小结充分运用平移、旋转或轴对称,按照所要表达的意思,对基本图案进行操作,设计出相应图案.。