坐标平面内图形变换教案
- 格式:docx
- 大小:29.44 KB
- 文档页数:4
第十一章平面直角坐标系11.1 平面内点的坐标第2课时坐标平面内的图形一、教学目标1.在给定的平面直角坐标系中,会按要求连线,识别图形,计算面积.2.根据实际问题建立合理的直角坐标系,解决一些简单的实际问题,发展数形结合思想和运用数学解决问题的能力.二、教学重点及难点重点:在给定的直角坐标系中,会根据坐标描出点的位置,并能求出顺次连接所得图形的面积.难点:能建立适当的直角坐标系,描述图形的位置.三、教学用具多媒体课件.四、相关资源《空地》图片、《坐标平面》图片、《求三角形面积》图片、《长方形》图片、《直角坐标系》图片、《三角形》图片.五、教学过程【课堂导入】教师进行情境导入:小军家里有一块如图所示的空地,打算进行装修,小军要在电话中告诉装修队如图所示的图形,为了描述清楚,他使用了直角坐标系的知识.你知道小军是怎样叙述的吗?插入图片《空地》设计意图:通过情境导入,引出坐标平面内的图形.【新知讲解】1.在坐标平面内描点作图.教师用PPT展示习题:在平面直角坐标系中描出下列各点,并将各点用线段依次连接起来:A(0,2),B(-1,-2),C(2,0),D(-2,0),E(1,-2),A(0,2).学生绘图观察,回答问题.教师讲解习题.插入图片《坐标平面》设计意图:通过练习的方式,使学生学会在坐标平面内描点作图.2.坐标平面内图形面积的计算.教师用PPT展示习题:如图,A(2,-1),B(4,3),C(1,2),求△ABC的面积.学生观察图形特点,回答问题.教师讲解习题.插入图片《求三角形面积》设计意图:通过练习,归纳出平面内计算图形面积的方法.3.建立适当的直角坐标系描述图形的位置.教师用PPT展示习题:长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3)请你写出另外三个顶点的坐标.学生观察图形特点,回答问题.教师讲解习题.总结知识点:坐标平面内图形面积的计算:方法一:直接法,求出三角形一边的长,并求出该边上的高.方法二:补形法,将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.插入图片《长方形》设计意图:通过练习,学会根据几何图形建立直角坐标系并求点的坐标. 【典型例题】例1在如图所示的直角坐标系中,四边形ABCD 的各个顶点的坐标分别是A (0,0),B (2,5),C (9,8),D (12,0)求出这个四边形的面积.解:S 四边形ABCD=S △ABE +S 梯形BCEF + S △CDF= 12×2×5+ 12×(5+8)×7+12×3×8=62.5.插入图片《直角坐标系》设计意图:本题巩固平面内计算图形面积的分割法.【随堂练习】1. 如图,三角形AOB 中,A ,B 两点的坐标分别为(2,4),(6,2),求三角形AOB 的面积.解:△AOB 的面积为:4×6-(×2×4+×2×6+×2×4)=10点拨:将△AOB 的面积看作是一个长方形的面积减去3个三角形的面积是解本题的基本方法插入图片《三角形》y xD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10设计意图:本题巩固平面内计算图形面积的补形法.通过学生的练习,使教师及时了解学生对坐标平面的图形知识点的理解情况,以便教师及时对学生进行矫正.六、课堂小结1.在坐标平面内描点作图:在平面直角坐标系中准确找出各点的位置是解题的关键2.坐标平面内图形面积的计算:方法一:直接法,计算三角形一边的长,并求出该边上的高.方法二:补形法,将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.3.建立适当的直角坐标系描述图形的位置:由已知条件正确确定坐标轴的位置是解决问题的关键.设计意图:巩固所学知识,培养学生解决的问题的能力.七、板书设计第2课时坐标平面内的图形直接法、补形法、分割法.。
浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教学设计一. 教材分析浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》是学生在学习了平面直角坐标系、图形的性质等知识的基础上,进一步学习图形的变换。
本节课主要内容是图形的轴对称和平移,这两种变换在实际生活中有着广泛的应用。
教材通过丰富的例题和练习题,引导学生掌握轴对称和平移的性质,培养学生的动手操作能力和空间想象能力。
二. 学情分析八年级的学生已经掌握了平面直角坐标系的基本知识,具备了一定的空间想象能力。
但是,对于轴对称和平移的理解可能还不够深入,需要通过实例和操作来进一步巩固。
此外,学生对于实际生活中的对称和变换现象可能有一定的了解,但需要引导他们将这些现象与数学知识结合起来。
三. 教学目标1.理解轴对称和平移的定义及性质。
2.能够识别和判断图形是否具有轴对称和平移性质。
3.能够运用轴对称和平移的知识解决实际问题。
4.培养学生的空间想象能力和动手操作能力。
四. 教学重难点1.轴对称和平移的定义及性质。
2.图形轴对称和平移的判断。
3.轴对称和平移在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论来理解轴对称和平移的性质。
2.利用多媒体课件和实物模型,直观展示轴对称和平移的变换过程,帮助学生建立空间想象。
3.注重动手操作,让学生通过实际操作来体会轴对称和平移的特点。
4.设计丰富的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和答案。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际生活中的对称和变换现象,如剪纸、建筑物的对称等,引导学生关注这些现象背后的数学原理。
2.呈现(10分钟)介绍轴对称和平移的定义及性质,通过示例和动画演示,让学生直观地理解这两种变换。
3.操练(10分钟)让学生分组进行动手操作,利用实物模型或画图工具,尝试进行轴对称和平移变换,并观察变换前后的图形特点。
4.3 坐标平面内图形的轴对称和平移(1)教案课题 4.3 坐标平面内图形的轴对称和平移(1)单元第四单元学科数学年级八年级(上)学习目标1.感受坐标平面内图形变换的坐标变换,了解关于坐标轴对称的两个点的坐标变换;2、会求与已知点关于坐标轴对称点的坐标;利用图形变换与坐标之间的关系来作图;重点关于坐标轴对称的两个点之间的坐标关系.难点利用关于坐标轴对称的两点之间的坐标关系,在坐标平面内作轴对称图形的过程比较复杂,是本节教学的难点.教学过程教学环节教师活动学生活动设计意图导入新课一、创设情景,引出课题如图:(1)写出点A的坐标;(2)分别作点A关于x轴,y轴的对称点,并写出它的坐标;(3)比较点A与它关于x轴的对称点的坐标,点A与它关于y轴的对称点的坐标,你发现什么规律?关于x轴的对称点的坐标,则横坐标不变,纵坐标互为相反数关于y轴的对称点的坐标则纵坐标不变,横坐标互为相反数点(a,b) 关于x轴对称点(a,-b)思考自议点(a,b) 关于y轴对称点(-a,b)简单的说:关于什么轴对称,就什么坐标不变。
讲授新课二、提炼概念三、典例精讲例 1 (1)求出图形轮廓线上各转折点A,O,B,C,D,E,F的坐标以及它们关于y轴的对称点A′,O′,B′,C′,D′,E′,F′的坐标。
(2)在同一坐标系中,描点A′,O′,B′,C′,D′,E′,F′,并用线段依次将它们连接起来。
解:(1)图形轮廓线上各转折点的坐标依次是:A(0,-2) O(0,0)B(3,2) C(2,2) D(2,3) E(1,3) F(0,5)A'(0,-2) O'(0,0) B'(-3,2) C'(-2,2) D'(-2,3) E'(-1,3)F'(0,5)(2)点A′,O′,B′,C′,D′,E′,F′及其连线如图。
(1)关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;(2)关于y轴对称的两个点,纵坐标相等,横坐标互为相反数.在直角坐标系中,P点的坐标为(a,b),P点关于x轴对称的对称点为P1(a,-b),关于y轴对称的对称点为P2(-a,b).一个零件的横截面如图,请完成以下任务:1.按你自己所认为合适的比例,建立直角坐标系。
4.3 坐标平面内的图形的轴对称和平移-浙教版八年级数学上册教案一、知识点总结1. 坐标平面内的轴对称在坐标平面内,有些图形可以通过轴对称得到一个完全相同但方向相反的图形。
轴对称的轴线称为对称轴。
以直线x=2为例,对于点(5,3),它在这条直线的对称点为(1,3)。
对于点(−3,−4),它在这条直线的对称点为(−1,−4)。
2. 坐标平面内的平移在坐标平面内,对于图形A,如果将其向右移m,向上移n,得到的新图形记为A′,则称A′是A绕平移向量(m,n)的平移。
以点(4,3)为例,将它向右移3,向上移2,得到的新点为(7,5)。
原点的对应点是(3,2)。
3. 坐标平面内的图形的轴对称和平移对于平面内的任意一个图形A,可以通过平移和轴对称得到很多不同的图形。
这些图形可以互相转化而不改变原来图形的大小和形状。
二、教学重点与难点1. 教学重点•能够理解轴对称和平移的含义;•通过轴对称和平移对坐标平面内的图形进行变换;•通过轴对称和平移互相转化不同的图形。
2. 教学难点•能够正确计算点的对称点坐标;•能够准确地进行平移变换。
三、教学过程1. 教学活动1活动目的:•能够理解轴对称的含义;•通过练习计算点的对称点坐标,巩固轴对称的概念。
活动准备:•打印轴对称相关的练习题。
活动步骤:1.通过练习题中的例子,让学生理解轴对称的概念;2.让学生在自己的笔记本中画一个坐标系;3.带着学生完成练习题,让他们计算点的对称点坐标。
2. 教学活动2活动目的:•通过扩展学生对于轴对称的概念,让他们理解如何在坐标平面内进行平移变换。
活动准备:•打印平移变换相关的练习题。
活动步骤:1.通过练习题中的例子,让学生理解平移变换的概念;2.让学生在自己的笔记本中画一个坐标系;3.带着学生完成练习题中的平移变换题目。
3. 教学活动3活动目的:•教学如何通过轴对称和平移变换互相转化不同的图形。
活动准备:•打印相关的练习题。
活动步骤:1.让学生在自己的笔记本中画一个坐标系;2.完成一些列平移变换和轴对称的练习题,让学生善于运用这些变形来解决图形的问题。
浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教案一. 教材分析《4.3 坐标平面内的图形的轴对称和平移》是浙教版数学八年级上册的一个重要内容。
这部分内容主要让学生了解和掌握坐标平面内图形的轴对称和平移的性质和运用。
通过这部分的学习,学生能够更好地理解和运用坐标系,提高他们的空间想象能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了坐标系的基本知识,对图形的变换也有了一定的了解。
但是,对于坐标平面内图形的轴对称和平移的性质和运用,可能还存在一定的困难。
因此,教师在教学过程中,需要结合学生的实际情况,循序渐进,引导学生理解和掌握。
三. 教学目标1.让学生了解和掌握坐标平面内图形的轴对称和平移的性质。
2.培养学生运用坐标系解决问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.坐标平面内图形的轴对称和平移的性质。
2.如何在实际问题中运用坐标平面内图形的轴对称和平移。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过自主学习、合作交流,掌握坐标平面内图形的轴对称和平移的性质和运用。
六. 教学准备1.教学课件。
2.相关案例和问题。
3.坐标系图表。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,引导学生思考和讨论,激发学生的学习兴趣。
例如,如何通过轴对称和平移,将一个图形变换成另一个图形。
2.呈现(15分钟)教师通过课件和坐标系图表,呈现坐标平面内图形的轴对称和平移的性质,引导学生理解和掌握。
同时,教师可以通过举例和讲解,让学生了解和掌握如何在实际问题中运用坐标平面内图形的轴对称和平移。
3.操练(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。
教师可以通过巡视课堂,及时发现和纠正学生的错误。
4.巩固(10分钟)教师可以通过一些案例分析,让学生进一步理解和掌握坐标平面内图形的轴对称和平移的性质和运用。
5.拓展(10分钟)教师可以引导学生思考和讨论,如何将坐标平面内图形的轴对称和平移的性质运用到实际问题中,提高学生解决问题的能力。
沪科版数学八年级上册11.2《图形在坐标系中的平移》教学设计一. 教材分析《图形在坐标系中的平移》是沪科版数学八年级上册第11.2节的内容。
本节内容是在学生已经掌握了坐标系和图形的坐标表示的基础上,进一步探究图形的平移变换。
通过本节内容的学习,使学生理解平移的性质,掌握平移的规律,能够将图形的平移运用到实际问题中。
二. 学情分析学生在学习本节内容前,已经掌握了坐标系的基础知识,对图形的坐标表示有一定的理解。
但是,对于图形的平移变换,可能还存在一些困惑,如平移的方向、距离等。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索图形的平移规律。
三. 教学目标1.理解平移的性质,掌握平移的规律。
2.能够运用平移变换解决实际问题。
3.培养学生的观察能力、操作能力、思考能力。
四. 教学重难点1.重点:平移的性质,平移的规律。
2.难点:如何将平移变换运用到实际问题中。
五. 教学方法1.引导发现法:通过引导学生观察、操作、思考,自主探索图形的平移规律。
2.实例分析法:通过分析实际问题,让学生理解平移变换的应用。
六. 教学准备1.教学课件:制作课件,展示图形的平移变换过程。
2.练习题:准备一些有关图形平移的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平移现象,如电梯上升、滑滑梯等,引导学生关注平移变换。
2.呈现(5分钟)讲解平移的定义,解释平移的方向和距离。
通过示例,演示图形的平移过程,让学生观察并理解平移的性质。
3.操练(10分钟)让学生分组进行讨论,每组选择一个图形,探讨其平移规律。
学生可以自己动手操作,改变图形的位置,观察平移后的变化。
4.巩固(10分钟)出示一些有关图形平移的练习题,让学生独立完成。
教师及时给予反馈,帮助学生巩固所学知识。
5.拓展(10分钟)让学生思考如何将平移变换运用到实际问题中。
出示一些实际问题,如建筑设计、游戏设计等,让学生尝试用平移变换解决问题。
第二十二章相似形22.4 图形的位似变换第2课时图形在平面直角坐标系中的位似变换一、教学目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.二、教学重点及难点重点:用图形的坐标的变化来表示图形的位似变换.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.三、教学用具多媒体课件四、相关资料《坐标系中的位似》动画、《平面直角坐标系中的位似》微课五、教学过程【情景引入】观察如图所示的坐标系中的几个图形,它们之间有什么联系?【探究新知】发布任务:1. 如下图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?2. 如下图,△ABC 三个顶点坐标分别为A (2,3),B (2,1),C (6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?总结:位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .此图片是动画缩略图,本资源为《坐标系中的位似》知识探究,通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,适用于《坐标系中的位似》的教学.若需使用,请插入【数学探究】坐标系中的位似.【新知运用】在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E′的坐标是( )A .(2,-1)B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)解析:根据题意画出相应的图形,找出点E 的对应点E′的坐标即可.答案:如图,△E′F′O 与△E″F″O 即为所求的位似图形,可求得点E 的对应点的坐标为(-2,1)或(2,-1).故选D.本图片是微课的首页截图,本微课资源讲解了图形在平面直角坐标系中的位似,并通过讲解实例巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】平面直角坐标系中的位似.【随堂检测】1. 如图,在平面直角坐标系中,A (1,2),B (2,4),C (4,5),D (3,1)围成四边形ABCD ,做出一个四边形ABCD 的位似图形,使得新图形与原图形对应线段的比为2∶1,位似中心是坐标原点.解:以坐标原点O为位似中心的两个位似图形,一种可能是位似图形在位似中心同侧,此时各顶点的坐标乘以2;另一种可能是位似图形在位似中心的两侧,此时各顶点的坐标乘以-2,此题做出一个即可.如图,利用位似变换中对应点的坐标的变化规律,分别取A′(2,4),B′(4,8),C′(8,10),D′(6,2),顺次连接A′B′,B′C′,C′D′,D′A′,则四边形A′B′C′D′就是四边形ABCD的一个位似图形.2. 如图,△ABC三个顶点坐标分别为A(-1,3),B(-1,1),C(-3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2.解析:(1)根据网格找到点A,B,C关于y轴的对称点A1,B1,C1的位置,然后顺次连接;(2)连接A1O并延长至A2,使A2O=2A1O.连接B1O并延长至B2,使B2O=2B1O.连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可.解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.六、课堂小结这节课你学到了哪些新知识呢?在平面直角坐标系中,将一个多边形每个顶点的横、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,他们的相似比为|k|.设计意图:通过问题的设置将本节课所学的知识点进行集中的梳理,归纳总结出本节课的重点知识。
浙教版数学八年级上册4.3《坐标平面内图形的轴对称和平移(二)》教案一. 教材分析《坐标平面内图形的轴对称和平移(二)》是浙教版数学八年级上册4.3的内容。
本节课主要让学生掌握坐标平面内图形的轴对称和平移的性质,能够运用这些性质解决一些实际问题。
教材通过例题和练习,引导学生探究和发现坐标平面内图形的轴对称和平移的规律,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在之前的学习中已经掌握了坐标平面内图形的轴对称和平移的基本概念,能够识别和判断图形的轴对称和平移。
但是,对于复杂的图形,学生可能还不能很好地运用这些性质解决问题。
因此,在教学过程中,需要通过例题和练习,让学生加深对坐标平面内图形的轴对称和平移的理解,提高解决问题的能力。
三. 教学目标1.理解坐标平面内图形的轴对称和平移的性质。
2.能够运用坐标平面内图形的轴对称和平移的性质解决一些实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.坐标平面内图形的轴对称和平移的性质。
2.如何运用坐标平面内图形的轴对称和平移的性质解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生探究和发现坐标平面内图形的轴对称和平移的规律,培养学生的逻辑思维能力和解决问题的能力。
在教学过程中,结合例题和练习,让学生通过自主学习、合作学习和讨论学习,加深对坐标平面内图形的轴对称和平移的理解。
六. 教学准备1.教学PPT。
2.练习题。
3.教学用图。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何利用坐标平面内图形的轴对称和平移的性质解决问题。
例如,给出一个正方形,要求学生将其通过轴对称和平移,变成一个特定的形状。
2.呈现(10分钟)通过PPT展示教材中的例题,引导学生分析例题中图形的轴对称和平移的性质。
让学生观察和思考,如何通过轴对称和平移,使得图形达到预期的效果。
3.操练(10分钟)让学生分组合作,解决一些类似的实际问题。
23.6.2 图形的变换与坐标说课稿 2022—2023学年华东师大版数学九年级上册一、教材分析《2022—2023学年华东师大版数学九年级上册》是针对九年级学生编写的数学教材。
该教材包括了多个章节,其中第23章是关于图形的变换与坐标的内容。
该章节主要包括平移、旋转和对称三种图形的变换方法,并且通过坐标系的引入,使学生能够更好地理解和描述图形的变换过程。
本节课的内容是23.6.2小节,重点学习了图形的变换与坐标的关系。
通过本节课的学习,学生可以掌握图形在坐标平面上的平移、旋转和对称变换的方法,并能够运用所学知识解决实际问题。
二、教学目标1.知识目标:了解平移、旋转和对称变换的定义和基本原理,学会在坐标平面上描述图形的变换过程。
2.能力目标:掌握图形在坐标平面上进行平移、旋转和对称变换的方法,能够准确描述变换后的图形。
3.情感目标:培养学生的思维观察力和动手能力,增强学生对数学的兴趣和自信心。
三、教学重、难点1.教学重点:通过示例和实例,引导学生理解图形的平移、旋转和对称变换,并能够在坐标平面上进行描述。
2.教学难点:学生能够自主运用所学知识,准确进行图形的变换和描述。
1. 导入新知识教师可以通过提问的方式,回顾和巩固学生对平移、旋转和对称变换的基本概念和定义。
同时,引入坐标系的概念,并说明图形的变换与坐标之间的关系。
2. 示范与练习教师先给出一个图形的坐标,然后引导学生根据给定的坐标,在坐标平面上进行平移、旋转和对称变换,并让学生描述变换前后的图形特点。
接着,教师让学生分组进行练习,每组给出一个图形的坐标和一个变换方式,要求学生在坐标平面上进行对应变换,并准确描述变换后的图形。
3. 拓展与应用教师让学生通过实际生活中的例子,运用所学知识解决实际问题。
例如,给出一个房间平面图,让学生根据给定的条件进行平移、旋转和对称变换,找出满足条件的位置。
同时,教师可以引导学生思考图形变换的数学性质,例如平移、旋转和对称变换对图形的某些性质是否有影响,让学生能够运用数学推理的方法解决问题。
第21课 坐标平面内的图形的轴对称和平移学习目标1.感受坐标平面内图形变化相应的坐标变化.2.了解关于坐标轴对称的两个点的坐标关系.3.会求与已知点关于坐标轴对称的点的坐标.4.利用关于坐标轴对称的两个对称点的坐标关系,求作轴对称图形.知识点01 坐标平面内图形的轴对称在直角坐标系中,点(a,b )关于x 轴的对称点的坐标为(a,-b ),关于y 轴的对称点的坐标为(-a,b).1. 关于x 轴对称:横坐标不变,纵坐标互为相反数2.关于y 轴对称:横坐标互为相反数,纵坐标不变知识点02 坐标平面内图形的平移平移:上加下减,右加左减考点01 坐标平面内图形的轴对称【典例1】已知点A (a +2b ,﹣2)和点B (﹣1,a +1)关于y 轴对称,那么a +b = ﹣1 .【思路点拨】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【解析】解:∵点A (a +2b ,﹣2)和点B (﹣1,a +1)关于y 轴对称,∴,解得,∴a +b =﹣3+2=﹣1.故答案为:﹣1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.【即学即练1】平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (3,4),C (3,﹣1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.【思路点拨】(1)根据点A 、B 、C 的坐标及坐标的概念描点即可;(2)根据三角形的面积公式求解可得;(3)根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解析】解:(1)如图所示,点A 、B 、C即为所求;能力拓展(2)△ABC的面积为:=5;(3)若△A1B1C1与△ABC关于x轴对称,则A1(1,﹣4)、B1(3,﹣4)、C1(3,1).【点睛】本题主要考查作图﹣轴对称变换,解题的关键是根据轴对称变换的定义和性质得出对应点.考点02 坐标平面内图形的平移【典例2】用(﹣2,4)表示一只蚂蚁的位置,若这只蚂蚁先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只蚂蚁的位置是( )A.(1,6)B.(﹣5,2)C.(1,2)D.(2,1)【思路点拨】根据平移规律解答即可.【解析】解:自点(﹣2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,此时这只蚂蚁的位置是(﹣2+3,4﹣2),即(1,2),故选:C.【点睛】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.【即学即练2】三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示:(1)分别写出下列各点的坐标:A (1,3) ,A′ (﹣3,1) ;(2)若点P(x,y)是三角形ABC内部一点,则三角形A′B′C′内部的对应点P′的坐标 (x﹣4,y﹣2) .(3)三角形A′B′C′是由三角形ABC经过怎样的平移得到的?【思路点拨】(1)根据点的位置写出坐标即可;(2)利用平移变换的规律解决问题即可;(3)根据平移变换的性质解决问题.【解析】解:(1)A (1,3),A ′(﹣3,1).故答案为:(1,3),(﹣3,1);(2)∵△ABC 向左平移4个单位,再向下平移2个单位得到△A ′B ′C ′,∴P (x ,y )的对应点P ′(x ﹣4,y ﹣2),故答案为:(x ﹣4,y ﹣2);(3)△ABC 向左平移4个单位,再向下平移2个单位得到△A ′B ′C ′.【点睛】本题考查坐标与图形变化﹣平移,解题的关键是掌握平移变换的性质,属于中考常考题型.题组A 基础过关练1.在平面直角坐标系中,点A (3,2)与点B (3,﹣2)的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .没有对称关系【思路点拨】直接利用关于关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得出答案.【解析】解:∵点A (3,2)与点B (3,﹣2),横坐标相同,纵坐标互为相反数,∴点A (3,2)与点B (3,﹣2)的位置关系是关于x 轴对称.故选:A.分层提分【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.2.在平面直角坐标系中,点P(6,﹣3)关于x轴对称的点的坐标是( )A.(﹣6,3)B.(6,﹣3)C.(6,3)D.(﹣6,﹣3)【思路点拨】直接利用关于x轴对称点的性质分析得出答案.【解析】解:在平面直角坐标系中,点P(6,﹣3)关于x轴对称的点的坐标是(6,3).故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.3.若点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是( )A.﹣1B.1C.﹣5D.5【思路点拨】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”,可得a=﹣2,b=﹣3,再代入计算即可.【解析】解:∵点P(2,b)和点Q(a,﹣3)关于y轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.若点M(2a,﹣1)与点N(4,﹣b)关于x轴对称,则a+b的值为( )A.﹣3B.﹣1C.1D.3【思路点拨】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【解析】解:∵点M(2a,﹣1)与点N(4,﹣b)关于x轴对称,∴2a=4,﹣b=1,解得a=2,b=﹣1,则a+b=2﹣1=1.故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握对称点坐标特点是解题关键.5.把点A(﹣2,1)向上平移2个单位,再向左平移3个单位后得到B,点B的坐标是( )A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)【思路点拨】根据平移的基本性质,向上平移a,纵坐标加a,向右平移a,横坐标加a;【解析】解:∵A(﹣2,1)向上平移2个单位,再向左平移3个单位后得到B,∴1+2=3,﹣2﹣3=﹣5;点B的坐标是(﹣5,3).故选:A.【点睛】本题考查了平移的性质,①向右平移a个单位,坐标P(x,y)⇒P(x+a,y),①向左平移a 个单位,坐标P(x,y)⇒P(x﹣a,y),①向上平移b个单位,坐标P(x,y)⇒P(x,y+b),①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b).6.在平面直角坐标系中,若点P(a,﹣5)与点Q(4,3)所在直线PQ∥y轴,则a的值等于( )A.﹣5B.3C.﹣4D.4【思路点拨】根据直线PQ∥y轴,得到P,Q横坐标相等,即可求解.【解析】解:∵直线PQ∥y轴,∴P,Q横坐标相等,∴a=4,故选:D.【点睛】本题考查了坐标与图形性质,直线PQ∥y轴,得到P,Q横坐标相等是解题的关键.7.如图,将线段AB向右平移3个单位长度,再向下平移2个单位长度,得到线段A'B',则点A的对应点A'的坐标是( )A.(0,2)B.(1,2)C.(0,﹣1)D.(﹣1,﹣2)【思路点拨】利用平移变换的性质分别作出A,B的对应点A′,B′即可.【解析】解:如图,观察图象可知点A′的坐标是(1,2),故选:B.【点睛】本题考查坐标与图形变化—平移,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.8.在平面直角坐标系中,已知点M(m﹣1,2m+3).若点N(﹣3,2),且MN∥y轴.(1)m= ﹣2 ;(2)点M关于y轴对称的点的坐标为 (3,﹣3) .【思路点拨】(1)根据MN∥y轴得出点M与点N的横坐标相等,建立等式可求出m的值,由此即可得;(2)根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解析】解:(1)∵点M(m﹣1,2m+3).若点N(﹣3,2),且MN∥y轴,∴点M与点N的横坐标相等,即m﹣1=﹣3,解得m=﹣2,故答案为:﹣2;(2)由(1)可得点M的坐标为(﹣3,﹣1),所以点M关于y轴对称的点的坐标为(3,﹣1).故答案为:(3,﹣1).【点睛】本题考查了点坐标,熟练掌握平面直角坐标系中,点坐标的特征是解题关键.9.△ABC的三个顶点坐标分别是A(a,5),B(7,b),C(4,9),将△ABC平移后得到△A1B1C1,其中A1(3,8),B1(6,3),则点C1的坐标是 (3,12) .【思路点拨】由题意△ABC向上平移3个单位,再向左平移一个单位得到△A1B1C1,由此可得结论.【解析】解:由题意△ABC向上平移3个单位,再向左平移一个单位得到△A1B1C1,∴C1(3,12).故答案为:(3,12).【点睛】本题考查坐标与图形变化﹣平移,解题的关键是理解题意,灵活运用所学知识解决问题.10.已知点A(a﹣3,a2﹣4),求分别满足下列条件的a的值及点A的坐标.(1)点A在x轴上;(2)已知点B(2,5),且AB∥x轴.【思路点拨】(1)根据x轴上的点的坐标特征可得a2﹣4=0,求出a的值,进一步可得点A的坐标;(2)根据AB∥x轴,可得a2﹣4=5,求出a的值,进一步可得点A的坐标.【解析】解:(1)∵点A在x轴上,∴a2﹣4=0,解得a=2或a=﹣2,∴点A的坐标为(﹣1,0)或(﹣5,0);(2)∵AB∥x轴,∴a2﹣4=5,∴a=3或a=﹣3,∴点A坐标为(0,5)或(﹣6,5).【点睛】本题考查了坐标与图形的性质,熟练掌握平面直角坐标系内坐标轴上的点和平行于坐标轴的点的坐标特征是解题的关键.11.如图在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).(1)若点D与点A关于y轴对称,则点D的坐标为 (2,2) .(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为 (2,0) .(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.【思路点拨】(1)直接利用关于y轴对称点的性质得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案;(3)利用四边形ABCD所在矩形面积减去周围三角形面积,进而得出答案.【解析】解:(1)如图所示:D(2,2);故答案为:(2,2);(2)如图所示:C(2,0);故答案为:(2,0);(3)如图所示:四边形ABCD的面积为:4×5﹣×1×4﹣×5×2=13.【点睛】此题主要考查了四边形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.题组B 能力提升练12.若点A(6,6),AB∥x轴,且AB=2,则B点坐标为( )A.(4,6)B.(6,4)或(6,8)C.(8,6)D.(4,6)或(8,6)【思路点拨】根据AB∥x轴,得到点A,B的纵坐标相等,点B的纵坐标为6,根据AB=2分两种情况求点B的坐标即可.【解析】解:∵AB∥x轴,∴点A,B的纵坐标相等,∴点B的纵坐标为6,∵AB=2,∴当点B在点A左侧时,B(4,6);当点B在点A右侧时,B(8,6);故选:D.【点睛】本题考查了坐标与图形性质,体现了分类讨论的思想,根据AB∥x轴,得到点A,B的纵坐标相等是解题的关键.13.在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣2),那么点B的对应点B′的坐标是( )A.(1,1)B.(1,2)C.(2,2)D.(2,1)【思路点拨】利用平移变换的性质,画出图形可得结论.【解析】解:如图,观察图像可知,B′(1,1).故选:A.【点睛】本题考查坐标与图形变化﹣平移,解题的关键是理解题意,正确画出图形解决问题.14.在平面直角坐标系中,将点A(2,﹣1)向上平移4个单位长度得到点B,则点B关于y轴对称的点B'的坐标为( )A.(﹣3,2)B.(2,3)C.(﹣2,﹣3)D.(﹣2,3)【思路点拨】首先根据纵坐标上移加,下移减可得B点坐标,然后再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解析】解:将点A(2,﹣1)向上平移4个单位长度得到点B的坐标为(2,﹣1+4),即(2,3),则点B关于y轴的对称点B′的坐标是:(﹣2,3).故选:D.【点睛】此题主要考查了坐标与图形变化﹣平移,以及关于y轴对称点的坐标,关键是掌握点的坐标变化规律.15.已知点P(a+1,2a﹣3)关于x轴对称的点在第二象限,则a的取值范围为( )A.a>B.a<C.a<﹣1D.﹣1<a<【思路点拨】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出对应点坐标,再利用第二象限点的坐标特点进而得出答案.【解析】解:点P(a+1,2a﹣3)关于x轴对称的点为(a+1,﹣2a+3)在第二象限,故,解得a<﹣1.故选:C.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.在平面直角坐标系中有A(m,3),B(4,n)两点,若直线AB平行于y轴,且AB=4,则m+n= 3或11 .【思路点拨】先根据直线AB平行于y轴可得出m=4,再由AB=4可得出n的值.【解析】解:∵点A(m,3),B(4,n),直线AB平行于y轴,∴m=4.∵AB=4,∴|3﹣n|=4,解得n=﹣1或7.∴m+n=4﹣1=3,或4+7=11故答案为:3或11.【点睛】本题考查的是坐标与图形性质,熟知平行于y轴的直线上点的横坐标相等是解答此题的关键.17.已知点M(3,﹣2)与点M'(x,y)在同一条平行于x轴的直线上,且M'到y轴的距离等于4,那么点M'的坐标是 (4,﹣2)或(﹣4,﹣2) .【思路点拨】由点M和M′在同一条平行于x轴的直线上,可得点M′的纵坐标;由“M′到y轴的距离等于4”可得,M′的横坐标为4或﹣4,即可确定M′的坐标.【解析】解:∵M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,∴M′的纵坐标y=﹣2,∵“M′到y轴的距离等于4”,∴M′的横坐标为4或﹣4.所以点M′的坐标为(4,﹣2)或(﹣4,﹣2),故答案为:(4,﹣2)或(﹣4,﹣2).【点睛】本题考查了点的坐标的确定,注意:由于没具体说出M′所在的象限,所以其坐标有两解,注意不要漏解.18.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于 0 .【思路点拨】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解析】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得(舍去),,∴4a+b=0.故答案为:0.【点睛】本题考查了坐标与图形性质,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1是解题的关键.题组C 培优拔尖练19.在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A'位于第二象限,则m、n的取值范围分别是( )A.m<0,n>0B.m<3,n>﹣4C.m<0,n<﹣2D.m<﹣3,n<﹣4【思路点拨】根据第二象限点的特征,根据不等式组解决问题即可.【解析】解:平移后的坐标为(m﹣3,n+4),由题意,,解得,故选:B.【点睛】本题考查坐标与图形变化﹣平移,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.在平面直角坐标系中,点A的坐标为(﹣1,3),点B的坐标为(5,3),则线段AB上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【思路点拨】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解析】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.【点睛】本题考查了坐标与图形的性质,平行于x轴的直线上的点纵坐标相等.22.在平面直角坐标系中,若点P(m,m﹣n)与点Q(2,1)关于原点对称,则点M(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限【思路点拨】直接利用关于原点对称点的性质得出m,n的值,再利用各象限内点的坐标特点得出答案.【解析】解:∵点P(m,m﹣n)与点Q(2,1)关于原点对称,∴,解得,∴点M(m,n)即(﹣2,﹣1)在第三象限.故选:C.【点睛】此题主要考查了关于原点对称点的性质以及点的坐标特点,正确得出m,n的值是解题关键.23.在平面直角坐标系中,下列说法:①若点A(a,b)在坐标轴上,则ab=0;②若m为任意实数,则点(2,m2)一定在第一象限;③若点P到x轴的距离与到y轴的距离均为2,则符合条件的点P有2个;④已知点M(2,3),点N(﹣2,3),则MN∥x轴.其中正确的是( )A.①④B.②③C.①③④D.①②④【思路点拨】①坐标轴上的点的特征是横坐标为0或纵坐标为0,由此可判断;②由m2≥0,可得点(2,m2)在第一象限或x轴正半轴上;③到点P到x轴的距离与到y轴的距离均为2,则点P在四个象限内都有符合条件的点;④由题可知MN在直线y=3上,由此可判断.【解析】解:①∵点A(a,b)在坐标轴上,∴a=0或b=0,∴ab=0,故①符合题意;②∵m2≥0,∴点(2,m2)在第一象限或x轴正半轴上,故②不符合题意;③点P到x轴的距离与到y轴的距离均为2,∴P点坐标为(2,2)或(2,﹣2)或(﹣2,2)或(﹣2,﹣2),∴P点共有4个,故③不正确;④∵点M(2,3),点N(﹣2,3),∴M、N两点在y=3的直线上,∴MN∥x轴,故④符合题意;故选:A.【点睛】本题考查坐标与图形,熟练掌握平面直角坐标系中点的坐标特征是解题的关键.25.如图,正△ABO的边长为4,O为坐标原点,A在x轴上,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,翻滚2022次后AB中点M坐标为 (8085,) .【思路点拨】作出把△ABO经3次翻滚后的图形,作B3E⊥x轴于点E,由勾股定理可得B3E的长,从而可知点B3的纵坐标,再根据等边三角形的边长为4及等腰三角形的三线合一性质,可得OE的长,从而可知点B3的坐标;由图象可知翻滚的循环规律,从而可知翻滚2022次后AB中点M的坐标.【解析】解:如图所示,把△ABO经3次翻滚后,点B落到点B3处,点M经过点N、点H落到点M’处,点A落到点K处,作B3E⊥x轴于点E,则∠B3KE=60°,B3K=2,∴KE=B3K=2,B3E=B3K=2,∴OE=3×4﹣2=10,∴K(8,0),B3(10,2).∴M′(9,).由图象可知,翻滚三次为一个循环,∵2022=3×674,∴翻滚2022次后AB 中点M 的纵坐标与点M ′的纵坐标相同,横坐标为2022×4﹣3=8085,∴翻滚2022次后AB 中点M 的坐标为(8085,).故答案为:(8085,).【点睛】本题考查的是坐标与图形变化﹣旋转,等边三角形的性质等知识,找到旋转规律是解题的关键.26.如图①,在平面直角坐标系中,点A (a ,0),点B (b ,0),点C (0,2),且|a +2b |+=0.(1)求点A ,B 的坐标;(2)将三角形ABC 平移,平移后点C 的对应点的坐标为(7,6),点B 的对应点为点D ,如图②.求三角形ACD 的面积;(3)P (m ,3)是一动点,若三角形PCO 的面积等于三角形AOC 的面积,求出点P 的坐标.【思路点拨】(1)由|a +2b |+=0,根据非负数的性质可得出a 和b 的值,即可确定点A 和B 的坐标;(2)连接OD ,根据S 三角形ACD =S 三角形OCD +S 三角形OAD ﹣S 三角形AOC 计算即可求解;(3)根据三角形PCO 的面积等于三角形AOC 的面积,列出方程计算即可求解.【解析】解:(1)∵|a +2b |+=0,∴,解得.故点A (4,0),点B (﹣2,0);(2)∵将三角形ABC 平移,平移后点C (0,2)的对应点的坐标为(7,6),∴三角形ABC 是向右平移7个单位长度,再向上平移4个单位长度,∴三角形ABC 平移后点B (﹣2,0)的对应点D 的坐标为(5,4),连接OD ,∴S 三角形ACD =S 三角形OCD +S 三角形OAD ﹣S 三角形AOC=×4×4+×2×5﹣×4×2=9;(3)依题意有:×2|m|=×4×2,解得m=±4,故点P的坐标为(﹣4,3)或(4,3).【点睛】本题主要考查平面直角坐标系,关键是能根据|a+2b|+=0的非负性确定a和b的值,求出点A,B的坐标.27.在平面直角坐标系中,将线段AB平移得到的线段记为线段A′B′.(1)如果点A,B,A′的坐标分别为A(﹣2,﹣1),B(1,﹣3),A′(2,3),直接写出点B′的坐标 (5,﹣1) ;(2)已知点A,B,A',B'的坐标分别为A(m,n),B(2n,m),A′(3m,n),B′(6n,m),m 和n之间满足怎样的数量关系?说明理由;(3)已知点A,B,A′,B′的坐标分别为A(m,n+1),B(n﹣1,n﹣2),A′(2n﹣5,2m+3),B′(2m+3,n+3),求点A,B的坐标.【思路点拨】(1)根据点A到A′确定出平移规律,再根据平移规律列式计算即可得到点B′的坐标;(2)根据题意列方程,解方程即可得到结论;(3)根据题意列方程组,解方程组,即可得到结论.【解析】解:(1)∵A(﹣2,1)平移后得到点A′的坐标为(2,3),∴向上平移了2个单位,向右平移了4个单位,∴B(1,﹣3)的对应点B'的坐标为(1+4,﹣3+2),即(5,﹣1).故答案为:(5,﹣1);(2)m=2n,理由:∵将线段AB平移得到的线段记为线段A′B′,A(m,n),B(2n,m),A′(3m,n),B′(6n,m),∴3m﹣m=6n﹣2n,∴m=2n;(3)∵将线段AB平移得到的线段记为线段A′B′,点A,B,A′,B′的坐标分别为A(m,n+1),B(n﹣1,n﹣2),A′(2n﹣5,2m+3),B′(2m+3,n+3),∴2n﹣5﹣m=2m+3﹣(n﹣1),2m+3﹣(n+1)=(n+3)﹣(n﹣2),解得m=6,n=9,∴点A的坐标为(6,10),点B的坐标为(8,7).【点睛】本题考查了坐标与图形变化﹣平移,熟练掌握点的平移规律是解题的关键.28.我们约定:若点P的坐标为(x,y),则把坐标为(kx+y,x﹣ky)的点P k成为点P的“k阶益点”(其中k为正整数),例如:P2(2×3+4,3﹣2×4)即P2(10,﹣5)就是点P(3,4)的“2阶益点”.(1)已知点P3(﹣1,﹣7)是点P(x,y)的“3阶益点”,求点P的坐标;(2)已知点P2是点P(t+1,2t)的“2阶益点”,将点先向右移动6个单位,再向下移动3个单位得到点Q,若点Q落在第四象限,求t的取值范围;(3)已知点P(x,y)的“k阶益点”是P k(3,﹣2),若x<y<2x,求符合要求的点P的坐标.【思路点拨】(1)构建方程组求解即可;(2)构建不等式组解决问题即可;(3)根据不等式组,求出整数k,可得结论.【解析】解:(1)由题意,解得,,∴P(﹣1,2);(2)由题意,,解得,t>﹣;(3)由题意,,解得,,∵x<y<2x,∴<<,解得,<k<5,∵k是正整数,∴K=2或3或4,∴或或,∴满足条件的点P的坐标为(,)或(,)或(,).【点睛】本题考查坐标与图形变化﹣平移,解一元一次方程,不等式组等知识,解题的关键是理解题意,学会构建方程或不等式解决问题.。
第三章图形的平移与旋转3.1图形的平移第1课时平移的认识1.通过具体实例理解平移的概念,掌握平移的基本性质(重点).2.通过观察、分析、操作、欣赏以及抽象、概括等过程,体会平移来源于生活.自学指导:阅读教材P65~66内容,完成下列问题.知识探究1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫平移.平移不改变图形的形状和大小,改变的是位置.2.平移的性质:(1)平移前后的两个图形大小、形状一样;(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.自学反馈1.下列现象中,属于平移的是(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)人随电梯上升;(4)钟摆的摆动;(5)飞机起飞前在直线跑道上滑动.2.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是平行且相等.活动1小组讨论例1如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.解:如图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连接DE,DF,EF,则△DEF就是△ABC平移后的图形.设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.例2如图,点A,B,C,D分别平移到了点E,F,G,H;点A与点E,点B与点F,点C与点G,点D与点H 分别是一对对应点,AB与EF是一对对应线段,∠BAD与∠FEH是一对对应角.(1)在下图中,线段AE、BF、CG、DH有怎样的位置关系?(2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)(2)两个问题,你能归纳出什么结论?解:(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.图中相等的角:∠ABC=∠EFG、∠BAD=∠FEH、∠ADC=∠EHG、∠BCD=∠FGH.(3)平移的基本性质:经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.活动2跟踪训练如图,四边形ABCD平移后得到四边形EFGH.填空:(1)CD=GH;(2)∠F=∠B;(3)HE=DA;(4)∠D=∠H.活动3课堂小结1.通过本节课的学习,我们明白了什么叫平移.(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.)2.总结出了平移的性质.(平移不改变图形的形状和大小.经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.)第2课时沿x轴或y轴方向平移的坐标变化探究横向或纵向平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.(重点)自学指导:阅读教材P68~69内容,完成下列问题.知识探究在平面直角坐标系中,一个图形沿x轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标加上(减去)a,纵坐标不变;图形沿y轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标不变,纵坐标加上(减去)a.自学反馈1.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.将点M(-1,-5)向左平移3个单位长度得到点N,则点N所处的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例1在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A(C) A.向右平移2个单位长度B.向左平移2个单位长度C.向右平移4个单位长度D.向左平移4个单位长度解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,∴点A(-2,3)平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.例2点P(-2,1)向下平移2个单位长度后,关于x轴对称的点P′的坐标为(C)A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)沿x轴或y轴方向平移的坐标变化可简记为“横坐标,右移加,左移减;纵坐标,上移加,下移减”.活动2跟踪训练1.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC(B) A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的2.将点P(2m+3,m-2)向上平移1个单位长度得到P′,且P′在x轴上,则m=1.3.线段AB是由线段CD平移得到,点A(-2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).活动3课堂小结1.图形沿x轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.第3课时沿x轴,y轴方向两次平移的坐标变化探究一次平移既有横向又有纵向时坐标的变化特点.(重点)自学指导:阅读教材P71~73内容,完成下列问题.知识探究一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.自学反馈1.将点A(3,2)沿x轴向左平移4个单位长度,再沿y轴向下平移4个单位长度后得到点A′,则点A′的坐标是(D) A.(1,2)B.(1,-2)C.(-1,2) D.(-1,-2)2.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D) A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例如图所示,四边形ABCD各顶点的坐标为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3,A′(1,8),B′(0,6),C′(3,4),D′(3,7).(2)连接AA′,由图可知,AA′=32+42=5,四边形A′B′C′D′可认为是由四边形ABCD沿着由A到A′的方向,平移5个单位长度得到的.一个图形一次沿x轴方向,y轴方向平移后所得的图形,可以看成是由原来图形经过一次平移得到的.活动2跟踪训练1.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C) A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度2.在平面直角坐标系中,将点(3,-1)向下平移3个单位长度,可以得到对应点(3,-4);将得到的点向右平移2个单位长度,可以得到对应点(5,-4).3.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,且点A1的坐标为(3,1),请分别写出点B1,C1的坐标.解:B1(1,-3),C1(7,-2).活动3课堂小结学生试述:这节课你学到了些什么?3.2图形的旋转第1课时旋转的认识掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.(重点)自学指导:阅读教材P75~76内容,完成下列问题.知识探究1.在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所组成的角都等于旋转角;对应线段相等,对应角相等.自学反馈1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.线段MN绕点P进行旋转后,得到线段M1N1,则点M与点P距离=点M1与点P的距离.(填“>”“<”或“=”)活动1小组讨论例1如图,点A,B,C,D都在方格纸的点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.例2如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.正确的理解旋转的定义和性质.活动2跟踪训练如图,已知P是等边△ABC内的一点,连接AP,BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,△BPP′是什么三角形?解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.又∵将△ABP旋转后能与△CBP′重合,∴AB与CB重合.∴旋转中心是点B.(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,∴旋转角等于∠ABC=60°.(3)△BPP′是等边三角形.理由如下:∵旋转角为60°,即∠PBP′=60°,BP=BP′,∴△BPP′是等边三角形.活动3课堂小结1.旋转的概念:将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.第2课时旋转作图能画出简单图形旋转后的对应图形.(重点)自学指导:阅读教材P78~79内容,完成下列问题.知识探究旋转作图的步骤:(1)确定旋转中心,旋转方向,旋转角;(2)找出图形的关键点;(3)作出关键点经旋转后的对应点;(4)按图形的顺序连接对应点,得到旋转后的图形.自学反馈1.如图,将左边叶片图案旋转180°后,得到的图形是(D)2.把如图所示的图形绕着O点顺时针旋转90°后,得到的图形是(C)活动1小组讨论例如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.解:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC就是线段AB绕点A按顺时针方向旋转60°后的线段.解决这类作图题,紧扣旋转的特征即可.活动2跟踪训练1.对如图所示的图形,下列说法错误的是(C)A.图1绕点“O”顺时针旋转270°到图4B.图1绕点“O”逆时针旋转180°到图3C.图3绕点“O”顺时针旋转90°到图2D.图4绕点“O”顺时针旋转90°到图12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(C)A.(1,4)B.(4,1)C.(4,-1)D.(2,3)3.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1,请用直尺和圆规作出旋转中心O.(不写作法,保留作图痕迹)解:如图所示,点O为所作.4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),将△ABC 绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.解:如图所示,△A′BC′即为所求.活动3课堂小结根据旋转的性质,掌握旋转作图的步骤.3.3中心对称1.理解中心对称、对称中心、中心对称图形等概念,能识别中心对称图形.(重点)2.通过作图探索成中心对称的两个图形的性质.(重点)3.能运用中心对称的性质作出一个图形关于某点对称的图形,并确定对称中心的位置.(重点)自学指导:阅读教材P81~82内容,完成下列问题.知识探究1.如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.3.把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.自学反馈1.下列手机软件图标中,属于中心对称图形的是(D)2.关于中心对称的两个图形中,对应线段的关系是(D)A.相等B.平行C.相等且平行D.相等且平行或相等且在同一直线上活动1小组讨论例1如图,在中心对称的两个图形中,对称点A,A′和对称中心O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有B,O,B′和C,O,C′,并且BO=B′O,CO=C′O.在成中心对称的两个图形中,连接对称点的连线都经过对称中心,并且被对称中心平分.也就是:(1)对称中心在任意两个对称点的连线上.(2)对称中心到一对对称点的距离相等.根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连接中心对称图形上的一对对应点,所得线段的中点就是对称中心,同时在证明线段相等时也有应用.例2如图,四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称.解:(1)连接AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′.(2)同样画出点B、点C和点D的对称点B′,C′和D′.(3)顺次连接A′B′,B′C′,C′D′,D′A′.四边形A′B′C′D′即为所求的四边形.活动2跟踪训练1.下列图形中,是中心对称图形但不是轴对称图形的是(B)2.如图,四边形ABCD与四边形FGHE关于点O成中心对称,则AD=EF,∠ABC=∠FGH.3.如图,已知六边形ABCDEF是以点O为对称中心的中心对称图形,画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.4.下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.活动3课堂小结1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心.2.识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3.4简单的图案设计1.能利用平移、旋转或轴对称以及它们的组合解决一些简单的图案设计问题,并会利用它们分析图案.(重点) 2.通过观察、交流、创作,培养学生的动手操作能力和创新能力.(难点)自学指导:阅读教材P85的内容,完成下列问题.自学反馈1.平移、旋转、对称的联系:都是平面内的变换,都不改变图形的形状和大小,只改变图形的位置.2.如图所示的图案由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?解:可以.归纳:图形的平移、旋转、对称是图形变换中最基本的三种变换方式.活动1小组讨论例欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到的;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.活动2跟踪训练1.国旗上的四个小五角星,通过怎样的移动可以相互得到(D)A.轴对称B.平移C.旋转D.平移和旋转2.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(C)A.30°B.45°C.60°D.90°3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和旋转等.活动3课堂小结充分运用平移、旋转或轴对称,按照所要表达的意思,对基本图案进行操作,设计出相应图案.。
坐标平面内图形变换教
案
TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】
6.3坐标平面内的图形变换
背景介绍及教学资料
七年级下册第2章图形和变换中已从几何的角度了解了轴对称变换与几何变换,本章从坐标的角度来研究这两种变换,并利用图形变换与坐标之间的关系来作图。
虽然但就作图而言,可能不如几何画法方便,但这种画法在计算机制图等方面有着广泛的实际应用。
此外对这两种变换的学习,为下一章函数当中的相关应用奠定了基础。
第1课时
教学内容分析:
本节开头是让学生通过动手画图,自己探索,找出关于坐标轴对称的两个点之间的坐标关系,得出一般规律,再依据这种关系,求作已知点关于坐标轴的对称点。
因为两个端点可以确定一条线段,所以只要作出各个转折点关于对称轴的对称点,依此连接就得到一个多边形关于对称轴的对称图形。
最后,与同伴合作学习,在方格纸上,按自己认为合适的比例,建立适当的坐标系,利用轴对称特点画出一个零件的主视图。
教学目标:
1、感受坐标平面内图形变换的坐标变换;
2、了解关于坐标轴对称的两个点的坐标变换;
3、会求与已知点关于坐标轴对称点的坐标;
4、利用图形变换与坐标之间的关系来作图;
5、进一步培养坐标意识与数形结合的数学思想。
教学重点与难点:
教学重点:关于坐标轴对称的两个点之间的坐标关系。
教学难点:利用关于坐标轴对称的两个点之间的坐标关系,在平面直角坐标系内作轴对称图形。
教学准备:刻度尺、方格纸
1.教学改革主要是学习方式的改革,过去习惯于用灌输法,整堂课都由老师告诉学生该怎么做,学生只是被动接受,老师讲得累死,学生学习效果却不好。
这节课安排了两处的合作学习,充分调动学生的积极性,让学生主动探索,经历思维的发生过程。
2.本课给出一些非常美丽的图案以及在生活中能碰到的实物的图案,在数学课中实施美育,在数学课上融入生活。
3.图形变换是培养数形结合思想发展空间观念的有效载体,很多题目可以让学生发挥想象力,而不一定借助于图形。