人教版七年级数学上册同步提升训练:3.4实际问题与一元一次方程(三)
- 格式:doc
- 大小:108.50 KB
- 文档页数:16
行程问题1.基本公式:___2.基本类型:相遇问题、追及问题、环形跑道问题、航行问题、飞行问题。
3.航行问题的数量关系:(1)顺水航行的路程=逆水航行的路程(2)4.飞行问题基本等量关系:完成下面的题1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇?解:易知摩托车的速度是每小时45千米。
设经过x小时两人相遇,依题意,得15x+45x=180解得x=3答:经过3小时两人相遇。
2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?解:设摩托车经过x小时追上自行车,依题意,得45x—15(x+2)=180解得x=7答:摩托车经过7小时追上自行车3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时.如果已知风速为30km/h,求A,B两个城市之间的距离.解:设飞机无风时的速度为x 千米/小时,依题意,得解得x=270所以(270+30)× 4=1200(千米)答:A,B两个城市之间的距离为1200千米。
4.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同.一地方同时出发同向而行...........,甲的速度为100米/分,乙的速度是甲速度的32倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?解:乙的速度是10032⨯=150米/分。
(1)设经过x分钟后两人首次相遇,依题意,得150100400x x-=解得x=8(2)设经过x分钟后两人第二次相遇,依题意,得150100800x x-=解得x=16答:(1)设经过8分钟后两人首次相遇;(2)设经过16分钟后两人第二次相遇。
人教版七年级上册3.4《实际问题与一元一次方程》同步练习卷一.选择题1.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x2.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④3.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=4.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣25.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+287.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场8.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元9.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm2二.填空题10.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是元.11.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有人.12.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为13.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.14.某数的一半比它本身的大12,若设这个数为x,可列方程为.15.一商店将某种服装按成本价提高50%标价,又以9折优惠卖出,结果每件仍获利25元,这种服装每件的成本为多少元?设这种服装每件的成本为x元,根据题意列出的方程是.16.一个三位数,十位上的数字比个位上的数字大2,百位上的数字比个位上的数字小2,而这三个数位上的数字和的17倍等于这个三位数,如果设个位数字为x,列方程为.17.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程.18.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.19.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.三.解答题20.根据下列问题,列出方程,不必求解.(1)把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问共有多少学生?(2)某班50名学生准备集体去看电影,电影票中有15元的和20元的,买电影票共花880元,问这两种电影票各买几张?(3)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛负5场,共得19分,那么这个队胜了多少场?21.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?22.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?23.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B 点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案一.选择题1.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.2.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.3.解:设有糖果x颗,根据题意得:=.故选:A.4.解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.5.解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.6.解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.7.解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选:C.8.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.9.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=204x=4×20=80(cm2)所以每一个长条面积为80cm2.故选:C.二.填空题10.解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.11.解:设宿舍有x间房,则:8x+12=9(x﹣2),解得x=30,∴8x+12=252.答:这个学校的住宿生有252人.故答案是:252.12.解:设春游的总人数是x人.根据题意所列方程为=,故答案为:=.13.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故答案为:1000(26﹣x)=2×800x14.解:设这个数为x,根据题意,得:x﹣12=x.故答案是:x﹣12=x.15.解:设这种服装每件的成本价是x元,由题意得:(1+50%)x×90%=x+25,故答案为:(1+50%)x×90%=x+25.16.解:设个位数字为x,则十位上的数字为(x+2),百位上的数字为(x﹣2),由题意,得:17(x﹣2+x+2+x)=100(x﹣2)+10(x+2)+x,故答案为:17(x﹣2+x+2+x)=100(x﹣2)+10(x+2)+x.17.解:设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据题意得:(2x﹣700)+x=5900.故答案为:(2x﹣700)+x=5900.18.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.19.解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.三.解答题20.解:(1)设共有x名学生,4x+2=5x﹣5;(2)设票价为15元的x张,则票价为20元的(50﹣x)张,15x+20(50﹣x)=880;(3)设这个队胜了x场,3x+1×(14﹣5﹣x)+0×5=19.21.解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有3x+150=200×3,解得x=150,x+200=150+200=350.答:甲的速度是每分钟350米,乙的速度是每分钟150米.(2)(200×3﹣300×1.2)÷1.2=(600﹣360)÷1.2=240÷1.2=200(米),200﹣150=50(米).答:乙的速度至少要提高每分钟50米.22.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.①当选购A,B两种电视机时,B种电视机购(50﹣x)台,可得方程:1500x+2100(50﹣x)=90000,即5x+7(50﹣x)=300,解得:x=25,则B种电视机购50﹣25=25(台);②当选购A,C两种电视机时,C种电视机购(50﹣x)台,可得方程:1500x+2500(50﹣x)=90000,解得:x=35,则C种电视机购50﹣35=15(台);③当购B,C两种电视机时,C种电视机为(50﹣y)台,可得方程:2100y+2500(50﹣y)=90000,解得:y=,(不合题意,舍去)由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),若选择(1)中的方案②,可获利150×35+250×15=9000(元),因为9000>8750,所以为了获利最多,选择第二种方案.23.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。
人教版七年级上册同步练习:3.4实际问题与一元一次方程一.选择题1.小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得()A.4+3x=25B.12+x=25C.3(4+x)=25D.3(4﹣x)=25 2.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x岁,可列方程为()A.2x﹣4=3(x﹣4)B.2x=3(x﹣4)C.2x+4=3(x﹣4)D.2x+4=3x3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x﹣x=50B.80%×(1+45%)x﹣x=50C.x﹣80%×(1+45%)x=50D.80%×(1﹣45%)x﹣x=504.一次学科竞赛有20道题,答对一题得5分,不答或答错一题扣3分,问要得到84分需答对几道题?设答对x道题,由题意得()A.5x﹣3(20﹣x)=84B.100﹣3(20﹣x)=84C.5x﹣6(20﹣x)=84D.100+5x﹣3(20﹣x)=845.把一些铅笔分给某班学生使用,如果每人分3支,则剩余20支,如果每人分4支则还缺25支,这个班有()名学生.A.44B.45C.48D.526.某商人在一次买卖中均以60元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚8元B.赔8元C.不赚不赔D.无法确定7.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的()A.81B.100C.108D.216二.填空题8.某空调按标价的八折出售,仍可获利20%,若该空调的进价是每台2000元,则空调的标价是元.9.运动场的跑道一圈长400米,小健练习骑自行车,平均每分骑350米;小康练习跑步,平均每分跑250米.两人从同一处同时同向出发,经过秒两人首次相遇.10.某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为.11.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.若设共有小朋友x人,则可列方程为.12.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是.13.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为米.14.线段AB=8cm,动点P从点A出发,以3cm/s的速度沿A→B→A运动;同时动点Q从点B出发,以1cm/s的速度沿B→A运动.其中一点到达终点时,另一点也停止运动.则点P出发秒时,P、Q两点重合.三.解答题15.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,该商店共购进了多少盏节能灯?16.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品只差4个就能装满6箱.每台A型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?17.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出5文,则差45文;每人出7文,则差3文.(1)设人数为x,则用含x的代数式表示羊价为或;(2)求人数和羊价各是多少?18.某班主任暑假期间带领该班学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠.”乙旅行社说:“教师在内全部按票价的6折优惠.”若全票价是240元.(1)如果有10名学生,应参加哪个旅行社,并说明理由;(2)该班级如何选择旅行社会更合算?说明理由.19.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一.选择题1.解:设小刚的速度为x千米/小时,3(4+x)=25.故选:C.2.解:设妹妹今年x岁.2x﹣4=3(x﹣4).故选:A.3.解:设这种自行车每辆的进价是x元,80%×(1+45%)x﹣x=50.故选:B.4.解:设答对x道题,由题意得:5x﹣3(20﹣x)=84.故选:A.5.解:设这个班有x名学生,∴3x+20=4x﹣25,解得:x=45,故选:B.6.解:设赚了25%的衣服是x元,则(1+25%)x=60,解得x=48,则实际赚了6048=12(元);设赔了25%的衣服是y元,则(1﹣25%)y=60,解得y=80元,则赔了80﹣60=20(元);∵20>12;∴赔大于赚,在这次交易中,该商人是赔了20﹣12=8(元).即:该商人在这次交易中赔了8元.故选:B.7.解:设中间的数为x,则左右两边数为x﹣1,x+1,上行邻数为(x﹣7),下行邻数为(x+7),左右上角邻数为(x﹣8),(x﹣6),左右下角邻数为(x+6),(x+8),根据题意得x+x﹣1+x+1+x﹣7+x+7+x﹣8+x﹣6+x+6+x+8=9x,则圈出的9个数的和为9的倍数.观察选项,只有选项A符合题意.故选:A.二.填空题8.解:设空调的标价为x元,根据题意得:0.8x﹣2000=2000×20%,解得:x=3000.答:空调的标价为3000元.故答案为:3000.9.解:设经过x分两人首次相遇,则小健骑自行车的路程是350x米,小康跑步的路程为250x米,据题意得:350x﹣250x=400,解得:x=4,4分=240秒答:经过240秒两人首次相遇.故答案为240.10.解:设甲队单独工作的天数为x,则可列方程为:+=1,故答案为:+=1.11.解:设共有x位小朋友,由题意得:2x+8=3x﹣12,故答案为:2x+8=3x﹣12.12.解:设个位上的数为a,则十位上的数为由题意得:a=9,解得:a=6,=3,所以,这个两位数是36.13.解:设火车的长度为x米,则火车的速度为,依题意得:45×=600+x,解得x=300故答案是:300.14.解:设点P出发x秒时,P、Q两点重合,∵点P从A到B,再从B到A用的总的时间为:(8+8)÷3=5s,点Q从B到A用的时间为8÷1=8s,∵5<8,∴到点P从B回到A时,P、Q都停止运动,(3+1)x=8,解得,x=23x﹣x=8,解得,x=4,故答案为:2或4.三.解答题15.解:设该商店共进了x盏节能灯,由题意得:20x+150=25(x﹣2),解得:x=40,答:该商店共进了40盏节能灯.16.解;设每箱装x个产品,得:+2=.解得:x=54.答:每箱装54个产品.17.(1)设人数为x,则用含x的代数式表示羊价为5x+45或7x+3.故答案是:5x+45;7x+3;(2)解:设人数为x,则5x+45=7x+35x﹣7x=3﹣45﹣2x=﹣42x=2121×5+45=105+45=150(枚)21×7+3=147+3=150(枚)答:人数21人,羊价150元.18.解:(1)当学生人数为10人,乙旅行社的费用为:144×(10+1)=1584(元).甲旅行社的费用为:120×10+240=1440(元);因为1440<1584,所以参加甲旅行社.(2)设学生人数为x,根据题意得:144(x+1)=120x+240,解得:x=4.答:当学生多于4人时参加甲旅行社合算;当学生少于4人时参加乙旅行社合算.19.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵P A=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为P A的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
2020年(秋)人教版数学七年级上册同步练习3.4实际问题与一元一次方程一.选择题(共8小题)1.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.则火车的长度为()A.180m B.200m C.240m D.250m2.某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是()A.亏损10元B.不赢不亏C.亏损16元D.盈利10元3.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里4.甲、乙两人分别从A、B两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达B地后立刻以原路和提高后的速度向A地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A、B两地的距离是()A.24千米B.30千米C.32千米D.36千米5.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.66.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x7.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+28.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×5二.填空题(共6小题)9.列方程:“a的2倍与5的差等于a的3倍”为:.10.一件商品如果按原价的八折销售,仍可获得15%的利润.已知该商品的成本价是50元,设该商品原价为x元,那么根据题意可列方程.11.小明的妈妈在银行里存入人民币5000元,存期两年,到期后可得人民币5150元,如果设这项储蓄的年利率是x,根据题意,可列出方程是.12.服装店销售某款服装,一件服装的标价为200元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价是元.13.在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是.14.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元三.解答题(共6小题)15.2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.16.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.17.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?18.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?19.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?20.已知数轴上A,B两点对应的数分别为﹣2和8,P为数轴上一点,对应的数为x.(1)线段P A的长度可表示为(用含x的式子表示).(2)在数轴上是否存在点P,使得P A﹣PB=6?若存在,求出x的值;若不存在,请说明理由;(3)当P为线段AB的中点时,点A,B,P同时开始在数轴上分别以每秒3个单位长度,每秒2个单位长度,每秒1个单位长度沿数轴正方向运动?试问经过几秒,PB=2P A?参考答案一.选择题(共8小题)1.解:设火车的长度为xm,依题意,得:=,解得:x=240.故选:C.2.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120﹣x+120﹣y=﹣10.故选:A.3.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.4.解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=5(小时)由题意可得:2×2x=(5﹣2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.5.解:由题意,可得8+x=2+7,解得x=1.故选:A.6.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.7.解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.8.解:依题意,得:π×()2x=π×()2×(x+5).故选:B.二.填空题(共6小题)9.解:由题意可得:2a﹣5=3a.故答案为:2a﹣5=3a.10.解:由题意可得,0.8x﹣50=50(1+15%),故答案为:0.8x﹣50=50(1+15%).11.解:设这项储蓄的年利率是x,依题意得:5000+5000x×2=5150.故答案为:5000+5000x×2=5150.12.解:设这款服装每件的进价为x元,由题意,得200×0.8﹣x=60,解得:x=100.故答案是:100.13.解:设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故答案为:2,9,16.14.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.三.解答题(共6小题)15.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x 元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.16.解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.17.解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.18.解:设每个女生平均买x个气球,则每个男生平均买(x﹣1)个气球,由题意可得:×16×x﹣1=23×(x﹣1)解得:x=2,答:每个女生平均买2个气球.19.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.20.解:(1)∵A点对应的数为﹣2,P点对应的数为x,∴P A=|x﹣(﹣2)|=|x+2|.故答案为:|x+2|.(2)当x<﹣2时,﹣x﹣2﹣(8﹣x)=6,方程无解;当﹣2≤x≤8时,x+2﹣(8﹣x)=6,解得:x=6;当x>8时,x+2﹣(x﹣8)=6,方程无解.答:存在符合题意的点P,此时x的值为6;(3)∵P点为线段AB的中点,∴P点对应的数为3.当运动时间为t秒时,A点对应的数为3t﹣3,B点对应的数为2t+8,P点对应的数为t+3,∴P A=|t+3﹣(3t﹣3)|=|6﹣2t|,PB=|t+3﹣(2t+8)|=t+5.∵PB=2P A,∴t+5=2|6﹣2t|,即t+5=12﹣4t或t+5=4t﹣12,解得:t=或t=.答:经过秒或秒,PB=2P A.。
人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入33⨯的方格内,使得处于同一横行、同一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母m 所表示的数是( )A .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队,如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =13(72﹣x ) B .13(96﹣x )=72﹣x C .13(96+x )=72﹣x D .13×96+x =72﹣x 7.课外兴趣小组的女生人数占全组人数的13,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x 人,则下列方程正确的是( )A .1132x x =B .11+632x x =C .11+632x x =D .11(6)23x += 8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .()4x 12x 8-=+ B .()4x 12x 8+=- C .x x 8142++= D .x x 8142--= 9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是( )A .8x+3=7x -4B .8x -3=7x+4C .8(x -3)=7(x+4)D .17x+4=18x -3 二、填空题11.已知m ,n 都是质数,若关于x 的方程597mx n +=的解是3,则4m n -=__________..12.小明分发一堆水果分给好朋友,第1个朋友取走一半加1个,第2个朋友取走剩下的一半加1个,第3个朋友再取走剩下的一半加1个,……,直到第7个朋友再取走剩下的一半加1个时,恰好给小明留下了1个水果,则这堆水果一共有_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )=37n n '+=315537852=3737+; (1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中90100m <<,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题: (1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离; (4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位) (2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =2-或-7或3或8.22.(1)0.5;(2)850.5x +;(3)余下的数学课本高出地面的距离为() 980.5a -cm ;(4)23或2723.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。
3.4 实际问题与一元一次方程5分钟训练(预习类训练,可用于课前)1.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了()A.31.25B.60C.125D.100思路解析:设这套服装原价为x元,则x-0.8x=25,解得x=125.所以实际用了125-25=100元.答案:D2.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是()A.3 200元B.3 429元C.2 667元D.3 168元思路解析:设标价为x,根据题意有0.9x=(1+0.2)×2 400,解得x=3 200.答案:A3.球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3∶5,要求出黑皮、白皮的块数,若设黑皮的块数为x,则列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x思路解析:因为黑、白皮块的数目比为3∶5,若设黑皮的块数为x,则白皮块数为32-x,由此得方程为5x=3(32-x).答案:C10分钟训练(强化类训练,可用于课中)1.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a元,则这种药品在2003年涨价前的价格为()A.10039a元 B.39100a元 C.a(1-40%)元 D.140%a元思路解析:设在2003年涨价前的价格为x元,则有(1+0.3)(1-0.7)x=a,解得x=10039a.答案:A2.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?思路解析:首先要利用一个未知数,表示胜、负、平的场数,再利用总分列出方程.解:设踢成负的场数是x,则踢平的场数是2x,踢胜的场数是8-x-2x=8-3x,则有2x+3(8-3x)=17,解得x=1.所以踢胜的场数为8-3=5场.3.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)思路解析:列表:解:设一件夹克的成本为x元,根据题意有(1+50%)x×80%=60,解得x=50.所以60-x=60-50=10(元).答:一件夹克的成本为50元,降价后每件仍可赚10元.4.商场出售的A型冰箱每台售价2 190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?思路解析:问题1可以通过计算出A型冰箱和B型节能冰箱10年各自的费用来判断是否合算,问题2可以用方程来解.解:A型10年费用:2 190×910+365×10×1×0.4=3 431(元),B型10年费用:2 190×(1+10%)+365×10×0.55×0.4=3 212(元),所以消费者购买A型冰箱不合算.设商场打x折消费者购买才合算,根据题意,得2 190x+365×10×1×0.4=3 212.解得x=0.8.所以,商场至少打8折,消费者购买才合算.快乐时光都有名字了在一家工厂,我那位朋友正在有条不紊地指挥生产,稀疏的头发想方设法地覆盖在脑袋上.“你已经使之成为一门科学了.”我赞叹道.“每一根头发都做了安排.”“是啊,”朋友苦笑着说,“过去它们只有一个总数,可现在它们都有自己的名字了.”30分钟训练(巩固类训练,可用于课后)1.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.思路解析:要求出两件上衣的进价,可分别根据售出的价格求出.解:设两件上衣的成本分别为x 、y 元,根据题意,得(1+25%)x=135,(1-25%)y=135. 分别解这两个方程,得x=108,y=180.108+180=288>270.答:所以这次出售是亏损,并且亏损了18元.2.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车量数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10 000辆.”乙同学说:“四环路比三环路车流量每小时多2 000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.思路解析:此题关键在于理解题意,抽象出数学式子.解:设三环路的流量为每小时x (辆),则四环路的流量为每小时2 000+x (辆),3x-2 000-x=20 000,解得x=11 000,所以高峰时车流量为三环路11 000辆,四环路13 000辆.3.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x 的值.思路解析:题目中没有成本价,而解题时要用到成本价,故可设成本价为a (或设为单位1).解:设成本价为a ,则原售价为a (1+100x ),成本降低8%后新成本为a (1-8%),根据售价不变,利润增加到(x+10)%,有a (1-8%)[1+(x+10)%]=a (1+100x ),解得x=15. 4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.思路解析:本题可采用间接设未知数法,抓住相等关系:“甲项目的收益+乙项目的收益=总收益”列方程.解:设对甲项目投资为x 万元,则对乙项目投资为(2 000-x)万元.根据题意,得5.4%x+8.28%(2 000-x)=122.4.解得x=1 500.从而2 000-x=2 000-1 500=500. 答:该工业园区对甲项目投资为1 500万元,对乙项目投资为500万元.5.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?思路解析:方案一的利润易求.方案二中必须先知4天中用几天制奶片,用几天加工酸奶.故设用x天加工奶片,则用(4-x)天加工酸奶,依题意有1·x+3·(4-x)=9.∴x=1.5.此时利润可求.答案:方案二获得利润高些.6.江苏宿迁模拟某公司有2位股东,20名工人.从2000年至2002公司每年股东的总利润和每年工人的工资总额如图3-4-1所示.图3-4-1(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一股东的平均利润是工人的平均工资的8倍?思路解析:(1)直接由图可填.(2)由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍.股东的平均利润为25 000+12 500x,每位工人年平均工资为5 000+1 250x,由题意可得方程(5 000+1 250x)×8=25 000+12 500x,解出即可.答案:(1)(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x.解得x=6.答:到2010年每位股东年平均利润是每位工人年平均工资的8倍.7.北京模拟夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1 ℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高 1 ℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1 ℃后两种空调每天各节电多少度.思路解析:本题文字比较多,条件也比较多,要注意抓主要问题,即“两种空调每天共节电405度”,如果设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.这样可得方程1.1x+x+27=405,解出即可.解:设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.依题意,得1.1x+x+27=405.解得x=180,∴x+27=207.答:只将温度调高1 ℃后,甲种空调每天节电207度,乙种空调每天节电180度.。
随课练:3.4实际问题与一元一次方程同步练习(三)1.王老师为学校新年联欢会购买奖品,在某文具用品店购买明信片,每一张明信片的价格是8元,在结算时发现,如果再多买5张,就可以享受到打九折的优惠,总价格反而减少8元,为了能享受优惠,王老师比原计划多购买了5张明信片;(1)王老师实际购买多少张明信片?一共花了多少钱?(2)文具店开展元旦优惠活动:从即日起,在一周内,凭购物小票,累计购物超过500元,超过部分可以享受八折的优惠.王老师想了一想,又为学校购买了一定数量的笔记本,享受了八折优惠,这样,两次一共节省了36元,王老师购买笔记本实际花了多少元?2.甲、乙二人同时从学校出发,沿同一方向匀速行走,10min后,甲加快速度继续匀速行走(加速的时间忽略不计),乙始终匀速行走,两人都走了20min.两人在行走过程中得到如下表所示的信息:离开学校的时间0 10 t20/min0 500 b1200+a甲离学校的距离/m乙离学校的距离0 500+a b1200/m(1)根据题意,甲出发时的速度为m/min,乙的速度为m/min;(2)求表中t的值.3.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?4.某街道1000米的路面下雨时经常严重积水.需改建排水系统.市政公司准备安排甲、乙两个工程队做这项工程,根据评估,有两个施工方案:方案一:甲、乙两队合作施工,那么12天可以完成;方案二:如果甲队先做10天,剩下的工程由乙队单独施工,还需15天才能完成.(1)甲、乙两队单独完成此项工程各需多少天?(2)方案一中,甲、乙两队实际各施工了多少米?5.“乐天乐地乐巴蜀,巴蜀孩子最幸福”巴蜀中学一年一度的艺术节是孩子们最盼望的节日,不仅有各种精彩的节目表演,还有美淘街各具特色的小店,就像过年一样热闹.初二(1)班的同学们在2018年的美淘街上大放异彩,他们手工编织的小挂件非常受欢迎,当天一共卖出了40件动物挂件与50件植物挂件,其中动物挂件每件售价8元,植物挂件每件售5元.2019年他们打算继续卖手工编织的挂件.与2018年的售价相比,动物挂件的售价不变,优惠如下:买2件,首件全价,第二件半价,不单件销售:植物摆件的单价上调m%.与2018年的销售量相比,动物挂件的销量增加了5m%,植物挂件的销量下降了10件.结果2019年的销售额比2018年的销售额增加了m元,求m的值.6.如图,数轴上,点A表示的数为﹣7,点B表示的数为﹣1,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴“的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,求出它们在数轴上对应的数.7.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?8.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?9.已知多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,且4b、﹣10c3、﹣(a+b)2bc的值分别是点A、B、C在数轴上对应的数,点P从原点O出发,沿OC方向以1单位/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点P,Q其中有一点停止运动,另一点同时停止运动),两点同时出发.(1)分别求4b、﹣10c3、﹣(a+b)2bc的值;(2)若点Q运动速度为3单位/s,经过多长时间P、Q两点相距70;(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,试问的值是否变化,若变化,求出其范围:若不变,求出其值.10.小王离岗创业,销售某品牌电脑,1月份的销售量为100台,每台电脑售价相同,2月份的销售量比1月份增加10%,每台售价比1月份降低了400元,2月份与1月份的销售总额相同,求每台电脑1月份的售价.11.为了拉动内需,推动经济发展,某商店在“五•一“期间搞促销活动,购物不超过200元不予优惠;购物超过200元不足500元的按全价的90%优惠;超过500元的,其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.(1)列方程求出此人两次购物若商品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?节省多少钱?12.有A、B两家复印社,A4纸复印计费方式如表:A4纸复印计费方式A复印社复印页数不超过20页时,每页0.12元;复印页数超过20页时,超过部分每页收费0.09元.B复印社不论复印多少页,每页收费0.1元.(1)若要用A4纸复印30页,选哪家复印社划算?能便宜多少钱?(2)用A4纸复印多少页时,两家复印社收费相同?13.今年元旦期间,晓风家装修,爸爸去买新家具,看到家具店促销活动的规定:根据家具标价,①一次性购物不超过6000元,不享受优惠;②一次性购物超过6000元但不超过10000元,一律九折;③一次性购物超过10000元,一律八折.晓风的爸爸根据装修需要,元旦期间先后两次到该家具店购买家具.(1)根据家具标价,晓风爸爸第一次购物超过6000元,实际付费5580元,则晓风的爸爸购买了标价是多少元的家具?(2)第二次购物晓风爸爸实际付费8640元,则晓风的爸爸本次购买了标价是多少元的家具?(3)如果晓风爸爸一次性购买这些家具,实际付费超过了13000元,将这些家具运回家中需要支付用车费和人工费,已知人工费是用车费的3倍多,晓风爸爸通过计算发现这次所有费用的支出(购买家具实际费用、人工费和用车费)恰好是这批家具的标价.则运输这批家具的人工费是多少元?14.“元旦”前夕,“星星”文具用品店从厂家购进A、B两种型号的钢笔.已知A、B两种型号的钢笔每支进价比为3:5,两种型号的钢笔每支售价比为9:16,两种型号的钢笔各购进50支,共用去200元,A型号的钢笔每支利润3元.(每支钢笔利润=每支钢笔售价﹣每支钢笔进价)(1)求A、B两种型号的钢笔每支进价各是多少元?(2)求B型号的钢笔每支售价是多少元?(3)在“元旦”期间,“星星”文具用品店对A、B两种型号的钢笔进行如下优惠(购买时只能选择一种优惠方案):方案一:购买两支以上(含两支)的钢笔按标价八五折出售;方案二:购买3支B型号的钢笔赠1支A型号的钢笔.小红同学想一次购买2支A型号钢笔和4支B型号的钢笔,请通过计算说明小红应选择哪种优惠方案购买比较便宜,便宜多少钱.15.今年小李的年龄是他爷爷年龄的五分之一,小李发现:12年之后,他的年龄变成爷爷的年龄三分之一.求小李爷爷今年的年龄.16.随着武汉解封,湖北各地的复工复产正有序进行,经济复苏也按下了“重启键”.为助力湖北复苏,4月8日抖音发起了“湖北重启,抖来助力﹣﹣抖音援鄂复苏计划”,通过直播或短视频助力推广湖北特色产品.已知当天的直播活动中热干面和周黑鸭共销售18万份,其中周黑鸭的销量是热干面的3.5倍.(1)求当天的直播活动中销售了多少万份周黑鸭?(2)为刺激消费,直播中推出了优惠活动.疫情前,疫情期间售价均为100元一份的周黑鸭(一份里面有一盒锁骨,两盒鸭脖,一盒鸭掌),以6折力度售卖.疫情前,疫情期间售价均为60元一份的热干面(一份里面有6包热干面),以5折力度售卖.已知疫情前周黑鸭的日销售量比直播当天的销量少2a%,疫情期间的日销售额比疫情前的日销售额减少了680万元;疫情前热干面的日销量比直播当天热干面的销量少a%,疫情期间的日销售量比疫情前的日销售量减少了8a%;疫情期间周黑鸭和热干面的总日销售额比直播当天的总销售额少5a%,求a的值.17.某市水果批发欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100 15 2000汽车80 20 900 (1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2)如果A市与B市之间的距离为S千米,你若是A市水果批发部门的经理,要想将这种水果运往B市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?18.某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某种饮料90瓶,共用去205元,已知该种饮料价格如表:购买瓶数/瓶不超过30 30以上不超过50 50以上单价/元 3 2.5 2 求:两次分别购买这种饮料多少瓶?19.列方程解应用题:现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%.(1)改造多少平方米旧校舍;(2)已知拆除旧校舍每平方米费用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用.20.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案1.解:(1)设实际购买x张明信片,根据题意,得8(x﹣5)﹣8=8×90%x.解得x=60,∴实际花的钱数7.2×60=432(元),答:王老师实际购买60张明信,一共花了432元;(2)购买笔记本原价是y元,得(432+y﹣500)(1﹣80%)=36﹣8 解得y=208,∴实际购买笔记本208﹣28=180(元),答:王老师购买笔记本实际花了180元.2.解:(1)甲出发时的速度为:=50(m/min)乙的速度为:=60(m/min)故答案是:50;60;(2)由题意得,500+a=60×10,a=100所以20分钟时,甲离学校的距离为1200+a=1300(m)甲加速后的速度:因为tmin后,两人相遇,则可以列方程500+80(t﹣10)=60t解得t=15表中t=15.3.解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.4.解:(1)设甲队每天施工x米,则乙队每天施工米,依题意,得:12x+12×=1000,解得:x=50,∴=,∴1000÷50=20(天),1000÷=30(天).答:甲队单独完成此项工程需要20天,则乙队单独完成此项工程需要30天.(2)50×12=600(米),×12=400(米).答:方案一中,甲队实际施工了600米,乙队实际施工了400米.5.解:根据题意得:×40(1+5m%)+5(1+m%)×(50﹣10)=8×40+5×50+m,240+12m+200+2m=320+250+m,整理得,13m=130,解得m=10.故m的值为10.6.解:(1)动点P从点A运动至D点需要时间t=(﹣1+7)÷2+(9+1)÷(2÷2)+(13﹣9)÷2=15(秒).答:动点P从点A运动至D点需要时间为15秒;(2)①当点P,点Q相遇时时,则(t﹣6÷2﹣1÷1)+6+1+4(t﹣4÷2)+4=20,解得t=,故动点P在数轴上所对应的数是t﹣6÷2﹣1÷1=;②当点P,点Q相遇后.(t﹣6÷2﹣1÷1)+6+1﹣7=4(t﹣4÷2)+4﹣13,解得t=,故动点P在数轴上所对应的数是t﹣6÷2﹣1÷1=.综上所述,故动点P在数轴上所对应的数是或;(3)4÷2=2(秒),10÷4=2.5(秒),6÷2=3(秒),2+2.5+3=7.5(秒),6÷(2+1)=2(秒),10÷(1+1)=5(秒),依题意有(2+1)(t﹣7.5﹣2﹣5)=2(t﹣3﹣10),解得t=17.5.9+2(t﹣3﹣10)=18.故它们在数轴上对应的数是18.故答案为:15.7.解:设每个女生平均买x个气球,则每个男生平均买(x﹣1)个气球,由题意可得:×16×x﹣1=23×(x﹣1)解得:x=2,答:每个女生平均买2个气球.8.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.9.解:(1)∵多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,∴a=﹣2,b=5,c=﹣2,∴4b=4×5=20;﹣10c3=﹣10×(﹣2)3=80;﹣(a+b)2bc=﹣(﹣2+5)2×5×(﹣2)=90;(2)设运动时间为t秒,则OP=t,CQ=3t,当P、Q两点相遇前:90﹣t﹣3t=70,解得:t=5;当P、Q两点相遇后:t+3t﹣70=90,解得:t=40>30(所以此情况舍去),∴经过5秒的时间P、Q两点相距70;(3)由题意可知:当点P运动到线段AB上时,OB=80,AP=t﹣20,又∵分别取OP和AB的中点E、F,∴点F表示的数是,点E表示的数是,∴EF=,∴,∴的值不变,=2.10.解:设每台电脑1月份的售价为x元,根据题意得,100(1+10%)(x﹣400)=100x,解得:x=4400,答:每台电脑1月份的售价为4400元.11.解:(1)①因为134元<200×90%=180元,所以该人不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购价值x元的货物,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若商品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,600﹣573.2=26.8(元).∴此人将这两次购物合为一次购买更节省,节省26.8元钱.12.解:(1)A复印社:20×0.12+0.09×(30﹣20)=3.3(元),B复印社:30×0.1=3(元),3<3.3,3.3﹣3=0.3(元),答:选B复印社划算,能便宜0.3元.(2)设:复印x页时两家复印社收费相同.可得:20×0.12+0.09×(x﹣20)=0.1x,解得:x=60,答:复印60页时两家复印社收费相同.13.解:(1)10000×90%=9000(元),5580元<9000元,5580÷90%=6200(元).答:晓风的爸爸购买了标价是6200元的家具.(2)10000×80%=8000(元),8000元<8640元<9000元,8640÷90%=9600(元),8640÷80%=10800(元).答:晓风的爸爸本次购买了标价是9600元或10800元的家具.(3)6200+9600=15800(元),15800×80%=12640(元),12640元<13000元,不合题意,舍去;6200+10800=17000(元),17000×80%=13600(元),13600元>13000元,符合题意.设运输这批家具的用车费为x元,则人工费用为3x元,依题意,得:13600+x+3x=17000,解得:x=800,∴3x=2600.答:运输这批家具的人工费是2600元.14.解:(1)设每支A型号钢笔的进价为3x元,则每支B型号钢笔的进价为5x元,依题意,得:50×3x+50×50x=200,解得:x=0.5,∴3x=1.5,5x=2.5.答:每支A型号钢笔的进价为1.5元,每支B型号钢笔的进价为2.5元.(2)设每支A型号钢笔的售价为9y元,则每支B型号钢笔的售价为16y元,依题意,得:9y﹣1.5=3,解得:y=0.5,∴9y=4.5,16y=8.答:每支B型号钢笔的售价是8元.(3)选择优惠方案一所需费用为(2×4.5+4×8)×0.85=34.85(元);选择优惠方案二所需费用为(2﹣1)×4.5+4×8=36.5(元).∵34.85<36.5,36.5﹣34.85=1.65(元),∴小红应选择优惠方案一购买比较便宜,便宜1.65元.15.解:设爷爷今年的年龄是x岁,则今年小李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.16.解:(1)设当天的直播活动中销售了x万份热干面,则销售了3.5x万份周黑鸭,依题意,得:x+3.5x=18,解得:x=4,∴3.5x=14.答:当天的直播活动中销售了14万份周黑鸭;(2)依题意,得:[100×14×(1﹣2a%)﹣680]+60×4×(1﹣a%)×(1﹣8a%)=(100×0.6×14+60×0.5×4)×(1﹣5a%),整理,得:4a2﹣45a=0,解得:a1=,a2=0(不合题意,舍去).答:a的值为.17.(1)设本市与A市之间的路程是x千米,由题意可得:,解得x=400,答:本市与A市之间的路程是400千米,(2)火车的运输费用为×200+15S+2000=17S+2000,汽车运输的费用为+20S+900=22.5S+900,当17S+2000=22.5S+900,解得S=200,答:当S>200时,选择火车运输,当S<200时,选择汽车运输,当S=200时,两种方式都一样.18.解:设第一次购买这种饮料x瓶,则第二次购买这种饮料(90﹣x)瓶.(1)若第一次购买这种饮料50瓶以上,第二次购买这种饮料30瓶以下,则2x+3(90﹣x)=205,解得:x=65,得90﹣x=25,因为65>50,25<30,所以这种情况成立.(2)若第一次购买这种饮料50瓶以上,第二次购买这种饮料30瓶以上,则2x+2.5(90﹣x)=205,解得:x=40,得90﹣x=50.因为40<50,所以这种情况不成立.(3)若第一次第二次均购买这种饮料30瓶以上,但不超过50瓶.则2.5×90=225,因为225>205,所以这种情况不成立.答:第一次购买饮料65瓶,则第二次购买这种饮料25瓶.19.解:(1)设需要拆除的旧校舍的面积是x平方米,则新造校舍的面积是(3x+1000)平方米,依题意,得:20000﹣x+3x+1000=20000(1+20%),解得:x=1500.答:改造1500平方米旧校舍.(2)80×1500+700×(1500×3+1000)=3970000(元).答:完成该计划需3970000元.20.解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.。
3.4实际问题与一元一次方程列一元一次方程应用题的一般步骤(1)审题:理解题意.弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么. (2)设元(未知数):用含未知数的代数式表示相关的量.①直接未知数;②间接未知数(往往二者兼用).(3)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程.(4)解方程及检验.(5)答题.一、单选题1.一个正方形的边长增加了2cm ,面积相应增加了232cm ,则这个正方形的边长为( )A .6cmB .5cmC .8cmD .7cm2.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A.()130%90%85x x +⋅=-B.()130%90%85x x +⋅=+C.()130%90%85x x +⋅=-D.()130%90%85x x +⋅=+3.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x 千米,则列方程正确的是( )A.()()254254x x +=-B.2556x x +=C.6255x x +=D.6255255x x +=+- 4.某商场把一个双肩背书包按进价提高40%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x 元,根据题意列一元一次方程,正确的是( )A.40%x•80%﹣x=8 B.(1+40%)x﹣x=8C.(1+40%)x•80%=8 D.(1+40%)x•80%﹣x=85.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?设定价为x,则下列方程中正确的是()A.759202510010x x-=+ B.759202510010x x+=+C.759252010010x x-=+ D.759252010010x x+=-6.根据下列条件可列出一元一次方程的是( )A.a与l的和的3倍B.甲数的2倍与乙数的3倍的和C.a与b的差的20% D.一个数的3倍是57.全班有54人去公园划船,一共租用了10只船。
3.4 实际问题与一元一次方程同步练习一.选择题1.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为()A.80元B.100元C.150元D.180元2.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.则火车的长度为()A.180m B.200m C.240m D.250m3.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程()A.﹣9B.+2=C.﹣2=D.+94.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=565.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+40%)x×90%=x﹣38B.(1+40%)x×90%=x+38C.(1+40%x)×90%=x﹣38D.(1+40%x)×90%=x+386.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138﹣x)=540B.5x+3(138﹣x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5407.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元8.某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x天完成,则可列方程为()A.+=1B.+=1C.+=1D.+=19.已知八年级某班30位学生种树100棵,男生毎人种3棵树,女生每人种2棵树,设男生有x人,则()A.3x+2(30﹣x)=100B.3x+2(100﹣x)=30C.2x+3(30﹣x)=100D.2x+3(100﹣x)=3010.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成,如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余的部分,共需要多少时间完成?若设一共需要x小时,则所列的方程为()A.B.C.D.二.填空题11.某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.12.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于元.13.在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是.14.六年级(1)班共有学生42人,其中男生比女生多4人,如果设这个班有男生x人,那么依题意可列方程.15.我国古代《算法统宗》里有这样一首诗:我问开店李三公.众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?设该店有房x间,则可列方程:.三.解答题16.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?17.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面.已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工一天多粉刷12m2墙面,求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?参考答案1.解:设这件商品的进价为x元,依题意,得:0.8×(1+50%)x﹣x=30,解得:x=150.故选:C.2.解:设火车的长度为xm,依题意,得:=,解得:x=240.故选:C.3.解:依题意,得:+2=.故选:B.4.解:依题意,得:5x+(11﹣5)×(x+2)=56,即5x+6(x+2)=56.故选:B.5.解:设这件夹克衫的成本是x元,根据题意,列方程得:(1+40%)x×90%=x+38.故选:B.6.解:设买蓝色布料x米,则买黑色布料(138﹣x)米,根据题意可得:3x+5(138﹣x)=540,故选:A.7.解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.8.解:设甲、乙一共用x天完成,则可列方程为:+=1.故选:D.9.解:由题意可得,3x+2(30﹣x)=100,故选:A.10.解:依题意,得:+=1.故选:D.11.解:该商品每件的进价为x元,依题意,得:150×80%﹣x=20%x,解得:x=100.故答案为:100.12.解:设亏本的那双皮鞋的进价为x元,则亏本的那双皮鞋的售价为(1﹣10%)x元,盈利的那双皮鞋的售价为[200﹣(1﹣10%)x]元,盈利的那双皮鞋的进价为元,依题意,得:(1﹣10%)x﹣x+[200﹣(1﹣10%)x]﹣>0,解得:x<150.故答案为:150.13.解:设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故答案为:2,9,16.14.解:设这个班有男生x人,则有女生(x﹣4)人,依题意,得:x+(x﹣4)=42.故答案为:x+(x﹣4)=42.15.解:设该店有房x间,则可列方程:7x+7=9(x﹣1).故答案为:7x+7=9(x﹣1).16.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.17.解:设每个二级技工每天粉刷墙面xm2,则每个一级技工每天粉刷墙面(x+12)m2,依题意,得:,解得:x=118,∴x+12=130.答:每个一级每天粉刷的墙面是130平方米,每个二级技工每天粉刷的墙面是118平方米.。
人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习一、选择题1. 小明所在城市的“阶梯水价”收费办法如下:每户每月用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元.小明家今年5月份用水9吨,共交水费44元,根据题意列出关于x的方程,正确的是()A.5x+4(x+2)=44B.5x+4(x-2)=44C.9(x+2)=44D.9(x+2)-4×2=442. 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80分B.76分C.75分D.70分3. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是()A.350元B.400元C.450元D.500元4. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km,都需付5元车费),超过3 km,每增加1 km,加收1.2元(不足1 km的按1 km收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是()A.8 km B.9 kmC.6 km D.10 km5. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米6. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -377. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为( ) A .6400元 B .3200元 C .2560元D .1600元8. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人9. 为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可打8折.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款() A.140元B.150元C.160元D.200元10. 《算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少.”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+12x+14x=34685二、填空题11. 某商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是元.12. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.13. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.14. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.15. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.16. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A地区的物资比发往B地区的物资的1.5倍少1000件,则发往A地区的生活物资为________件.三、解答题17. 某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校的矿泉水件数的2倍少400件.求该企业捐给甲、乙两所学校各多少件矿泉水.18. 一块金与银的合金重250克,放在水中减轻了16克,已知金在水中质量减轻119,银在水中质量减轻110.求这块合金中含金、银各多少克.19. 某班进行期中考试后,班长安排小明购买奖品准备奖励成绩优异的学生.如图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本;(2)请你解释:小明为什么不可能找回68元?20. 如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.21. 为庆祝六一儿童节,某市中小学统一组织文艺会演.甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上(含91套)每套服装的价格60元50元40元如果两所学校分别单独购买服装,那么一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装可以节省多少钱?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法、绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装的方案.人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习-答案一、选择题1. 【答案】A[解析] 由题意可得5x+(9-5)(x+2)=44,即5x+4(x+2)=44.故选A.2. 【答案】B[解析] 根据表格数据,A学生答对20道题得100分,可知答对一题得100÷20=5(分).设答错或不答一道题得x分,由B学生答对18道题,答错2道题得88分,可得18×5+2x=88,解得x=-1,故答错或不答一题扣1分.小亮答对16道题,则有16×5+(-1)×(20-16)=76(分).故选B.3. 【答案】B[解析] 本题相等关系是:利润率=20%,根据相等关系建立方程可得解.设这批服装每件的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.4. 【答案】A[解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.5. 【答案】A[解析] 根据题意和图形可以列出相应的方程,从而可以解答本题.由题意可得5x +2×4=a ,解得x =a -85.故选A.6. 【答案】B7. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.8. 【答案】A[解析] 设大和尚有x 人,则小和尚有(100-x)人,根据相等关系:大和尚吃的馒头个数+小和尚吃的馒头个数=100,可列方程为:3x +100-x3=100.解方程可得x =25.所以大和尚25人,小和尚75人.故选A.9. 【答案】B[解析] 此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解. 设小慧同学不买卡直接购书需付款x 元, 则有20+0.8x =x -10, 解得x =150,即小慧同学不买卡直接购书需付款150元.故选B.10. 【答案】A二、填空题11. 【答案】21 [解析]设该商品的进价为x 元,根据题意得:28×0.9-x=20%x ,解得x=21.12. 【答案】180 [解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x 千米/时,则甲车的速度为1.2x 千米/时.根据题意,得2·1.2x +2x =660,解方程,得x =150.150×1.2=180(千米/时).13. 【答案】6[解析] 设蜘蛛有x 只,则蜻蜓有2x 只,由题意,得8x +2x·6=120,解得x =6.14. 【答案】3500[解析] 设原计划学生捐赠图书x 册,则教师捐赠图书(5000-x)册.依题意得15%x +(5000-x)×20%=5825-5000,解得x =3500.15. 【答案】3[解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x8=1, 解得x =2,x +1=3. 故甲一共做了3天.16. 【答案】3200[解析] 设发往A 地区的生活物资为x 件,则发往B 地区的物资为(6000-x)件.依题意可列方程x =1.5×(6000-x)-1000,解得x =3200.三、解答题17. 【答案】解:设该企业捐给乙校x 件矿泉水,则捐给甲校(2x -400)件矿泉水. 根据题意,得x +(2x -400)=2000. 解得x =800, 所以2000-x =1200.答:该企业捐给甲校1200件矿泉水,捐给乙校800件矿泉水.18. 【答案】解:设这块合金中含金x 克,则含银(250-x)克.根据题意,得119x +110(250-x)=16. 解得x =190.250-x =250-190=60.答:这块合金中含金190克,含银60克.19. 【答案】解:(1)设买了x 本单价为5元/本的笔记本,则买了(40-x)本单价为8元/本的笔记本,依题意,得5x +8(40-x)=300-68+13. 解得x =25.40-x =15.答:单价为5元/本和8元/本的笔记本分别买了25本和15本.(2)解法一:由(1)知应找回的钱款为300-5×25-8×15=55(元)≠68元,故不可能找回68元.解法二:设买了m 本单价为5元/本的笔记本,则买了(40-m)本单价为8元/本的笔记本.依题意,得5m +8(40-m)=300-68.解得m =883.因为m 是正整数,所以m =883不合题意,应舍去,故不可能找回68元.20. 【答案】解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒. (2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6; ②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18. 答:当A ,B 两点运动6秒或18秒时相距6个单位长度. (3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43.当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72.答:此时点B 表示的数为-72.21. 【答案】[解析] 首先要认真阅读题目弄清题意,运用方程求出甲、乙两校参加演出的学生数,然后根据数据进行单独购买、联合购买的计算,尤其是两校联合购买比实际人数多购买9套,但实际花费较小这一情形容易被忽视掉.解:(1)由题意,得5000-92×40=1320(元),所以两校联合起来购买服装比各自购买服装可以节省1320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.由题意知甲校的学生多于45人且少于90人,乙校的学生少于45人.依题意列方程,得50x+60(92-x)=5000,解得x=52,92-x=92-52=40.所以甲、乙两所学校分别有52名,40名学生准备参加演出.(3)由于甲校有10人不能参加演出,则甲校有42人参加演出.若两校各自购买服装,则需要(42+40)×60=4920(元).若两校联合购买服装,则需要50×(42+40)=4100(元).这样两校联合购买服装比各自购买可以节省4920-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买可节省4100-3640=460(元).因此,最省钱的购买服装的方案是两校联合购买91套服装.。
实际问题与一元一次方程同步练习一、选择题1.在长方形ABCD中放入六个相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=x(cm),依题意可得方程()A. 16−3x=8B. 8+2x=16−3xC. 8+2x=16−xD. 8+2x=x+(16−3x)2.今年某月的月历上圈出了相邻的三个数a、b、c,并求出了它们的和为39,这三个数在月历中的排布不可能是()A. B. C. D.3.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm 2、100cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积是()A. 1280 cm3B. 2560 cm3C. 3200 cm3D. 4000 cm34.植树节到了,某学习小组组织大家种树,如每个人种10棵,则还剩6棵;如每个人种12棵,则缺6棵,设该学习小组共有x人种树,则方程为()A. 10x−6=12x+6B. 10x+6=12x−6C. x10+6=x12−6 D. x10−6=x12+65.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A. 7.5秒B. 6秒C. 5秒D. 4秒6.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=17.把一些图书分给学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.设这个班有x名学生,可列得方程()A. 3x+20=4xB. 3x+20=4x−25C. 3x=4x−25D. 3x−20=4x+258.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A. 0个B. 1个C. 2个D. 3个9.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有若干人乘车,每三人乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A. 3(x−2)=2x+9B. 3(x+2)=2x−9C. x3+2=x−92D. x3−2=x+9210.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x人生产甲种零件,则根据题意可得的方程为()A. 12x=62(23−x)B. 3×12x=2×23(62−x)×23(62−x)=12xC. 2×12x=3×23(62−x)D. 3511.在日历中,任意圈出一竖列上相邻的三个数,则这三个数之和可能()A. 75B. 40C. 36D. 1812.有一张桌子配4张椅子,现有90立方米,1立方米可做木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A. 4x=5(90−x)B. 5x=4(90−x)C. x=4(90−x)×5D. 4x×5=90−x13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A. 120元B. 100元C. 80元D. 60元14.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店()A. 不赔不赚B. 赚了9元C. 赚了18元D. 赔了18元二、填空题15.我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”如果设良马x日追上驽马,那么根据题意,可列方程为______.16.如图,点A在数轴上表示的数是−16.点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向石匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当AB=8时,运动时间为______秒.17.如图,一块长4厘米、宽1厘米的长方形纸板①,一块长5厘米、宽2厘米的长方形纸板②与一块正方形纸板③以及另两块长方形纸板④和⑤,恰好拼成一个大正方形,则大正方形的面积是______平方厘米.18.已知4−m与−1互为相反数,则m的值是_______.19.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或瓶底45个,一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配套的饮料瓶?设用x张铝片制瓶身,则可列方程为______.三、解答题20.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?21.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13:4:7,那么甲、乙两车间要分别抽调多少工人?22.某班原分成两个小组进行课外体育活动,第一组28人,第二组20人,根据学校活动器材的数量,要将第一组的人数调整为第二组的一半,应从第一组调多少人到第二组去?23.某机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?答案和解析1.【答案】D【解答】解:设AE=xcm,则小长方形的长为(16−3x),依题意,得:8+2x=x+(16−3x).故选:D.2.【答案】C【解答】解:A.设最小的数是x,x+x+7+x+14=39,x=6,本选项正确,B.设最小的数是x,x+x+8+x+8+8=39,x=5,本选项正确,C.设最小的数是x,x+x+6+x+7=39,x=263,本选项错误,D.设最小的数是x,x+x+7+x+8=39,x=8,本选项正确.3.【答案】C【解答】解:设甲的容积为x cm3,根据题意得:x 80−x100=8,解得:x=3200,故选C.4.【答案】B【解答】解:设该学习小组共有x人种树,则每个人种10棵时,共有10x+6棵树;每个人种12棵时共有12x−6棵树,根据等量关系列方程得:10x+6=12x−6,故选B.5.【答案】D【解析】解:设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4.6.【答案】C【解析】解:由题意可得,1 7x+19x=1,7.【答案】B【解得】解:设这个班有x名学生,由题意得3x+20=4x−25.故选B.8.【答案】B【解析】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;9.【答案】A【解析】解:设有x辆车,由题意得:3(x−2)=2x+9,10.【答案】C【解析】解:设应分配x人生产甲种零件,12x×2=23(62−x)×3,11.【答案】C【解析】解:设这三个数中最小的一个为x,则另外两数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=75或x+x+7+x+14=40或x+x+7+x+14= 36或x+x+7+x+14=18,解得:x=18或x=193或x=5或x=−1,又∵x为正整数,且x+14≤31,∴x=5,即这三个数之和可能36.12.【答案】A【解析】解:由题意可得,4x=5(90−x),13.【答案】C【解析】解:设该商品的进价为x元/件,=200,依题意得:(x+20)÷510解得:x=80.∴该商品的进价为80元/件.14.【答案】D【解答】解:设盈利25%的计算器进价为x元,由题意得,x+25%x=135,解得x=108;设亏本25%的计算器进价为y元,由题意得,y−25%y=135,解得y=180;135×2−(108+180)=−18(元),即这家商店赔了18元.故选D.15.【答案】240x−150x=150×12【解析】解:设良马x日追上驽马,由题意,得240x−150x=150×12.故答案为:240x−150x=150×12.16.【答案】2或4【解析】解:设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8−(−16)或6t+2t=8−(−16)+8,解得:t=2或t=4.故答案为:2或4.17.【答案】36【解析】解:设小正方形的边长为x,依题意得1+x+2=4+5−x,解得x=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案是:36.18.【答案】3【解答】解:由题意得4−m+(−1)=0,解得m=3.故答案为3.19.【答案】2×16x=45(100−x)【解析】解:设用x张铝片制作瓶身,则用(100−x)张铝片制作瓶底,根据题意得:2×16x=45(100−x).故答案是:2×16x=45(100−x).20.【答案】解:设进价为x元,依题意得:900×90%−40−x=10%x,整理,得770−x=0.1x解之得:x=70021.【答案】解:(1)设甲车间有x人,则乙车间有(120−x)人,依题意,得4(120−x)−x=5,解得x=95,则120−x=25.答:甲车间有95人,乙车间有25人;(2)设甲车间有13y人,乙车间有4y人,丙车间有7y人,则13y+4y+7y=120,解得y=5,所以甲车间有65人,乙车间有20人,丙车间有35人,故甲车间要抽调:95−65=30(人).乙车间要抽调:25−20=5(人).答:甲车间要抽调30人,乙车间要抽调5人.22.【答案】解:设应从第一组调x人到第二组去,(20+x),依题意,得:28−x=12解得:x=12.答:应从第一组调12人到第二组去,23.【答案】解:设安排x名工人加工大齿轮,20x×3=15(90−x)×2解得,x=30,∴90−x=60,∵20×30÷2=300,∴一天最多可以生产300套这样成套的产品,答:一天最多可以生产300套这样成套的产品.。
人教版七年级数学上册同步练习题第三章一元一次方程3.4实际问题与一元一次方程一、选择题1.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里2.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A.星期一B.星期二C.星期五D.星期日3.沿河两地相距S千米,船在静水中的速度为 a千米/时,水流速度为b千米/时,船往返一次所需时间是()A.2Sa b+小时B.2Sa b-小时C.(S Sa b+)小时D.(+S Sa b a b+-)小时4.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出()A.要亏本4% B.可获利2% C.要亏本2% D.既不获利也不亏本5.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A.160元B.180元C.200元D.220元6.一条山路,某人从山下往山顶走3小时后还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为每分钟x千米,则所列方程为()A.x−1=5×1.5x B.3x+1=150×1.5x C.3x−1=15060×1.5x D.180x+1=150×1.5x7.已知9人用14天完成了一件工作的35,且每个人的工作效率相同,而剩下的工作要在4天完成,则需增加的人数是()A.11B.12C.13D.148.水池有一注水管,单开5h 可以注满水池;另有一出水管,单开18h 可以把满池水放完.若两管齐开,则注满水池所用的时间是( )A .9013hB .1390hC .9023hD .2390h 9.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏本20元,而按标价的8折出售将赚40元.为了保证不亏本,最少要打 折( )A .6B .6.5C .7D .7.510.用7.8米长的铁丝做一个长方形框架,使长比宽多1.2米,求这个长方形框架的宽是多少米.设长方形的宽是x 米,可列方程为( )A .x +(x +1.2)=7.8B .x +(x −1.2)=7.8C .2[x +(x +1.2)]=7.8D .2[x +(x −1.2)]=7.8二、填空题11.在等式4×□–2×□ = 30 的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是_______12.一条河的水流速度为3km /h ,船在静水中的速度为xkm /h ,则船在这条河中顺水行驶的速度是____km /h ; 13.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天. 14.某客运站行车时刻表如图,若全程保持匀速行驶,则当快车出发______小时后,两车相距25km.15.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.三、解答题16.甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为(0100)a a <<千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为(t小时)()1当5t=时,客车与乙城的距离为多少千米(用含a的代数式表示)()2已知70a=,丙城在甲、乙两城之间,且与甲城相距260千米①求客车与出租车相距100千米时客车的行驶时间;(列方程解答)②已知客车和出租车在甲、乙之间的服务站M处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城,出租车加油时间忽略不计;方案二:在M处换乘客车返回乙城.试通过计算,分析小王选择哪种方案能更快到达乙城?17.一件工程,由甲、乙两个工程队共同合作完成,工期不得超过一个月,甲独做需要50天才能完成,乙独做需要45天才能完成,现甲乙合作20天后,甲队有任务调离,由乙队单独工作,问此工程是否能如期完工.(列方程计算)18.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,火车的长度为180 m,求隧道的长度和火车的速度.19.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里初始水位值.20.为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米.21.A、B两地果园分别有苹果20吨和30吨,C、D两地分别需要苹果15吨和35吨.已知从A、B到C、D的运价如下表:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为_________吨,从A果园将苹果运往D地的运输费用为_________元;(2)用含x的式子表示出总运输费;(要求:列式后,再化简)(3)如果总运输费为545元时,那么从A果园运到C地的苹果为多少吨?22.某商品的进价是2 000元,标价为2 800元,该商品打多少折才能获得12%的利润率?23.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,,1)若按第一种方案建站,取奶站应建在什么位置?,2)若按方案二建站,取奶站应建在什么位置?,3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.【参考答案】1.B 2.D 3.D 4.A 5.C 6.D 7.B 8.A 9.A 10.C11.512.x+313.1014.0.5小时或2.5小时.15.15016.() 1客车与乙城的距离为()8005a -千米;()2①客车的行驶时间是4.375小时或5.625小时;②小王选择方案二能更快到达乙城.17.此工程能如期完成.18.隧道的长度是1170 m ,火车的速度是30 m/s19.67.6cm20.从小强家到学校的路程是4千米.21.(20-x) 12(20-x)22.该商品需打8折才能获得12%的利润率.23.(1) 按方案一建奶站,取奶站应建在B 处;(2) 按方案二建奶站,取奶站建在距A 楼80米处.(3) 当A 楼取奶的人数增加时,按照方案二建奶站,取奶站建在B,C 两楼之间,且随着人数的增加,离B 楼越来越远.。
人教版七年级上册数学3.4实际问题与一元一次方程同步训练(含简单答案)人教版七年级上册数学3.4实际问题与一元一次方程同步训练一、单选题1.某商品的标价为200元,若降价以九折出售仍可获利30元,则该商品的进货价是()A.180 B.150 C.130 D.1202.制作一张桌子要用1个桌面和4条桌腿,1根木材可以制作20个桌面或者制作400条桌腿,现有12根木材,要使制作出来的桌面和桌腿恰好都配成桌子,应利用多少根木材来制作桌面?()A.10 B.8 C.6 D.23.一家玩具店售出两件商品,一件盈利,一件亏损,且两件商品的售出价格均为240元,请问:实出这两件商品,店家是( )A.不亏不赚B.盈利20元C.亏损20元D.以上均错误4.假期中,一群学生前往某工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象:每名男生看到白色与红色安全帽一样多,而每名女生看到白色安全帽是红色安全帽2倍.设这群学生中女生有人,下面所列方程正确的是()A.B.C.D.5.一次知识竞赛,共有10道题,每答对一题得10分,答错或不答倒扣5分,小明共得55分,他答对()道.A.3 B.6 C.7 D.116.某车间有名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺栓个或螺母个,若分配名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.B.C.D.7.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有辆车,则可列方程()A.B.C.D.8.某商店以每件360元的价格卖出两件衣服,其中一件盈利,另一件亏损,那么商店卖出这两件衣服总的是()A.盈利30元B.亏损30元C.盈利40元D.亏损40元二、填空题9.某车间有35名工人,每人每天能生产螺栓12个或螺母18个,一个螺栓与两个螺母配套,要使每天生产的螺栓与螺母配套,应如何安排生产?若设有名工人生产螺栓,则可列方程.10.据记载,“幻方”源于我国古代的“洛书”,是世界上最早的矩阵.如图所示的幻方是由的方格构成,每一行、每一列以及每一条对角线上的三个数字或字母的和均相等,则a的值为.11.某品牌商品按标价九折出售,仍可获得的利润,若该商品标价为56元,则商品的进价为元.12.某商品的标价为126元,若降价以九五折出售(优惠)仍可获利(相对于进货价)则该商品的进货价是元.13.一件商品提价25%后发现销路不是很好,若恢复原价,则应打折.14.某商场对某种商品作调价,按原价8折出售,此时商品的利润率是,若商品的进价为1200元,则商品的原价是元.15.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,则去年这个学校购买了台计算机.16.星期天,小明一家从家里出发去奶奶家,爸爸骑自行车先走,速度为10千米/时,30分钟后妈妈开车和小明一起出发,速度为50千米/时,结果3人同时到达奶奶家,小明家距奶奶家的路程为千米.三、解答题17.一件工程,甲单独做需要15天完成,乙独做需12天完成,现先由甲、乙合作5天后,甲有其他任务,剩下的工程由乙单独完成,则乙还要几天才能完成全部工程?18.学校团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人各搬了4次,共搬了1800块.问这些新团员中有多少名男同学?19.用一根长的铁丝围成一个长方形.(1)如果长方形的长比宽的2倍少,求这个长方形的面积;(2)如果长方形的长与宽之比为3:2,求这个长方形的面积.20.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.问:(1)原计划租用几辆45座客车?(列方程求解)(2)这批游客的人数是______人.参考答案:1.B2.A3.C4.B5.C6.B7.A8.B9.10.111.4212.11413.八14.165015.4016.6.2517.乙还要工作3天才能完成全部工程18.30名19.(1);(2).20.(1)原计划租45座客车5辆.(2)240答案第1页,共2页。
3.4实际问题与一元一次方程行程问题提升训练一.单选题A.36108x--表示乐乐的速度二.填空题三.应用题16.已知:A,B两地相距500km,甲、乙两车分别从A,B两地同时出发,相向而行.甲车的速度为60km/h,乙车的速度为40km/h.请按下列要求列方程解题:(1)多少小时后甲、乙两车相遇?(2)多少小时后甲、乙两车相距100km?17.列一元一次方程解应用题注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空(填空时写清题号,按顺序填),完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答即可.问题展示:A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米.甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米.两车相遇后,各自仍按原速度和原方向继续行驶,那么相遇以后两车相距100千米时,甲车从出发共行驶了多少小时?解题方案:设相遇以后两车相距100千米时,甲车从出发共行驶了x小时.(1)用含x的式子表示:①乙车共行驶了____________小时;②甲车行驶的路程是____________千米;③乙车行驶的路程是____________千米;(2)根据题意,列方程____________;(3)解方程,得____________;(4)答:相遇以后两车相距100千米时,两车从出发共行驶了______小时.18.已知长方形ABCD的长AB为4,宽BC为2;长方形EFGH的长EF为6,宽FG为3.如图1所示,、两边与数轴重合,且点A、点E与原点O重合.AB EF(1)当长方形ABCD从原点出发,以2个单位/秒的速度沿数轴向右匀速运动.长方形ABCD完全通过长方形EFGH时,所需时间为______秒;(2)在(1)的条件下,在运动过程中,当长方形ABCD与长方形EFGH重合面积为2个单位面积时,需要运动多少秒?(3)在(1)的条件下,长方形ABCD开始运动的同时,长方形EFGH以1个单位/秒的速度沿数轴向右匀速运动,设点A和点F运动后对应的点为A'和F',当4A F''=时,此时点F'在数轴上表示的数为多少?19.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动t t>秒.点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)(1)数轴上点B表示的数是________,点P表示的数是________(用含的式子表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?。
3.4:实际问题与一元一次方程-2021-2022学年七年级数学上册同步提高课时练习(人教版)一、单选题1.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.82.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x元,根据题意,可得到的方程是A.x(1+50%) ⨯80%=x-250 B.x(1+50%) ⨯80%=x+250C.(1+50%x) ⨯80%=x-250 D.(1+50%x) ⨯80%=250-x3.已知一项工程,甲单独完成需要5天,乙单独完成需要8天,现甲、乙合作完成需要多少天?设甲、乙合作需要x天完成,则可列方程为()A.5+8=x B.(15-18)x=1 C.15+18=1xD.(15+18)x=14.某市为提倡节约用水,采取分段收费,若用户每月用水不超过20立方米,每立方米收费2元;若用水超过20立方米,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水量为()A.34立方米B.32立方米C.30立方米D.28立方米5.修一条排水渠,甲队独做需10天,乙队独做需15天,现由两队合修,中途乙队被调走,余下的任务由甲队单独做,又修了5天后完成.在这个过程中,甲、乙两队合修了()A.2天B.3天C.4天D.5天6.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x (cm),依题意可得方程()A.6+2x=14-3x B.6+2x=x+(14-3x)C.14-3x=6 D.6+2x=14-x7.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+ =100 C .()31001003x x --= D .10031003x x --= 8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=909.某工程甲独做8天完成,乙独做12天完成,现由乙先做3天,甲再参加合做.设完成此工程一 共用了x 天,则下列方程正确的是( )A .3128x x ++=1 B .3128x x -+=1 C .128x x +=1 D .33128x x +-+=1 10.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( )A .购物高于800元B .购物低于800元C .购物高于1 000元D .购物低于1 000元 11.学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人都各搬了4次,共搬了1 800块.这些新团员中有男同学( )A .35名B .45名C .30名D .50名12.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x += 13.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元14.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x15.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( )A .3x -20=4x -25B .3x +20=4x +25C .3x -20=4x +25D .3x +20=4x -2516.2016年9月28日-12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客 400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为( )A .21时B .22时C .23时D .24时17.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )18.阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?解:设该队胜了x 场,依题意得,下列方程正确的是( )A .2(12﹣x)+x =20B .2(12+x)+x =20C .2x+(12﹣x)=20D .2x+(12+x)=20二、填空题19.某月有五个星期日,己知这五个日期的和为75,则这月中最后一个星期日是____号.20.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x 人,依题意,可列方程为________________.21.李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了___张电影票.22.一环形跑道长400米,小明跑步每秒行5米,爸爸骑自行车每秒15米,两人同时同地反向而行,经过_____秒两人首次相遇.23.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为______元.24.把一个半径为3cm 铁球熔化后,能铸造______个半径为1cm 的小铁球(球的体积为343R ) 25.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,这个班的学生有___人,书有____本.26.小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;___________________.请问手工小组有几人?(设手工小组有x人)27.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.28.一个两位数,个位数字比十位数字的2倍多1,如果个位与十位的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为_____.29.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有x人,可列出方程____________________.30.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为_____31.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程________.32.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.33.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.34.数学竞赛共有20道题,答对一题得5分,不答或答错一题扣3分,若要得到84分,则需要答对几道题?设答对x道题,可列方程为________.三、解答题35.如图所示,有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36人等待通过(假定先到达的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟才能到达学校,从节省时间考虑,•王老师应选择绕道去学校,还是选择通过拥挤的道口去学校;(2)若在王老师等人的维持下,几分钟后秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比在拥挤的情况下提前6分钟通过道口,问维持秩序的时间是多长.36.当m 为何值时,关于x 的方程327x m x +=+的解比关于x 的方程4(2)3()x x m -=+的解大9? 37.在某校举办的足球比赛中,规定:胜一场得3分,平一场得1分,•负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个球队只输了2场,那么此队胜几场,平几场?38.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.39.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲 乙 进价(元/件)22 30 售价(元/件) 29 40 (1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?40.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?41.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?42.某玩具工厂出售一种玩具,其成本价为每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等;(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?43.根据图中的信息,求梅花鹿和长颈鹿现在的高度.44.某人原计划在一定时间内由甲地步行到乙地,他先以4 km/h的速度步行了全程的一半,又搭上了每小时行驶20 km的顺路汽车,所以比原计划需要的时间早到了2 h.甲、乙两地之间的距离是多少千米?45.用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?参考答案1.B【详解】试题分析:根据利润=售价﹣进价,即可得200×﹣80=80×50%,解得:x=6.故选B.考点:一元一次方程的应用.2.B【解析】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.3.D【分析】利用合作的工作效率等于工作效率的和列出方程求解.【详解】∵甲单独完成需5天,乙单独完成需要8天,∴合作的工作效率为:15+ 1 8设合作x天完成,∴方程为:(15+18))x=1,故选D.【点评】由实际问题抽象出一元一次方程.4.D【分析】由5月份小明家交消费64元,超过20立方米,按20立方米以内和超过20立方米两段计费,再列方程求解.【详解】解:设他家该月用水量为x立方米,根据题意,由202=40⨯<64,则x>20,∴()()220212064x⨯++-=解得:28.x=故选:D.【点评】本题考查分段计费问题,掌握利用一元一次方程解决分段收费问题是解题的关键.5.B【解析】甲、乙两队合修了x天,根据整个工程分两部分列出方程求解即可.【详解】设甲、乙两队合修了x天,根据题意得:(110+115)x+110×5=1,解得:x=3,故选:B.【点评】本题考查了方程的应用,解题的关键是能够根据题意找到等量关系并列出方程,难度不大.6.B【详解】如图所示:设AE为xcm,则AM为(14-3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14-3x)故选B.【点睛】主要考查了由实际问题抽象出一元一次方程,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.7.B【分析】设大和尚有x人,则小和尚有(100﹣x)人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x的一元一次方程,此题得解.【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x1003x-+=100.故选B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.A【详解】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.9.B【分析】根据“乙先做3天,甲再参加合做”找到等量关系列出方程即可.【详解】解:设完成此项工程共用x 天,根据题意得:31128x x -+=, 故选B .【点评】本题考查的知识点是由实际问题抽象出一元一次方程的知识,解题关键是根据工作量之间的关系列出方程.10.C【解析】根据“花200元买这种卡后,凭卡可在这家商店按八折购物”得出消费者在该商场消费所节省的钱数要大于或等于200,由此即可列出不等式,从而使问题得以解决.【详解】设买购物卡合算时,购物的费用为x 元,则根据题意有(1−80%)x≥200.解得x≥1000.所以购物不低于1000元时买这种购物卡合算.故答案选:C.【点评】本题考查的知识点是一元一次不等式(组)的应用-方案选择题,解题的关键是熟练的掌握一元一次不等式(组)的应用-方案选择题.11.C【解析】根据65名新团员,可知男生人数+女生人数=65,若设男生有x 人,则女同学有(65-x)人;根据女同学每人每次搬6块砖,男同学每人每次搬8块,每人各搬了4次,结合共搬了1800块,可知男生搬的砖+女生搬的砖=1800,由此列出方程,解方程即可.【详解】设新团员中有x 名男同学,则根据题意,得32x+24(65-x )=1800,解这个方程,得x=30,经检验,符合题意.故答案选:C.【点评】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用. 12.D【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x天相遇,可列方程为:11()1 79x+=.故选D.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.13.C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选C【点评】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.14.C【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.15.D【解析】设这个班有学生x人,若每人分3本,剩余20本,则图书的数量为3x+20;同理再由每人分4本,则还缺25本可得图书的数量还可表示为4x-25,根据图书的总数量是定值即可得到方程.【详解】设这个班有学生x人,由题意得,3x+20=4x-25.故选D.【点评】本题主要考查了一元一次方程的应用,找到题中的等量关系是解答本题的关键.16.A【分析】设该灯展人数包饱和时的时间约为x点,根据晚上17时开始每小时进入灯展的人数约为900人,同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数为1600人,列出方程,求解即可.【详解】解:设该灯展人数饱和时的时间约为x ,根据题意得(17)(900600)1600400x -⨯-=-,解得21x =,即该灯展人数饱和时的时间约为21时.故选:A.【点评】本题主要考查一元一次方程的求解,由实际问题列出一元一次方程时解题的关键.17.D【详解】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.18.C【解析】试题解析:设该队胜了x 场,则该队负了12﹣x 场;胜场得分:2x 分,负场得分:12﹣x 分.因为共得20分,所以方程应为:2x+(12﹣x )=20.故选C .考点:由实际问题抽象出一元一次方程.19.29【分析】每个星期相差7天,设最后一个星期日是x 号,则其他四个星期的号数分别为:x-7,x-14,x-21,x-28,由这五个日期的和为75列方程解答即可.【详解】解:设最后一个星期日是x 号,则其他四个星期的号数分别为:x-7,x-14,x-21,x-28,根据题意列方程得,x+(x-7)+(x-14)+(x-21)+(x-28)=75,解得x=29,故答案为:29.【点评】此题主要考查每个星期间隔的日期都是7,有其中一个星期日的日期,进一步推出其它日期解决问题.20.(230)600x x +-=【解析】分析:由到植物园的人数为x 人,可得到野生动物园的人数为(2x -30)人,再根据共有600名学生列出方程即可.详解:设到植物园的人数为x 人,依题意可列方程为:x +(2x -30)=600.故答案为x +(2x -30)=600.点睛:本题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.21.20或25【分析】根据数量=总价÷单价,分票价每张60元和票价每张60元的八折两种情况讨论即可.【详解】①1200÷60=20(张);②1200÷(60×0.8)=1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.【点评】考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系. 22.20【详解】解:设经过xs 两人第一次相遇.根据题意得:15x +5x =400.解得:x =20.故答案为20.23.4【详解】试题分析:设该商品每件销售利润为x 元,根据进价+利润=售价列出方程,求解即可.设该商品每件销售利润为x 元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.考点:一元一次方程的应用.24.27个【分析】试题分析:等量关系为:大铁球的体积=铸造出的几个小铁球的体积,设能铸造x 个小铁球,据题意列方程即可求得.【详解】设能铸造x 个小铁球,由题意得344333ππ⨯=⋅x解得:x=27则能铸造27个半径为1cm的小铁球.考点:本题考查的是一元一次方程的应用点评:解此题的关键是要理解铸造前后体积不变,还应掌握球的体积公式.25.42 270【解析】本题可设这个班的同学有x人,则根据书本总数相等列出方程求解.【详解】设这个班的同学有x人,则:6x+18=7x−24,解得:x=42,则6x+18=270.故答案为:42,270.【点评】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用. 26.若每人作6个,就比原计划多8个【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【详解】等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x−8表示:如果每人做6个,那么就比计划多8个.故答案为如果每人做6个,那么就比计划多8个.【点评】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用. 27.1000.【详解】方程的应用解题关键是找出等量关系,列出方程求解.本题等量关系为:正方形边长为30.因此,设长方体的高为xcm,则其宽为2xcm,长为(15-2x)cm.根据题意得:2x+4x=30解得:x=5.∴长方体的高为5,宽为10,长为20.∴长方体的体积为5×10×20=1000(cm3).28.37【分析】先设十位数为x则个位为2x+1,原来两位数为: 10x+2x+1,根据题意将个位与十位的数字交换位置后可得新的两位数为: 10 (2x+1) + x,根据新的两位数比原来两位数的2倍少1,可得:10 (2x+1) + x=2(10x+2x+1)-1,解得x=3,则原来两位数为:10x+2x+1=30+6+1=37.【详解】设十位数为x则个位为2x+1,根据题意可得:10 (2x+1) + x=2(10x+2x+1)-1,20x+10+x=20x+4x+2-1,-3x =-9,x =3,则10x +2x +1=30+6+1=37,故答案为:37.【点评】本题主要考查一元一次方程解决数字问题,解决本题的关键是要熟练表示出原来的两位数和交换位置后的两位数,并能根据根据等量关系列出方程.29.3983x x -=-+【详解】设甲班原有人数是x 人,则乙班人数为(98-x )人,根据题中等量关系:甲班人数+乙班人数=98;甲班人数-3=乙班人数+3,列方程得:x-3=(98-x)+3.故答案是:x-3=(98-x)+3.30.14261314x x -+=. 【分析】设春游的总人数是x 人,由包租相同的大巴13辆,有14人没有座位可得一辆大巴所坐的人数为1413x -人;由多包租1辆,就多了26个空位可得一辆大巴所坐的人数为2614x +人,由此即可得方程14261314x x -+=. 【详解】设春游的总人数是x 人. 根据题意可列方程为:14261314x x -+= , 故答案为14261314x x -+=. 【点评】本题考查了一元一次方程的应用,根据题意表示出一辆大巴所坐的人数是解决问题的关键. 31.()50x 430010x ⨯=-【分析】本题涉及的等量关系是:桌子的张数×4=桌脚的条数【详解】解:设用x 立方米的木材做桌面,则有(10-x )立方米的木材做桌腿,由题意得,50x×4=300(10-x ).【点评】本题考查列一元一次方程解决实际问题.32.12【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x )>60,求解即可.【详解】设答对x 道.故6x-2(15-x )>60解得:x >908. 所以至少要答对12道题,成绩才能在60分以上.【点评】考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.33.180【分析】设原定时间是x 分,分别根据每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,表示出两地之间的距离建立方程解答即可.【详解】设原定时间是x 分,由题意得241515()12()60606060x x -=+ 解得:x =180.答:原定时间是180分.故答案为:180.【点评】此题考查一元一次方程的实际运用,明确路程是一定的,根据路程=速度×时间建立等量关系式是完成本题的关键.34.5x-3(20-x)=84【解析】本题只需根据题意列出符合题意的方程即可.【详解】由已知答对了x 道题,则答错的题目就为(20-x)道题根据得分84分可列出如下方程:5x-3(20-x)=84.故答案为:5x-3(20-x)=84.【点评】本题考查的知识点是根据等量关系列方程,解题的关键是熟练的掌握根据等量关系列方程. 35.(1)绕道而行;(2)3分钟【分析】(1)先分别求得通过拥挤的通道和绕道去学校的时间,比较即可选择;(2)设维持秩序的时间x 分钟,如果不维持秩序,王老师要等36÷3=12分钟才能通过,现在提前6分钟,说明他只等了12-6=6分钟,在这6分钟内,花了x 分钟维持秩序,通过3x 人,又花了(6-x )分钟按正常秩序等待,通过了9(6-x )人,共通过36人,所以可列方程3x+9(6-x )=36,解方程即可求解.【详解】解:(1)36÷3=1212+7=1919>15;所以应该选择绕道去学校;(2)设维持秩序的时间x分钟,根据题意得:3x+9(6-x)=36解得:x=3答:维持秩序的时间是3分钟.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.36.m=52 .【详解】分别解两个方程求得方程的解,然后根据关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9,即可列方程求得m的值.解:解方程3x+m=2x+7,得x=7﹣m,解方程4(x﹣2)=3(x+m),得x=3m+8,根据题意,得7﹣m﹣(3m+8)=9,解得m=﹣.“点睛”本题考查了方程的解的定义,方程的解就是能使方程的左右两边相等的未知数的值.37.此队胜了6场,平了4场.【分析】设胜x场,平y场,由题意得等量关系:平的场数+负的场数+胜的场数=12,平场得分+胜场得分+负场得分=22分,根据等量关系列出方程组即可.【详解】设此队胜x场,平(10-x)场,22=3x+10-x,12=2x,6=x,则10-x=4.故此队胜了6场,平了4场.【点评】本题考查了一元一次方程的应用,解题的关键是根据题意列出方程进行求解.38.(1)150;240;(2)11根.【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为150;240.(2)设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得:x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点评】解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.39.(1) 该超市第一次购进甲种商品150件、乙种商品90件.(2) 1950元.x+15),根据题意列出方程求出其解就【分析】(1)设第一次购进甲种商品x件,则乙种商品的件数是(12可以;(2)由利润=售价-进价作答即可.x+15)件,【详解】解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,∴1x+15=90.2答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.【点评】本题考查的知识点是利润=售价-进价的运用和列一元一次方程解实际问题的运用及一元一次方程的解法的运用,解题关键是解答时根据题意建立方程.40.安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【详解】试题分析:首先设安排甲部件x个人,则(85-x)人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x人,乙部件安排(85-x)人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x)解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套.考点:一元一次方程的应用.。
同步提升训练:3.4实际问题与一元一次方程(三)1.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.2.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)3.周末小彬和小明相约骑自行车去图书馆,事先决定早晨7:00从家里出发,预计每小时行7.5km,上午9:00可到达目的地.出发前他们又决定上午8:30到达目的地,那么每小时要行多少千米?4.某建筑工地计划租用甲、乙两辆车淸理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?5.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?6.如图,点A,B,C在数轴上表示的数分别是﹣3,3和1.动点P,Q两同时出发,动点P 从点A出发,以每秒6个单位的速度沿A→B→A往返运动,回到点A停止运动;动点Q 从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t (s).(1)当点P到达点B时,求点Q所表示的数是多少;(2)当t=0.5时,求线段PQ的长;(3)当点P从点A向点B运动时,线段PQ的长为(用含t的式子表示);(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.7.为了促进全民健身运动的开展,某市组织了一次足球比赛.如表记录了比赛过程中部分代表队的积分情况.代表队场次(场)胜(场)平(场)负(场)积分(场)A 6 5 1 0 16B 6 6 0 0 18C 6 3 2 1 11D 6 3 1 2 10(1)本次比赛中,胜一场积分;(2)参加此次比赛的F代表队完成10场比赛后,只输了一场,积分是23分.请你求出F代表队胜出的场数.8.已知数轴上有两点A、B,点A表示的数是4,点B表示的数是﹣11,点C是数轴上一动点.(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B 两点之间的距离为1时,求C点在数轴上对应的数是多少?(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R 从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.9.已知多项式﹣2m3n3+4中,含字母的项的系数为a,多项式的次数为b,且a、b分别是点A、B在数轴上的对应的数,如图所示:(1)点A表示的数为,点B表示的数为;(2)一小球甲从点A处以1个单位/秒的速度向左运动,同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒):①甲小球所在的点表示的数为,乙小球所在的点表示数为(用含t的代数式表示);②求经过多长时间甲、乙小球相距2个单位长度?③试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.10.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?11.小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?12.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,如表是调控后的价目表.价目表每月用水量单价不超过6吨的部分2元/吨超出6吨不超出10吨的部分4元/吨超出10吨的部分8元/吨注:水费按月结算.(1)若该户居民8月份用水8吨,则该用户8月应交水费元;若该户居民9月份应交水费26元,则该用户9月份用水量为吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?14.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?15.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.16.某超市计划购进一批甲、乙两种玩具,已知甲种玩具的进价比乙种玩具的进价多3元,且购买2件甲种玩具与3件乙种玩具的进价和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请判断超市购进哪种玩具省钱.17.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:水果品种A B进货价格(元/kg)10 15(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?18.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?19.为打造运河风光带,现有一段河道治理任务由A、B两个工程队完成.A工程队单独治理该河道需16天完成,B工程队单独治理该河道需24天完成,现在A工程队单独做6天后,B工程队加入合作完成剩下的工程,问B工程队工作了多少天?20.武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?参考答案1.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)2.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<20时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.3.解:设每小时行驶x千米,由题意可得:x×1.5=7.5×2解得:x=10答:每小时要行10千米.4.解:(1)设甲、乙两车合作还需要x天运完垃圾,依题意,得:+=1,解得:x=8.答:甲、乙两车合作还需要8天运完垃圾.(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得:(8+3)(y+100)+8y=3950,解得:y=150,∴y+100=250.答:甲车每天的租金为250元,乙车每天的租金为150元.5.解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.6.解:(1)[3﹣(﹣3)]÷6×1+1=2.故点Q所表示的数是2;(2)(1×0.5+1)﹣(﹣3+6×0.5)=1.5.故线段PQ的长是1.5;(3)①点P在点Q的左边时,即t<0.8s时,PQ=1+t﹣(﹣3+6t)=4﹣5t;②点P在点Q的右边时,即0.8s≤t<1s时,PQ=﹣3+6t﹣(1+t)=5t﹣4;综上所述,线段PQ的长为4﹣5t或5t﹣4.(4)①第一次相遇前,依题意有1﹣(﹣3+6t)=t,解得t=;②第一次相遇,依题意有(6﹣1)t=3﹣(﹣1),解得t=;③第二次相遇,依题意有(6+1)t=3﹣(﹣3)+3﹣1,解得t=;④第二次相遇后,依题意有6t﹣(3+3+3﹣1)=t,解得t=.综上所述,t的值为或或或s.故答案为:4﹣5t或5t﹣4.7.解:(1)本次比赛中,胜一场积:18÷6=3(分),故答案为:3;(2)设F代表队胜出x场,则平了(10﹣x﹣1)场,输了1场,由(1)知,胜一场积分为3分,则平一场积分为:16﹣3×5=1(分),则负一场积分为:11﹣3×3+1×2=0(分),3x+1×(10﹣x﹣1)+1×0=23,解得,x=7,答:F代表队胜出7场.8.解:(1)设点C表示的数为a,∵BC:AB=3:5,∴(﹣11﹣a):(4+11)=3:5,∴a=﹣20,∴点C到原点的距离为20;(2)设点C表示的数为x,根据题意得:(4﹣x)﹣(x+11)=1,或(x+11)﹣(4﹣x)=1,∴x=﹣4或﹣3,∴C点在数轴上对应的数是﹣4或﹣3;(3)设点R的速度为y个单位长度/秒,则点P的速度3y个单位长度/秒,点Q的速度是(2y﹣5)个单位长度/秒,由题意得:|(﹣20+4×3y)﹣[4+4(2y﹣5)]|=×4×(y+2y﹣5)解得:y=3或1.4,∴2y﹣5=1或﹣2.2(不合题意舍去)答:动点Q的速度为1个单位长度/秒.9.解:(1)∵多项式﹣2m3n3+4中,含字母的项的系数为a,多项式的次数为b,且a、b 分别是点A、B在数轴上的对应的数,∴a=﹣2,b=6,∴点A表示的数为﹣2,点B表示的数为6;(2)①甲小球所在的点表示的数为﹣2﹣t,乙小球所在的点表示数为6﹣2t;②甲在左边时,依题意有6﹣2t﹣(﹣2﹣t)=2,解得t=6;乙在左边时,依题意有﹣2﹣t﹣(6﹣2t)=2,解得t=10.故经过6秒或10秒长时间甲、乙小球相距2个单位长度;③原点是甲乙的中点时,依题意有﹣(﹣2﹣t)=6﹣2t,解得t=;甲乙相遇时,依题意有﹣2﹣t﹣(6﹣2t)=0,解得t=8.故甲、乙两小球到原点的距离可能相等,甲,乙两小球到原点的距离相等时经历的时间秒或8秒.10.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.11.解:(1)∵145<150.最多购买并使用两张代金券,∴最多优惠50元.(2)设小明一家应付总金额为x元,当50≤x<100时,由题意得,x﹣25﹣[50+(x﹣50)×0.6]=15.解得:x=150(舍去).当100≤x<150时,由题意得,x﹣50﹣[50+(x﹣50)×0.6]=15.解得:x=212.5(舍去).当x≥150时,由题意得,x﹣75﹣[50+(x﹣50)×0.6]=15.解得:x=275,275﹣75﹣15=185(元).答:小明一家实际付了185元.12.解:(1)6×2+(8﹣6)×4=20,答:该用户8月应交水费20元;设该用户9月份用水量为x吨,2×6=12,2×6+(10﹣6)×4=28,∵12<26<28,∴6<x<10,则6×2+4(x﹣6)=26,x=9.5,答:该用户9月份用水量为9.5吨;故答案是:20;9.5;(2)该用户10月份用水量为y吨,则y>10,根据题意得:6×2+(10﹣6)×4+8(y﹣10)=30,y=10.25;(3)设11月份用水x吨,12月份用水(18﹣x)吨,①当0≤x≤6时,18﹣a>12,由题意得:2x+2×6+4×4+8[(18﹣x)﹣10]=52.即:﹣6x+92=52,解得x=,不合题意,舍去.②当6<a≤8时,18﹣a≥10,2×6+4(x﹣6)+2×6+4×4+8[(18﹣x)﹣10]=52,解得x=7,18﹣x=11.故11月份的水费是:6×2+1×4=16(元)12月份的水费是:6×2+4×4+1×8=36(元).答:11月份交16元,12月份交36元.13.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.14.解:(1)设这批校服共有x件,依题意,得:﹣=20,解得:x=960.答:这批校服共有960件.(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,依题意,得:16y+24y+24×(1+25%)(y+4)=960,解得:y=12,∴2y+4=28.答:乙工厂加工28天.15.解:(1)设排球的单价是x元,则篮球的单价是(2x﹣10)元,依题意,得:x+2x﹣10=35,解得:x=15,∴2x﹣10=20.答:篮球的单价是20元,排球的单价是15元.(2)选择方案一更省钱,理由如下:选择方案一所需费用为(20×15+15×10)×=337.5(元);选择方案二所需最低费用为20×15+15×10﹣×30=360(元).∵337.5<360,∴选择方案一更省钱.16.解:(1)设每件乙种玩具的进价是x元,则每件甲种玩具的进价是(x+3)元,由题意得:2(x+3)+3x=141,解得:x=27,∴甲种玩具每件的进价是30元,乙种玩具每件的进价是27元.(2)设购进玩具x件(x>20),则购进甲种玩具需要的费用:30×20+30×0.7×(x﹣20)=21x+180元;购进乙种玩具需要的费用:27x元;当21x+180=27x,解得:x=30.①当购进玩具多于20且少于30件时,选择购乙种玩具省钱;②当购进玩具正好30件时,选择购两种玩具的费用相同;③当购进玩具超过30件时,选择购甲种玩具省钱.17.解:(1)设购进A水果x千克,则购进B水果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A水果30千克,购进B水果20千克;(2)设B种水果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种水果的售价应该定为24元/千克.18.解:设中型汽车有x辆,则小型汽车有3x辆,根据题意,得6x+4×3x=270解得x=15.则3x=45(辆).答:小型汽车有45辆.19.解:设B工程队工作了x天,由题意得:,解这个方程得:x=6经检验:x=6符合题意.答:B工程队工作了6天.20.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵乙种服装商品每件售价1200元,可盈利50%.∴乙种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则乙种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.=3200﹣3×500+20.解得:y=8.5.答:先打八五折再参加活动.。