东南大学结构动力学复习题
- 格式:pdf
- 大小:917.53 KB
- 文档页数:60
第一章 平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
2、图中链杆1和2的交点O 可视为虚铰。
O二、分析题:对下列平面体系进行几何组成分析。
3、 4、ACDBACDB5、 6、A CD BEABCDE7、 8、ABCD GE FA BCDEFGHK9、 10、11、 12、1234513、 14、15、 16、17、 18、19、 20、1245321、 22、123456781234523、 24、12345625、 26、27、 28、29、 30、31、 32、33、BA CFDE三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。
34、35、第二章 静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。
3、静定结构的几何特征是几何不变且无多余约束。
4、图(a)所示结构||M C =0。
aa(a)BCa aAϕ2a2(b)5、图(b)所示结构支座A 转动ϕ角,M AB = 0, R C = 0。
6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。
7、图(c)所示静定结构,在竖向荷载作用下,AB 是基本部分,BC 是附属部分。
ABC(c)8、图(d)所示结构B 支座反力等于P /2()↑。
(d)9、图(e)所示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。
AB(e)10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。
11、图(f)所示桁架有9根零杆。
(f)a a a a(g)12、图(g)所示桁架有:N1=N2=N3= 0。
13、图(h)所示桁架DE杆的内力为零。
a a(h)(i)14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。
15、图(j)所示桁架共有三根零杆。
《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
第十六章结构动力学【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。
图16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。
把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则)(R I y P D I P +δ+∆=∆+∆+∆=式中,)t (q EI38454P =∆,EI 483 =δ。
将它们代入上式,并注意到ym I -=,y c R -=,得)(48)(384534y c y m EIt q EI y --+=图16-7经整理后可得)(t P ky y c y m E =++式中,3EI 481k =δ=,)(85)(t q k t P P E =∆= )(t P E 称为等效动荷载或等效干扰力。
其含义为:)(t P E 直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图a 的相当体系如图f 所示。
【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和3m质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。
【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i振型上的惯性力在,振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
结构力学考研复习题一、填空题。
1、在梁、刚架、拱、桁架四种常见结构中,主要受弯的是和,主要承受轴力的是和。
2、选取结构计算简图时,一般要进行杆件简化、简化、简化和简化。
3、分析平面杆件体系的几何组成常用的规律是两刚片法则、和二元体法则。
4、建筑物中用以支承荷载的骨架部分称为,分为、和三大类。
5、一个简单铰相当于个约束。
6、静定多跨梁包括部分和部分,内力计算从部分开始。
7、刚结点的特点是,各杆件在连接处既无相对也无相对,可以传递和。
8、平面内一根链杆自由运动时的自由度等于。
二、判断改错题。
1、三刚片用三个铰两两相联必成为几何不变体系。
()2、对静定结构,支座移动或温度改变会产生内力。
()3、力法的基本体系必须是静定的。
()4、任何三铰拱的合理拱轴都是二次抛物线。
()5、图乘法可以用来计算曲杆。
()6、静定结构的影响线全部都由直线段组成。
()7、多跨静定梁若附属部分受力,则只有附属部分产生内力。
()8、功的互等定理成立的条件是小变形和线弹性。
()9、力法方程中,主系数恒为正,副系数可为正、负或零。
()三、选择题。
1、图示结构中当改变B点链杆方向(不能通过A铰)时,对该梁的影响是()A、全部内力没有变化B、弯矩有变化C、剪力有变化D、轴力有变化2、图示桁架中的零杆为()A、DC, EC, DE, DF, EFB、DE, DF, EFC、AF, BF, DE, DF, EFD、DC, EC, AF, BF3、右图所示刚架中A 支座的反力A H 为( ) A 、PB 、2P -C 、P -D 、2P4、右图所示桁架中的零杆为(A 、CH BI DG ,,B 、DE ,C 、AJ BI BG ,,D 、BG CF ,,5、静定结构因支座移动,( )A 、会产生内力,但无位移 B 、会产生位移,但无内力 C 、内力和位移均不会产生 D 、内力和位移均会产生6A 、θδ=+a cX B 、θδ=-a cXC 、θδ-=+a cXD 、θδ-=-acX7、下图所示平面杆件体系为( ) A 、几何不变,无多余联系 B 、几何不变,有多余联系 C 、瞬变体系 D 、常变体系8、图示梁中的轴力( ) A 、全部为拉力 B 、为零 C 、全部为压力D 、部分为拉力,部分为压力9、用图乘法求位移的必要条件之一是( ) A 、单位荷载下的弯矩图为一直线 B 、结构可分为等截面直杆段 C 、所有杆件EI 为常数且相同 D 、结构必须是静定的四、对下图所示平面杆件体系作几何组成分析。
《结构动力学》试题B 卷 参考答案及评分标准一、填空题。
(11分)1、2(3分)2、 < (3分)3、 14(3分)4、 小 鞭梢效应 (3分)二、判断以下说法是否正确,对错误的说法加以改正。
(6×3分=18分) 1、(× )改正:可简单地在“都是”前加上“不”;或改为“大小、方向、作用点位置随时间变化的荷载,只有使结构的质量产生显著加速度的在结构动力计算中才看作动力荷载。
” 2、( ×) 改正:将“一定”改为“不”;或将“一定等于其超静定次数”改为“与其超静定次数无关” 3、(×)改正:将“改变激励频率”改为“改变结构固有频率”;或将“改变激励频率”改为“改变结构的刚度” 4、(√) 5、(× ) 改正:将“刚度法”与“柔度法”对调;或将“静定”改为“超静定” 6、(×) 改正:将“不高”改为“很高”三、选择题。
(6×3分=18分) 1、(B ) 2、(B ) 3、( D ) 4、(C ) 5、(A )6、(B )四、解:1) 梁中点的柔度系数为EIl k EI l k EI l 19254148212148333=+=⨯+=δ (4分) 固有频率s ml EI m 116.1344300510919251921363=⨯⨯⨯⨯===δω (3分) 动力系数55.116.13480111122=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=ωθβ (3分)梁中点总位移幅值为mm P mg Pmg y mg A mg y st t 3.6)102055.110300(10919245)(363max =⨯⨯+⨯⨯⨯⨯=+=⋅+⋅=+⋅=+⋅=βδδβδβδδ (5分) 2) 动力系数为545.116.1348005.0216.1348011)2()1(1222222=⎪⎭⎫⎝⎛⨯⨯+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-=ξγγβ (3分)梁的最大动弯矩为m kN PlM d ⋅=⨯⨯==9.304420545.14max β (3分)五、解:质量矩阵kg M ⎥⎦⎤⎢⎣⎡=4.15.210][5 (1分) 柱的侧移刚度mN k m N k /108.110412122/103.610418122104241227622762621⨯=⨯⨯⨯=⨯=⨯⨯⨯+⨯⨯⨯= (3分)刚度矩阵m N k k k k k K /8.18.18.13.610][722221⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+= (4分) ⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡----=-004.11801801805.2630}0{}]){[]([21222A A A M K ωωω (2分) 0180180)4.1180)(5.2630(22=⨯---ωωsrad s rad /45.17,/72.808100013325.32124===+-ωωωω (4分)振型为:73.018045.175.263044.218072.85.2630212222211211-=-⨯--===-⨯--==A A A A ρρ (4分){}{}{}{}TT73.01,44.2121-==φφ (1分)振型图表示为:六、解:截面惯性矩⎪⎭⎫ ⎝⎛=x l h I 2cos 1233π,单位长度质量x l h m 2cos πρ=-, (2分)取第一振型试函数2)(⎪⎭⎫⎝⎛=l x a x y ,满足左端位移边界条件0)0()0(='=y y , (3分)()32302233029422cos 12)()(l a Eh dx l a l x h E dx x y x EI llππ⎰⎰=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛='' (2分) ()320420222cos )()(l ha dx l x a l x h dx x y x m llπρπρ⎰⎰=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=-(2分) 因此基频近似值为ρωρπρπωEhEh l hal a Eh 471.0,922942323232=== (2分)。