工程力学结构动力学复习题集
- 格式:doc
- 大小:527.50 KB
- 文档页数:12
在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移y(t)与荷载P(t)的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。
《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构⼒学习题集(下)_结构的动⼒计算习题与答案第九章结构的动⼒计算⼀、判断题:1、结构计算中,⼤⼩、⽅向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复⼒作⽤下的振动称为⾃由振动。
3、单⾃由度体系其它参数不变,只有刚度EI 增⼤到原来的2倍,则周期⽐原来的周期减⼩1/2。
4、结构在动⼒荷载作⽤下,其动内⼒与动位移仅与动⼒荷载的变化规律有关。
5、图⽰刚架不计分布质量和直杆轴向变形,图a 刚架的振动⾃由度为2,图b 刚架的振动⾃由度也为2。
6、图⽰组合结构,不计杆件的质量,其动⼒⾃由度为5个。
7、忽略直杆的轴向变形,图⽰结构的动⼒⾃由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同⼀体系在不考虑阻尼和考虑阻尼时的⾃振频率,ω与ωD 的关系为ωω=D 。
⼆、计算题:10、图⽰梁⾃重不计,求⾃振频率ω。
l l /411、图⽰梁⾃重不计,杆件⽆弯曲变形,弹性⽀座刚度为k ,求⾃振频率ω。
12、求图⽰体系的⾃振频率ω。
l l0.5l 0.513、求图⽰体系的⾃振频率ω。
EI = 常数。
ll 0.514、求图⽰结构的⾃振频率ω。
l l15、求图⽰体系的⾃振频率ω。
EI =常数,杆长均为l 。
16、求图⽰体系的⾃振频率ω。
杆长均为l 。
17、求图⽰结构的⾃振频率和振型。
l /218、图⽰梁⾃重不计,W EI ==??2002104kN kN m 2,,求⾃振圆频率ω。
B2m2m19、图⽰排架重量W 集中于横梁上,横梁EA =∞,求⾃振周期ω。
EIEIW20、图⽰刚架横梁∞=EI 且重量W 集中于横梁上。
求⾃振周期T 。
EIEIWEI 221、求图⽰体系的⾃振频率ω。
各杆EI = 常数。
a aa22、图⽰两种⽀承情况的梁,不计梁的⾃重。
求图a 与图b的⾃振频率之⽐。
l /2/2(a)l /2l /2(b)23、图⽰桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求⽔平⾃振周期T 。
第十六章结构动力学【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。
图16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。
把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则)(R I y P D I P +δ+∆=∆+∆+∆=式中,)t (q EI38454P =∆,EI 483 =δ。
将它们代入上式,并注意到ym I -=,y c R -=,得)(48)(384534y c y m EIt q EI y --+=图16-7经整理后可得)(t P ky y c y m E =++式中,3EI 481k =δ=,)(85)(t q k t P P E =∆= )(t P E 称为等效动荷载或等效干扰力。
其含义为:)(t P E 直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图a 的相当体系如图f 所示。
【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和3m质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。
【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
《结构⼒学习题集》(下)-结构的动⼒计算习题及答案第九章结构的动⼒计算⼀、判断题:1、结构计算中,⼤⼩、⽅向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复⼒作⽤下的振动称为⾃由振动。
3、单⾃由度体系其它参数不变,只有刚度EI 增⼤到原来的2倍,则周期⽐原来的周期减⼩1/2。
4、结构在动⼒荷载作⽤下,其动内⼒与动位移仅与动⼒荷载的变化规律有关。
5、图⽰刚架不计分布质量和直杆轴向变形,图a 刚架的振动⾃由度为2,图b 刚架的振动⾃由度也为2。
6、图⽰组合结构,不计杆件的质量,其动⼒⾃由度为5个。
7、忽略直杆的轴向变形,图⽰结构的动⼒⾃由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同⼀体系在不考虑阻尼和考虑阻尼时的⾃振频率,ω与ωD 的关系为ωω=D 。
⼆、计算题:10、图⽰梁⾃重不计,求⾃振频率ω。
l l /411、图⽰梁⾃重不计,杆件⽆弯曲变形,弹性⽀座刚度为k ,求⾃振频率ω。
12、求图⽰体系的⾃振频率ω。
l l0.5l 0.513、求图⽰体系的⾃振频率ω。
EI = 常数。
ll 0.514、求图⽰结构的⾃振频率ω。
l l15、求图⽰体系的⾃振频率ω。
EI =常数,杆长均为l 。
16、求图⽰体系的⾃振频率ω。
杆长均为l 。
17、求图⽰结构的⾃振频率和振型。
l /218、图⽰梁⾃重不计,W EI ==??2002104kN kN m 2,,求⾃振圆频率ω。
B2m2m19、图⽰排架重量W 集中于横梁上,横梁EA =∞,求⾃振周期ω。
EIEIW20、图⽰刚架横梁∞=EI 且重量W 集中于横梁上。
求⾃振周期T 。
EIEIWEI 221、求图⽰体系的⾃振频率ω。
各杆EI = 常数。
a aa22、图⽰两种⽀承情况的梁,不计梁的⾃重。
求图a 与图b 的⾃振频率之⽐。
l /2ll /2l /2(b)23、图⽰桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求⽔平⾃振周期T 。
结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
第十五章结构动力学复习题15-1. 用柔度法写出图示结构的振动方程并求自振频率和周期(1) (2)
(3)
15-2. 用刚度法写出图示结构的振动方程并求自振频率和周期
15-3. 用柔度法写出图示结构的振动方程并求图示质点的位移幅值和最大弯矩,ωθ6.0=
15-4.图示梁跨中有重量为
20KN 的电柢,荷载幅值F=2KN ,机器转速为400r/min,EI=261006.1m KN ∙⨯,梁长L=6m. 试求梁中处的最大动位移和最大弯矩
(1) 不计阻尼
(2) 阻尼比05.0=ξ
15-5. 题15-4结构的质量受到突加荷载F (t )=30KN 作用. 如开始体系静止,试求梁中处的最大动位移。
15-6. 某结构在自振10周期后,振幅降为原来初始位移的10%(初速为零)。
求阻尼比
15-7. 题15-4结构的质量受到图示荷栽的作用,T t =1,T 为体系自振周期。
如开始体系静止,试求梁中处的最大动位移。
15-8. 用柔度法写出图示结构的振动方程并求自振频率和振形
(1) (2)
15-9. 用刚度法写出图示结构的振动方程并求自振频率和振形
(1) ,1201t m = ,1002t m = ,201m MN i ∙= ,142m MN i ∙= 横梁刚度无限大
(2) ,2701t m = ,2702t m = ,1803t m = ,/2451m MN K = ,/1962m MN K = ,/983m MN K = 横梁刚度无限大
题15-9-1 题15-9-2。
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
结构动力学复习题1、对单自由度体系的自由振动,加速度始终与位移方向相反。
2、下图所示为对称的四自由度体系,则正对称振型和反对称振型个数分布为2,23.结构体系的动力特性主要指频率、振型及阻尼4.图示体系(EI= 常数)的自振频率 为:(5={1 0.5}TΦ2={0.5 −1}TΦ6、如图所示振动体系不计杆件的轴向变形,则动力自由度数目是2。
7、单自由度体系只有当阻尼比1时才会产生振动现象。
8、已知结构的自振周期T=0.3s,阻尼比ζ=0.04,质量m在的初始条件下开始振动,则至少经过14个周期后振幅可以衰减到0.1mm以下。
9、多自由度框架结构顶部刚度和质量突然变小时,自由振动中顶部位移很大的现象称为鞭梢效应。
10.结构体系简化的自由度数目与计算结果的精度有关。
11.单自由度体系发生无阻尼自由振动时,若初始速度为零时,体系的振幅和初始位移大小相等。
12、如图2层框架结构,梁与楼板平面内的质量各为120吨,梁的刚度为无穷大,各柱的抗弯刚度EI 均为4×104 kNm 2,在2层楼面处有动荷载F P sin θt ,F P =5 Kn ,θ=2.5 rad/s ,不计阻尼,求最大动力位移和最大动力弯矩图。
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⎥⎦⎤⎢⎣⎡-⨯⨯-⨯--⨯50105.1105.1105.110321244424A A m m θθ13、地震反应谱是在阻尼比为0.05条件下地震影响系数与体系自振周期T 的关系曲线。
假设在上题2层楼体系条件下第1振型和第2振型振动的阻尼比均为0.05,在特定激励下测得体系按第1振型振动时的1,2层楼的层间相对侧移为0.06m 。
试按反应谱理论计算该体系第1振型振动时的顶层相对地面的位移。
解:1)求自振频率⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⎥⎦⎤⎢⎣⎡-⨯⨯-⨯--⨯00105.1105.1105.110321244424A A m m ωω s rad /91.61=ω ,s rad /09.182=ω2)求振型:()⎪⎪⎭⎫ ⎝⎛=618.111A ,()⎪⎪⎭⎫ ⎝⎛-=618.012A 3)顶层的侧移刚度为m kN /105.14⨯,故顶层受到的激励作用力大小为 kN 90006.0105.14=⨯⨯根据反应谱理论:1,2层的作用力为900618.1120111211221=⋅⨯=⋅⋅⋅=γααγA w FkN A w F 24.556618.19001120111111112==⋅⨯⨯=⋅⋅⋅=γααγ9004)顶层相对地面的位移为:m d 157.006.0105.124.5569004=+⎪⎭⎫ ⎝⎛⨯+=14、图3为三种不同支承情况的单跨梁,EI=常数,在梁中点有一集中质量m,不计梁的质量,试比较三者的自振频率。
《结构动⼒学》试卷《结构动⼒学》试题B 卷⼀、填空题。
(11分)1、右图所⽰振动体系不计杆件的轴向变形,则动⼒⾃由度数⽬是。
(3分)2、单⾃由度体系只有当阻尼⽐ξ 1时才会产⽣振动现象。
(3、已知结构的⾃振周期s T 3.0=,阻尼⽐04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则⾄少经过个周期后振幅可以衰减到mm 1.0以下。
(3分)4、多⾃由度框架结构顶部刚度和质量突然变时,⾃由振动中顶部位移很⼤的现象称。
(3分)⼆、判断以下说法是否正确,对错误的说法加以改正。
(6×3分=18分)1、凡是⼤⼩、⽅向、作⽤点位置随时间变化的荷载,在结构动⼒计算中都必须看作动⼒荷载。
()2、超静定结构体系的动⼒⾃由度数⽬⼀定等于其超静定次数。
()3、为了避免共振,要错开激励频率和结构固有频率,⼀般通过改变激励频率来实现。
()4、求冲击荷载作⽤下结构的反应谱曲线时⼀般不计阻尼的影响。
()5、求静定的多⾃由度体系的频率和振型,⼀般采⽤刚度法⽐采⽤柔度法⽅便。
()6、⽤瑞利法时若取重量作⽤下的静变形曲线为试函数,求得的基频的精度不⾼。
()三、选择题。
(6×3分=18分)1、对单⾃由度体系的⾃由振动,下列说法正确的是()A C 、振幅和初相⾓仅与初始条件有关 2、图⽰(a )、(b A 、b a ωω<B 、∞→EA 时b a ωω≈C 、0→EA 时b a ωω≈D 、b a ωω=3、(1)⽆阻尼的⾃由振动(2)不计阻尼,零初始条件下t P θsin 产⽣的过渡阶段的振动(3)有阻尼的⾃由振动(4)突加荷载引起的⽆阻尼强迫振动 A 、(1)(2)(3) B 、(1)(2)(4) C 、(2)(3) D 、(1)(4)⼀、填空题。
(11分)1、2 (3分)2、< (3分)3、14 (3分)4、⼩鞭梢效应(3分)⼆、判断以下说法是否正确,对错误的说法加以改正。
第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水平 位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程为 :A .()()()y l P s in m y EI =-77683θ t /;B .()()m y EI y lP s in /+=19273θ t ;C .()()m y EI y l P s in /+=38473θ t ;D .()()()y l P s in m y EI =-7963θ t / 。
ll0.50.52、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。
结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。
答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。
答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。
答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。
答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。
答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。
答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。
知识归纳整理工程力学复习题及答案一、填空题1、力的三要素是力的(大小)、 (方向) 、(作用点) 。
用符号表示力的单位是 (N)或(KN)。
2、力偶的三要素是力偶矩的(大小)、(转向)和(作用面的方位)。
用符号表示力偶矩的单位为(N·m)或(KN·m)。
3、常见的约束类型有(柔性 )约束、(光滑接触面 )约束、( 光滑铰链 )约束和固定端约束。
4、低碳钢拉伸时的大致可分为( 线弹性阶段 )、(屈服阶段)、( 强化阶段)和(颈缩)阶段。
5、在工程设计中工程构建不仅要满足强度要求,( 刚度 )要求和稳定性要求,还要符合经济方面的要求。
6、圆轴扭转的变形特点是:杆件的各横截面绕杆轴线发生相对( 转动 ),杆轴线始终保持( 直线 )。
7、平面弯曲变形的变形特点是杆的轴线被弯成一条( 曲线 )。
8、静定梁可分为三种类型,即( 简支梁)、( 外伸梁 )和(悬臂梁)。
9、( 刚体)是指由无数个点组成的不变形系统。
10、由构件内一点处切取的单元体中,切应力为零的面称为( 主平面 )。
11、平面汇交力系平衡的解析条件是:力系中所有的力在(任选两个坐档轴上)投影的代数均为( 零 )。
12、在工程中受拉伸的杆件,其共同的特点是:作用于杆件上的外力或外力的合力的作用线与构件轴线( 重合 ),杆件发生( 沿轴线 )方向,伸长或压缩。
13、空间汇交力系的合力在任意一具坐标轴上的投影,等于(各分力 )在同一轴上投影的(代数和),此称为空间力系的(合力投影定理 )。
14、力矩的大小等于(力)和(力臂)的乘积。
通常规定力使物体绕矩心(逆时针转动)时力矩为正,反之为负。
15、大小( 相等 ),方向(相反),作用线(相互平行)的两个力组成的力系,称为力偶。
力偶中二力之间的距离称为(力偶臂),力偶所在的平面称为(力偶的作用面)。
16、圆轴扭转时,横截面上任意点处的切应力沿横截面的半径呈( 线性 )分布。
17、构件的强度是指( 构件反抗破坏 )的能力;构件的刚度是指( 构件反抗变形 )的能力;构件的稳定性是指(构件保持其原有几何平衡状态)的能力。
结构动力学结构动力学试卷(练习题库)1、结构动力计算与静力计算的主要区别是什么?2、什么是动力自由度,确定体系动力自由度的目的是什么?3、结构动力自由度与体系几何分析中的自由度有何区别?4、结构的动力特性一般指什么?5、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?6、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手7、建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?8、直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?9、刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?10、计重力与不计重力所得到的运动方程是一样的吗?11、自由振动的振幅与哪些量有关?12、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?13、若要避开共振应采取何种措施?14、增加体系的刚度一定能减小受迫振动的振幅吗?15、突加荷载与矩形脉冲荷载有何差别。
16、平断面假定17、弯曲要素18、梁的边界条件19、叠加原理20、三弯矩方程21、平断面假定22、梁的边界条件23、叠加原理24、三弯矩方程25、虚位移原理26、虚力原理27、位能驻值原理28、板条梁29、开口和闭口薄壁杆件。
30、应力的重新分布。
31、几何不变体32、自由度33、多余约束34、超静定结构35、形常数和载常数36、试简述影响线与内力图的区别?37、力法和位移法的解题思路?38、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
39、有多余约束的体系一定是几何不变体系。
40、计算自由度W小于等于零是体系几何不变的充要条件。
41、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
42、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
11、计重力与不计重力所得到的运动方程是一样的吗?答:如果计与不计重力时都相对于无位移的位置来建立运动方程,则两者是不一样的。
但如果计重力时相对静力平衡位置来建立运动方程,不计重力仍相对于无位移位置来建立,则两者是一样的。
12、刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?答:刚度法与柔度法建立的运动方程在所反映的各量值之间的关系上是完全一致的。
由于刚度矩阵与柔度矩阵互逆,刚度法建立的运动方程可转化为柔度法建立的方程。
一般说来,对于单自由度体系,求[δ]和求[k]的难易程度是相同的,因为它们互为倒数,都可以用同一方法求得,不同的是一个已知力求位移,一个已知位移求力。
对于多自由度体系,若是静定结构,一般情况下求柔度系数容易些,但对于超静定结构就要根据具体情况而定。
若仅从建立运动方程来看,当刚度系数容易求时用刚度法,柔度系数容易求时用柔度法。
13、建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?答:常用的有3 种:直接动力平衡法、虚功原理、变分法(哈密顿原理)。
直接动力平衡法是在达朗贝尔原理和所设阻尼理论下,通过静力分析来建立体系运动方程的方法,也就是静力法的扩展,适用于比较简单的结构。
利用虚功原理的优点是:虚功为标量,可以按代数方式相加。
而作用于结构上的力是矢量,它只能按矢量叠加。
因此,对于不便于列平衡方程的复杂体系,虚功方法较平衡法方便。
哈密顿原理的优点:不明显使用惯性力和弹性力,而分别采用对动能和势能的变分代替。
因而对这两项来讲,仅涉及标量处理,即能量。
而在虚功原理中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。
14、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同?答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。
质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。
广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。
所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。
考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。
有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。
一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。
而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。
在有限元分析中,形函数被称为插值函数。
综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似,有限元法采用了形函数的概念。
但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。
(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量 法相同。
15、什么是振型,它与哪些量有关?答:振型是多自由度体系所固有的属性,是体系上所有质量按相同频率作自由振动时的振动 形状。
它仅与体系的质量和刚度的大小、分布有关,与外界激励无关。
16、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会 转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振 型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计 算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析 中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
二、填空题1、有阻尼受迫振动的动力大系数()[]2/1222d 2)1(ξββμ+-=,其中ξ为 ,β表示 。
当ξ为定值时,β= ,d μ最大,最大值为 。
2、单自由度系统在简谐荷载作用下,当激励频率ω远远小于结构固有频率时,动力放大系数d μ ,表明 ;当激励频率ω远远大于结构固有频率时,动力放大系数d μ ,表明 。
3、对称体系在对称荷载作用下,只有当荷载频率与 自振频率相等时才发生共振,当荷载频率与 自振频率相等时不发生共振。
4、当阻尼比1=ξ,阻尼称为 ,这种情况下系统 (发生/不发生)振动。
当 ,这种情况下由于阻尼过大,系统的运动为 。
5、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。
6、已知结构的自振周期s T 3.0=,阻尼比04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则至少经过 个周期后振幅可以衰减到mm 1.0以下。
7、右图所示振动体系不计杆件的轴向变形,则动力自由度数目是 。
8、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。
三、判断以下说法是否正确,对错误的说法加以改正。
1、凡是大小、方向、作用点位置随时间变化的荷载,在结构动力计算中都必须看作动力荷载。
( )2、超静定结构体系的动力自由度数目一定等于其超静定次数。
( )3、为了避免共振,要错开激励频率和结构固有频率,一般通过改变激励频率来实现。
( )4、求冲击荷载作用下结构的反应谱曲线时一般不计阻尼的影响。
( )5、求静定的多自由度体系的频率和振型,一般采用刚度法比采用柔度法方便。
( )6、用瑞利法时若取重量作用下的静变形曲线为试函数,求得的基频的精度不高。
( )四、选择题。
(3×3分=9分)1、对单自由度体系的自由振动,下列说法正确的是( )A 反 C 、振幅和初相角仅与初始条件有关 2、图示(a )、(b )两个单自由度体系, 则两者固有频率的关系为( ) A 、b aωω<、B 、∞→EA 时b a ωω≈ C 、0→EA 时b a ωω≈ D 、b a ωω= 3、单自由度体系的下列哪些振动是简谐振动?( )(1)无阻尼的自由振动(2)不计阻尼,零初始条件下t P θsin 产生的过渡阶段的振动(3)有阻尼的自由振动(4)突加荷载引起的无阻尼强迫振动A 、(1)(2)(3)B 、(1)(2)(44、右A 、很小B 、很大C 、接近静位移st yD 、接近静位移st ∆5、关于A C 、频率与自由度坐标的选取有关6、A 、1,3 B 、2,2C 、3,1D 、4,0五、计算题1. 单自由度系统已知m=100kg ,EI=120⨯103kN/m ,l =10m,10sin30t t F =)( kN , (1)试求系统的自振频率和周期;(2)试计算无阻尼受迫振动的振幅值;(3)若阻尼比10.=ξ,2. 如图刚架系统,已知mg=20kN ,EI=5000kN/m ,立柱无质量,该=9.8m/s -2,(1)试求图示刚架侧移振动时的自振频率和周期;(2)若初始位移10mm ,初始速度0.1m/s ,试求t=1.0s 时的位移和速度(3)若阻尼比10.=ξ,试求自振频率和周期.m3.图示梁受简谐荷载t P θsin 作用,kN P 20=,s /801=θ,kg m 300=,26109m N EI ⋅⨯=,梁长m l 4=,支座B 的弹簧刚度3/48l EI k =。
试求(1)无阻尼时梁中点总位移幅值;(2)阻尼比05.0=ξ梁的最大动弯矩。
4.图示简支梁跨中有质量m ,支座A 受动力矩Msin θt 作用,不计梁的质量。
求质点的动位 移和支座A 处的动转角。
解:动荷载不作用在质点上,不能直接用公式,需建立振动方程。
建立方程的依据:质点的位移由动力矩Msin θt 和惯性力- m y (t )共同产生。
A 端的转角也由动力矩Msin θt 和惯性力- m y (t )共同产生。
为此,① 出动力矩为1 及惯性力为1时在质点及A 端处产生的位移及转角。
EI常数,忽略杆件自重及阻尼影响,试求自振频率和振型。
5. 图示结构中,6. 已知图示二层刚架结构中kg 10100m 3⨯=,m kN 10200k 3/⨯=,即各楼层面的质量和各层的侧移劲度已知,试按振型分解法计算图示结构的最大位移。