中考数学专题练习(实数与整式)
- 格式:doc
- 大小:251.00 KB
- 文档页数:5
押中考数学第1-3题(实数、整式与三视图)专题诠释:实数、整式与三视图是中考必考题型。
在历年的中考中,主要以选择题的形式出现,内容较为简单,因此是中考数学中必须做对的题型。
考法上上主要以识记和理解的考察为主,区分不同的定义和运算规律,练出手感,保证全对!知识点一:实数模块一〖真题回顾〗1.(2022·江苏徐州·统考中考真题)若代数式x-2有意义,则实数x的取值范围是()A.x>2B.x≥2C.x<2D.x≤22.(2022·湖南·统考中考真题)-2022的倒数是()A.2022B.-12022 C.-2022 D.1 20223.(2022·浙江宁波·统考中考真题)-2022的相反数等于()A.-2022B.2022C.12022 D.-1 20224.(2022·四川德阳·统考中考真题)-2的绝对值是()A.2B.-2C.±2D.-125.(2022·辽宁阜新·统考中考真题)在有理数-1,-2,0,2中,最小的是()A.-1B.-2C.0D.26.(2022·湖北襄阳·统考中考真题)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.-2℃C.+3℃D.-3℃7.(2022·四川攀枝花·统考中考真题)实数a、b在数轴.上的对应点位置如图所示,下列结论中正确的是()A.b>-2B.|b|>aC.a+b>0D.a-b<08.(2022·江苏淮安·统考中考真题)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×1069.(2022·山东淄博·统考中考真题)下列分数中,和π最接近的是()A.355113 B.22371 C.15750 D.22710.(2022·山东淄博·统考中考真题)若实数a的相反数是-1,则a+1等于()A.2B.-2C.0D.1211.(2022·四川巴中·统考中考真题)下列各数是负数的是()A.(-1)2B.|-3|C.-(-5)D.3-812.(2022·宁夏·中考真题)已知实数a,b在数轴上的位置如图所示,则aa +bb 的值是()A.-2B.-1C.0D.213.(2022·浙江衢州·统考中考真题)计算结果等于2的是()A.-2B.-2C.2-1D.(-2)014.(2022·贵州安顺·统考中考真题)估计(25+52)×15的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间15.(2022·贵州安顺·统考中考真题)下列实数中,比-5小的数是()A.-6B.-12C.0D.316.(2022·四川资阳·中考真题)如图,M、N、P、Q是数轴上的点,那么3在数轴上对应的点可能是()A.点MB.点NC.点PD.点Q17.(2022·山东日照·统考中考真题)在实数2,x0(x≠0),cos30°,38中,有理数的个数是()A.1个B.2个C.3个D.4个18.(2022·山东潍坊·中考真题)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为5-12,下列估算正确的是()A.0<5-12<25 B.25<5-12<12C.12<5-12<1 D.5-1 2>119.(2022·四川凉山·统考中考真题)化简:(-2)2=()A.±2B.-2C.4D.220.(2022·山东枣庄·统考中考真题)实数-2023的绝对值是()A.2023B.-2023C.12023 D.-1 2023模块二〖押题冲关〗1.(2023·广西梧州·统考一模)-2023的相反数是()A.-12023 B.12023 C.-2023 D.20232.(2023·四川达州·统考二模)-12023的倒数的绝对值是()A.2023B.12023 C.-2023 D.-1 20233.(2023·宁夏银川·校考一模)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论正确的是()A.b-a<0B.|a|<|b|C.a+b<0D.b a>04.(2022·广东江门·统考模拟预测)下列实数:3,-2,0,-10中绝对值最大的是()A.3B.-2C.0D.-105.(2023·吉林长春·统考一模)我国古代的《九章算术》在世界数学史上首次正式引入负数.若气温零上3℃记作+3℃,则气温零下5℃记作()A.-5℃B.-2℃C.+2℃D.+5℃6.(2023·云南昆明·统考一模)中国是最早采用正负数表示相反意义的量,并使用负数进行运算的国家.当前,手机移动支付已经成为新型的消费方式,节日当天妈妈收到微信红包80元记作+80元,则妈妈微信转账支付67元可以表示为()A.+80元B.-80元C.+67元D.-67元7.(2023·北京门头沟·统考一模)实数a在数轴上的对应点的位置如图所示,实数b满足条件a+b>0,下列结论中正确的是()A.b<1B.b>aC.ab>0D.a-b>08.(2023·山东临沂·统考一模)数轴上有O、A、B三点,各点位置与各点所表示的数如图所示.若数轴上有一点C,C点所表示的数为c,且c-5=c-b,则关于C点的位置,下列叙述正确的是()A.在A 的右边B.介于A 、O 之间C.介于B 、O 之间D.在B 的左边9.(2023·河北唐山·统考一模)图1是小明爸爸给小明出的一道题,图2是小明对该题的解答.他所写结论正确的个数是()表示实数a ,b ,c ,d 的点在数轴上的位置如图所示,请写出六个不同的结论.①四个数中,最小的是a ;②b >-2;③ab >0;④a +c <0;⑤c >d ;⑥b -c <0.图1图2A.3 B.4 C.5 D.610.(2023·浙江台州·统考一模)我们可用数轴直观研究有理数及其运算.如图,将物体从点A 向左平移5个单位到点B ,可以描述这一变化过程的算式为( ).A.2+-5B.2--5C.2×-5D.2÷-511.(2023·河南周口·统考一模)人们常用“一刹那”这个词来形容时间极为短暂,按古印度《僧只律》(又有资料为《倡只律》)解释:一刹那即为一念,二十念为一瞬;二十瞬为一弹指,二十弹指为一罗预;二十罗预为一须叟,一日一昼为三十须叟.照此计算,一须叟为48分钟,一罗预为144秒,一弹指为7.2秒,一瞬为0.36秒,一刹那为0.018秒.则一天24小时有()A.8×104刹那B.4.8×106刹那C.4.8×105刹那D.4.8×107刹那12.(2023·陕西西安·统考一模)对于一个实数a ,如果它的倒数不存在,那么a 等于()A.-1 B.1 C.2 D.013.(2023·湖南永州·统考一模)零陵区萍洲大桥为潇水河上的一座大型桥梁,桥梁全长588.22米,桥宽28米,总造价约120000000元,数据120000000用科学记数法表示为()A.1.2×108B.1.2×107C.0.12×109D.1.2×10914.(2023·河北廊坊·廊坊市第四中学统考一模)下列式子计算结果和-423×57相等的是()×57A.-4×23×57B.-4+23×57 D.-4×57+23C.-4-2315.(2023·河南信阳·统考一模)定义新运算:a◎b=ab-b2,例如1◎2=1×2-22=2-4=-2,则方程2◎x=5的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根16.(2023·重庆江北·校考一模)估计32-3的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间17.(2023·浙江·一模)在下列四个实数中,最大的数是()A.-1B.12C.0D.218.(2023·河南驻马店·校考二模)下列运算正确的是()A.-62=a2-ab+b22=-6 B.a-bC.-2x23=-6x6 D.x2⋅x3=x519.(2023·广东广州·执信中学校考一模)在实数4,0,127,30.125,0.1010010001,3中无理数有()A.1个B.2个C.3个D.4个20.(2016·河南·模拟预测)实数a在数轴上的位置如图所示,则化简a-422+a-11结果为()A.7B.-7C.2a-15D.无法确定模块三〖考前预测〗1.(2023·辽宁盘锦·统考一模)下列运算正确的是()A.25=±5B.0.4=0.2C.-1-3=-1 D.-3m2=-6m2n2 2.(2023·湖南长沙·校联考一模)比较实数0,-38,2,-1.7的大小,其中最小的实数为()A.0B.-38C.2D.-1.73.(2023·江苏扬州·统考一模)最接近-π的数是()A.-3B.-4C.0D.34.(2023·江苏扬州·统考一模)2023的值介于下列哪两个数之间()A.30,31B.40,41C.44,45D.45,465.(2023·吉林长春·统考一模)实数a在数轴上的对应点的位置如图所示.若b>a,则b的值可以是()A.-1B.0C.1D.26.(2023·浙江嘉兴·统考一模)下列各式中,正确的是()A.-32=4 2=9 B.-23=-6 C.4=±2 D.27.(2023·安徽·校联考一模)下列为负数的是()A.--2C.0D.-1B.-38.(2023·山东青岛·模拟预测)下列各数中比-2小的数是()A.-3B.-4C.0D.--29.(2023·广东珠海·统考一模)如果将“收入50元”记作“+50元”,那么“支出30元”记作()A.-20元B.+20元C.+30元D.-30元10.(2023·湖北武汉·校联考模拟预测)-13的相反数是()A.3B.-3C.13D.-1311.(2023·北京西城·北京育才学校校考模拟预测)在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是()A.a+b=0B.a-b=0C.a <bD.ab>012.(2023·广西梧州·统考一模)若a+3+b-5=0,则a+b的值是()A.8B.2C.-8D.-213.(2023·河北衡水·校联考模拟预测)已知点A、B、O、C在数轴上的位置如图所示,O为AC的中点,若AB=2,点B所对应的数为m,则点C所对应的数是()A.-2-mD.-m-2C.-m+2B.--m-214.(2023·辽宁葫芦岛·统考一模)下列各数,是无理数的是()A.227B.0.1010010001C.π2D.415.(2023·吉林长春·统考一模)在数轴上表示数-1和2023的两个点分别为点A和点B,则点A和点B之间的距离为( )个单位.A.2022B.2023C.2024D.2025知识点二:整式模块一〖真题回顾〗1.(2022·江苏淮安·统考中考真题)计算a2⋅a3的结果是()A.a2B.a3C.a5D.a62.(2022·四川攀枝花·统考中考真题)下列各式不是单项式的为()A.3B.aC.b aD.12x2y3.(2022·山东淄博·统考中考真题)计算(-2a3b)2-3a6b2的结果是()A.-7a6b2B.-5a6b2C.a6b2D.7a6b24.(2022·四川巴中·统考中考真题)下列运算正确的是()A.(-2)2=-2B.13 -1=-13C.a2 3=a6D.a8÷a4=a2(a≠0)5.(2022·西藏·统考中考真题)下列计算正确的是()A.2ab-ab=abB.2ab+ab=2a2b2C.4a3b2-2a=2a2bD.-2ab2-a2b=-3a2b26.(2022·西藏·统考中考真题)按一定规律排列的一组数据:12,-35,12,-717,926,-1137,⋯.则按此规律排列的第10个数是()A.-19101B.21101C.-1982D.21827.(2022·江苏徐州·统考中考真题)下列计算正确的是()A.a2⋅a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.-3a2=-9a28.(2022·江苏镇江·统考中考真题)下列运算中,结果正确的是()A.3a2+2a2=5a4B.a3-2a3=a3C.a2⋅a3=a5D.a23=a59.(2022·宁夏·中考真题)下列运算正确的是()A.-2-2=0B.8-2=6C.x3+x3=2x6D.(-x3)2=x610.(2022·山东东营·统考中考真题)下列运算结果正确的是()A.3x3+2x3=5x6B.(x+1)2=x2+1C.x8÷x4=x2D.4=211.(2022·辽宁鞍山·统考中考真题)下列运算正确的是()A.2+8=10B.a3⋅a4=a12C.(a-b)2=a2-b2D.-2ab23=-8a3b612.(2022·辽宁朝阳·统考中考真题)下列运算正确的是()A.a8÷a4=a2B.4a5-3a5=1C.a3•a4=a7D.(a2)4=a613.(2022·辽宁丹东·统考中考真题)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(ab)3=a3b3D.a8÷a2=a414.(2022·贵州六盘水·统考中考真题)已知x+y4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1 +a2+a3+a4+a5的值是()A.4B.8C.16D.1215.(2022·山东济宁·统考中考真题)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点⋯⋯按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.40016.(2022·山东日照·统考中考真题)下列运算正确的是()A.a6÷a2=a3B.a4•a2=a6C.(a2)3=a5D.a3+a3=a617.(2022·湖南益阳·统考中考真题)下列各式中,运算结果等于a2的是()A.a3-aB.a+aC.a•aD.a6÷a318.(2022·湖南湘西·统考中考真题)下列运算正确的是()A.3a-2a=aB.(a3)2=a5C.25-5=2D.(a-1)2=a2-119.(2022·四川绵阳·统考中考真题)正整数a、b分别满足353<a<398,2<b<7,则b a=()A.4B.8C.9D.1620.(2022·山东济宁·统考中考真题)下列各式运算正确的是()A.-3(x-y)=-3x+yB.x3⋅x2=x6C.(π-3.14)0=1D.x32=x5模块二〖押题冲关〗1.(2023·河南周口·统考一模)下列计算正确的是()A.3m2+2m=5m3B.m2n3=m5n3C.m+n=m2+n2 D.53+23=73m-n2.(2023·河南南阳·统考一模)下列计算正确的是()A.2a+3b=5abB.-2a2b3=-6a6b3C.a+b2=a2+b2 D.8+2=323.(2023·吉林·统考一模)下列运算正确的是()A.a2⋅a=a2B.a25=a10 C.a6÷a3=a2 D.a+b2=a2+b24.(2023·河南周口·统考一模)下列运算结果正确的是()A.3a2-a2=2B.-a23=a6 C.3a2⋅2a2=6a4 D.-2x3÷x=-2x2 5.(2023·河北廊坊·廊坊市第四中学统考一模)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称为“优美矩形”,如图所示,“优美矩形”ABCD的周长为52,则正方形C的边长为()A.3B.13C.6D.86.(2023·河北廊坊·廊坊市第四中学统考一模)若m2×m =m9,则( )内应填的数为()A.5B.6C.7D.87.(2023·江苏淮安·校考一模)计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x48.(2023·河南信阳·统考一模)下列运算中,正确的是()A.x3⋅x5=x15B.3x+2x=5x2C.x2+y2=xy4D.-x42=x89.(2023·陕西西安·高新一中校考模拟预测)下列各式计算正确的是()A.a3+a3=a6B.(-a3)2=a6C.a8÷a4=a2D.(a+b)2=a2+b210.(2023·浙江温州·统考一模)化简-2a的结果是()⋅a2bA.-2a2bB.2a2bC.-2a3bD.2a3b11.(2023·贵州遵义·统考一模)下列计算正确的是()A.-m2=-m5 B.a6÷a2=a37÷-mC.3xy22=a2b22=6x2y4 D.a2b12.(2023·云南玉溪·统考一模)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒⋯⋯若按照这样的方法拼成第100个图形,则第100个图形需要的小木棒的数量为()A.796B.798C.800D.80213.(2023·浙江宁波·统考一模)下列计算正确的是()A.a2⋅a3=a6B.a3÷a=a3C.a52=a7 D.a3+a3=2a314.(2023·广东珠海·统考一模)下列运算中,正确的是()A.x3⋅x3=x6B.3x2÷2x=xC.x23=x5 D.x+y2=x2+y215.(2023·云南昆明·统考一模)按一定顺序排列的单项式:-2x,4x3,-8x5,16x7,-32x9,64x11,⋯⋯,第n个单项式是()A.2n x n+1B.2n x n-1C.-2n x2n-1 D.-2n x2n+116.(2023·云南昆明·统考一模)下列运算正确的是()A.a6÷a2=a3B.a+1a-1a=a a≠0C.-2a3=-6a3 D.a3⋅a2=a517.(2023·辽宁葫芦岛·统考一模)下列运算正确的是()A.2a⋅a2=2a3B.3a3-2a2=aC.a23=a5 D.a12÷a4=a318.(2023·浙江宁波·统考一模)下列计算正确的是()A.33+3=34B.33⋅3=34C.36÷32=33D.32 3=3519.(2023·陕西西安·校考一模)计算mn⋅12m-3mn2结果正确的是()A.12mn-3m2n2B.12m2n-3m2n3C.12mn2-3mn3D.m2n-3mn220.(2023·重庆江北·校考一模)下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,第9个图形中小正方形的个数是()A.100B.99C.98D.80模块三〖考前预测〗1.(2023·河南平顶山·统考一模)下列运算正确的是()A.2ab+3ab=5a2b2B.a2⋅a3=a6C.a-2=1(a≠0) D.x+y=x+ya22.(2023·四川广元·统考一模)下列运算正确的是()A.a5-a2=a3B.-2a23=-6a6C.3b⋅4b3=12b4D.3-2=13+23.(2023·安徽滁州·统考一模)下列算式中,结果等于4a4的是()A.2a2+2a2B.3a2⋅a2C.a5÷4aD.-2a224.(2023·山东淄博·统考一模)若a是大于1的正整数,则a的三次方可以改写成若干个连续奇数的和.例如:23=3+5,33=7+9+11,43=13+15+17+19,⋯若a3写成若干个连续奇数和中,最大的一个奇数是1979,则a等于()A.46B.45C.44D.435.(2023·北京·校考模拟预测)下列计算正确的是()A.x2+x3=x5B.x2⋅x3=x6C.x3÷x2=xD.2x23=6x66.(2023·山东济宁·统考一模)下列计算正确的是()A.a2⋅a3=a6B.a2+a3=a6C.a8÷a4=a2D.-a32=a67.(2023·河南南阳·统考一模)下列各式计算正确的是()A.5-3=2B.-a2b3=a6b3C.a3⋅a=a3D.b+2a=4a2-b22a-b8.(2023·重庆南岸·统考一模)已知整式M=2-3x,N=3x+1,则下列说法中正确的有()①无论x为何值,M和N的值都不可能为正;②若a为常数且M+a×N=1-9x2,则a=-1;③若M×N=-2,则M2+N2=11;④不存在这样的实数x,使得M×N=3.A.1个B.2个C.3个D.4个9.(2023·河南周口·统考二模)下列运算正确的是()A.2a-2=aB.a32=a6 C.2a÷a2=2a D.a-b2=a2-b210.(2023·上海浦东新·统考二模)下列计算正确的是()A.a6⋅a2=α12B.a6⋅a2=a36C.a6÷a2=a4D.a2+a2=a411.(2023·海南三亚·一模)下列计算正确的是()A.a3+a2=a6B.ab2=a52=ab2 C.a3⋅a2=a5 D.a312.(2023·浙江绍兴·统考一模)下列计算正确的是()A.3m+2m=5m2B.m6÷m2=m3C.2m3=6m3 D.2m3⋅3m2=6m513.(2023·江苏扬州·统考一模)下列算式的运算结果为a6的是()A.a3⋅a2B.a32 C.a3+a3 D.a12÷a214.(2023·四川德阳·统考一模)下列各式中,计算正确的是()A.a3⋅a2=a6B.a3+a2=a6C.a6÷a3=a2D.a32=a615.(2023·江苏无锡·统考一模)下列计算正确的()A.a2⋅a3=a6B.a7-a5=a2C.-2a23=-8a6 D.a6÷a3=a2知识点三:三视图模块一〖真题回顾〗1.(2022·山东潍坊·中考真题)下列几何体中,三视图都是圆的是()A. B.C. D.2.(2022·四川攀枝花·统考中考真题)如图是由5个相同的正方体搭成的几何体,这个几何体的俯视图是()A. B.C. D.3.(2022·内蒙古·中考真题)由5个相同的小正方体组成的几何体,如图所示,该几何体的左视图是()A. B.C. D.4.(2022·辽宁阜新·统考中考真题)在如图所示的几何体中,俯视图和左视图相同的是()A. B. C. D.5.(2022·辽宁鞍山·统考中考真题)如图所示的几何体是由4个大小相同的小正方体搭成的,它的左视图是()A. B.C. D.6.(2022·湖北黄石·统考中考真题)由5个大小相同的小正方体搭成的几何体如图所示,它的主视图是()A. B. C. D.7.(2022·湖北襄阳·统考中考真题)襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A. B.C. D.8.(2022·辽宁朝阳·统考中考真题)如图所示的几何体是由5个大小相同的小立方块搭成的,它的主视图是()A. B.C. D.9.(2022·贵州安顺·统考中考真题)某几何体如图所示,它的俯视图是()A. B.C. D.10.(2022·山东济南·统考中考真题)如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱11.(2022·贵州黔西·统考中考真题)如图,是由6个相同的正方体组成的立体图形,它的俯视图是()A. B.C. D.12.(2022·四川绵阳·统考中考真题)下图所示几何体是由7个完全相同的正方体组合而成,它的俯视图为( ).A. B.C. D.13.(2022·广西河池·统考中考真题)下列几何体中,三视图的三个视图完全相同的几何体是()A. B. C. D.14.(2022·广东深圳·统考中考真题)下列图形中,主视图和左视图一样的是()A. B.C. D.15.(2022·山东聊城·统考中考真题)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是()A. B. C. D.16.(2022·山东烟台·统考中考真题)如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是()A. B. C. D.17.(2022·辽宁锦州·中考真题)如图是某几何体的三视图,该几何体是()A. B. C. D.18.(2022·山东青岛·统考中考真题)如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()A. B.C. D.19.(2022·四川广安·统考中考真题)如图所示,几何体的左视图是()A. B.C. D.20.(2022·内蒙古呼和浩特·统考中考真题)图中几何体的三视图是()A. B.C. D.模块二〖押题冲关〗1.(2023·天津·统考一模)下图是一个由5个相同的正方体组成的立体图形,它的左视图是()A. B.C. D.2.(2023·河南周口·统考一模)由7个相同的小正方体组成的几何体如图所示,它的主视图为()A. B. C. D.3.(2023·吉林长春·统考一模)如图,将两个大小完全相同的杯子叠放在一起,则该实物的俯视图是()A. B. C. D.4.(2023·江苏无锡·统考一模)如图是某几何体的三视图,则该几何体()A.圆锥B.三棱锥C.三棱柱D.四棱柱5.(2023·江苏扬州·统考一模)如图所示的几何体的俯视图是()A. B. C. D.6.(2023·浙江宁波·统考一模)如图是某品牌的多功能笔筒,其俯视图为()A. B. C. D.7.(2023·广东东莞·东莞市东城实验中学校联考一模)一个几何体如图所示,它的左视图是()A. B. C. D.8.(2023·浙江温州·一模)如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A. B.C. D.9.(2023·陕西渭南·校考一模)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A. B.C. D.10.(2023·河南周口·统考二模)如图,是由7个相同的小正方体组成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则这个几何体的左视图是()A. B. C. D.11.(2023·云南临沧·统考一模)已知某几何体的三视图如图所示,则该几何体是()A.三棱柱B.长方体C.三棱锥D.圆锥12.(2023·浙江宁波·统考一模)在水平的桌面上放置着一个如图所示的物体,则它的左视图是()A. B. C. D.13.(2023·广东深圳·校联考二模)如图,几何体的主视图是()A. B. C. D.14.(2023·北京·校考模拟预测)如图是某几何体的主视图、左视图和俯视图,则该几何体是()A.球B.圆柱C.圆锥D.长方体15.(2023·河南焦作·统考一模)如图是由5个相同的小正方体组成的几何体,其俯视图是()A. B.C. D.模块三〖考前预测〗1.(2023·广东深圳·深圳大学附属中学校考一模)如图所示的几何体的左视图是()A. B.C. D.2.(2023·浙江绍兴·统考一模)由四个相同的小立方块搭成的积木如图所示,则它的左视图是()A. B. C. D.3.(2023·四川资阳·统考一模)将两本相同的书进行叠放,得到如图所示的几何体,则它的正视图是()A. B.C. D.4.(2023·江苏淮安·统考一模)若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶B.8桶C.9桶D.10桶5.(2023·广西梧州·统考一模)如图是由几个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.8B.7C.6D.56.(2023·山东淄博·统考一模)如图,几何体的左视图是( ).A. B.C. D.7.(2023·黑龙江哈尔滨·统考一模)如图,该几何体由5个相同的正方体搭成,它的三视图中,面积相等的是()A.主视图与俯视图B.主视图与左视图C.俯视图与左视图D.三个视图的面积都相等8.(2023·浙江温州·统考一模)某物体如图所示,它的俯视图是()A. B. C. D.9.(2023·山东青岛·统考一模)某公园供游客休息的石板凳如图所示,它的左视图是()A. B.C. D.10.(2023·安徽滁州·统考一模)风阳花鼓是一种安徽民间表演艺术,如图是一面花鼓,其左视图大致为()A. B.C. D.11.(2023·江西抚州·金溪一中校考模拟预测)如图是几个相同的小立方块所搭的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A. B. C. D.12.(2023·吉林·一模)如图所示的石板凳,它的俯视图是()A. B.C. D.13.(2023·安徽安庆·统考一模)如图所示几何体是由一个球体和一个圆柱组成的,它的左视图是()A. B.C. D.14.(2023·新疆乌鲁木齐·统考一模)如图是一个机器零件,它的左视图是()A. B. C. D.15.(2023·湖南湘潭·模拟预测)如图的一个几何体,其俯视图是()A. B. C. D.。
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。
有括号的先算括号,先算小括号,再算中括号,最后算大括号。
2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。
3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。
乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。
③分母有理化。
即()()b a ba ba b a b a ba −=±=± 1。
④二次根式的加减法:()m b a m b m ±=±。
4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。
5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。
初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。
1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】题型集训(2)——整式的运算1.化简:(a+3)(a-2)-a(a-1).解:原式=a2-2a+3a-6-a2+a=2a-6.2.(2019·常州)计算:(x-1)(x+1)-x(x-1).解:原式=x2-1-x2+x=x-1.3.计算:5x2y÷(-13xy)(2xy2)2.解:原式=5x2y÷(-13xy)·(4x2y4)=-15x·(4x2y4)=-60x3y4.4.计算:(6x4-8x3)÷(-2x2)-(3x+2)(1-x).解:原式=-3x2+4x-3x+3x2-2+2x=3x-2.5.计算:(2x+y)2+(x-y)(x+y)-5x(x-y).解:原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.6.已知:x2-y2=12,x+y=3,求2x2-2xy的值.解:∵x2-y2=12,∵(x+y)(x-y)=12,∵x+y=3∵,∵x-y=4∵,∵+∵得,2x=7,∵2x2-2xy=2x(x-y)=7×4=28.7.先化简,再求值:(x+1)(x-1)+(2x-1)2-2x(2x -1),其中x=2+1.解:原式=x2-1+4x2-4x+1-4x2+2x=x2-2x,把x=2+1代入,得:原式=(2+1)2-2(2+1)=3+22-22-2=1.8.(2019·贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.解:(1)S=ab-a-b+1;(2)当a=3,b=2时,S=6-3-2+1=2.9.(2019·河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-12n B 勾股数组Ⅰ/8勾股数组Ⅰ35/解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∵B=n2+1,当2n=8时,n=4,∵n2+1=42+1=15;当n2-1=35时,n2+1=37.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
实数1.3-的倒数是( )A .13-B .13C .3-D .32.35-的倒数的绝对值是( ) A .53- B .53 C .35 D .35-3. 下列计算正确的是: A.-1+1=0B .-1-1=0C.3÷31=1 D.32=64. 下列式子中结果为负数的是( ) A .│一2│ B .一(-2) C .-2—1D .(一2)25. 在下列实数中,无理数是( )A .13B .πCD .2276.的点是 . 7. 若|a -1|=1-a ,则a 的取值范围为( )(A )a ≥1 (B )a ≤1 (C )a >1 (D )a <18. 06年,我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯9. 沈阳市水质监测部门2006年全年共监测水量达48909.6万吨,水质达标率为100%.用科学记数法表示2006年全年共监测水量约为( )万吨(保留三个有效数字) A .4.89×104 B .4.89×105 C .4.90×104 D .4.90×105 10. 某种生物孢子的直径为0.00063m ,用科学记数法表示为( )A.30.6310m -⨯ B.46.310m -⨯C.36.310m -⨯D.56310m -⨯11. 一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm ,用科学记数法表示这个数为____________mm .整式12.2(5)0b +=,那么a b +的值为 . 13. 若22(1)0m n ++-=,则2m n +的值为( )A .4-B .1-C .0D .4第5题14. 已知01b 2a =-++,那么2007)b a (+的值为( )。
中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列式子中,正确的是( ) A .-57>-79B .-14<-13C .-23<-710 D .37<142 A .-7B .7C .±7D .无意义3.2221121p p p p p p --⋅+-+的结果是( ) A .p B .1pC .11p p -+ D .11p p +- 4.据报道,2021年某市有关部门将在市区完成150万平方米老住宅小区综合整治工作,150万(即1500000)用科学记数法可表示为( ) A .71.510⨯B .61.510⨯C .51.510⨯D ..41510⨯5.今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯6.下列各式中,x 可以取一切实数的是( )A B .2C D .x x- 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( ) A .36.710⨯B .36.710-⨯C .36.710-⨯D .36.710--⨯8.下列运算正确的是( ) A .a 3+a 2=2a 5 B .a 3•(a 2)3=a 9C .a 8÷a 4=a 2D .(a +b )(b -a )=a 2-b 29.下列各式:−15a 2b 2,12x −1, -25,1x,2x y-,a 2-2ab 中单项式的个数有( )A .4个B .3个C .2个D .1个10.下列说法正确的是( )①0是绝对值最小的有理数;①相反数大于本身的数是负数①数轴上原点两侧的数互为相反数;①两个数比较,绝对值大的反而小A .①①B .①①C .①①D .①①11.下列各式从左到右的变形中,是因式分解的为( ) A .21234a b a ab =⋅B .222469(23)x xy y x y -+=-C .22(21)xy xy y y xy x -+-=--+D .2(3)(3)9x x x +-=-12.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =( ) A .3B .3-C .1D .1-130a =,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点右侧C .原点或原点左侧D .原点成原点右侧14.若多项式26x mx +-因式分解成()()32x x +-,则m 的值为( ) A .1B .1-C .5D .5-15.下列各式计算正确的是( ) A .235a a a ⋅=B .32632639x y x y ⎛⎫-=- ⎪⎝⎭C .3162-⎛⎫-= ⎪⎝⎭D .()222x y x y -=-16.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .0c a ->B .a b <C .0a b +>D .c b c b -=-17.下列运算正确的是( ) A .236x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=18是同类二次根式的是( )AB CD19.估计2的运算结果应在下列哪两个数之间 ( ). A .4.5和5.0B .5.0和5.5C .5.5和6.0D .6.0和6.520.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;①2a 的算术平根是a ;①8-的立方根是2-;①带根号的数都是无理数;其中,不正确的有( ) A .1个B .2个C .3个D .4个二、填空题 21.若代数式12022x -有意义,则实数x 的取值范围是______.22.若2230x y -=,且5x y +=,则x y -=___________.23.计算:________________.24.0.7096精确到千分位,则0.7096≈__________.25.3649的算术平方根是________________________________.26.函数=y 中自变量x 的取值范围是___________;当x =________时,代数式21x x --的值等于0. 27.如图,半径为3π的圆在数轴上滚动,开始在数轴上点A (称圆与数轴相切)处,向左侧动一周至点B ,若A 所对应的数是3,则点B 所对应的数是__________.281的相反数是_____.29.无锡地表水较丰富,外来水源补给充足.市区储量为6349万立方米,用科学记数法表示为 立方米.3002=__.31.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.32.若a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,则23a b c -+的值是__________.33.计算:(x 2)5=_______.34.若a b <<,且a ,b 是两个连续的整数,则a b +的值为_________.3536a =_____________.37|=_____.38___________(只填写一个即可). 39.化简aa 3-的结果为___________40.比较大小:﹣5_____ 2,﹣45_____﹣56 .三、解答题41.化简:5x 2﹣3y ﹣3(x 2﹣2y ).421=1-,求3x yx y+-的值. 解:根据算术平方根的定义,1=,得2(2)1x y -=,所以21x y -=①……第一步 根据立方根的定义,1-,得121y -=-①……第二步 由①①解得1,1x y ==……第三步 把1,1x y ==代入3x y x y+-中,得30x yx y +=-……第四步 (1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因; (2)把正确解答过程写出来.43.在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)44.(1)已知2245A x y xy =-,2234B x y xy =-,求2A B -.(2)化简求值:22111122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =,23y =-.45.计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 46.已知:210a =,25b =,280c =.求-22c b a +的值. 47.计算下列各题: (1)()3212282⎛⎫-+-÷-⨯ ⎪⎝⎭(2)1311664124⎛⎫-⨯-+-÷ ⎪⎝⎭48.计算或化简:(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯-(2)221581()()(2)(14)4696--+÷-+-⨯-(3)x 2+5y -4x 2-3y -1 (4) 7x +4(x 2-2)-2(2x 2-x +3)49.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”. (1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)50.已知1x =,求代数式229x x -+的值.参考答案:1.A【分析】根据正数大于负数,两个负数绝对值大的反而小,逐个判断即可求解【详解】解:5545 7763 -==77499963-==5779∴->-故A正确1134412-==1143312-==1143∴->-故B错误22203330-==7721101030-==27310∴->-故C错误312728=17428=3174∴>故D错误故选:A【点睛】本题考查有理数的大小比较,熟记有理数的大小比较法则是解决本题的关键2.A【分析】根据开立方与立方互为逆运算的关系,求解即可.,故本题答案应为:A.【点睛】开立方与立方互为逆运算的关系是本题的考点,熟练掌握其关系是解题的关键.3.A【分析】先将式子中的分子和分母进行因式分解,再进行约分即可. 【详解】2221121p p p p p p --⋅+-+ ()()()()211111p p p p p p --+=⋅+- p =, 故选:A .【点睛】本题主要考查了分式的计算,准确将式子中的分子、分母进行因式分解是解答本题的关键. 4.B【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解.【详解】解:把150万(即1500000)用科学记数法可表示为61.510⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 5.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将24000用科学记数法表示为:42.410⨯,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,逐一判断即可.【详解】解:A .x≥0,故本选项不符合题意;B . 2中,-x≥0,解得x≤0,故本选项不符合题意;C .x 可以取一切实数,故本选项符合题意;D.xx-中,x≠0,解得x≠0,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.7.B【分析】根据科学记数法的表示即可求解.【详解】0.0067=36.710-⨯故选B.【点睛】此题主要考查科学记数法的表示,解题的关键是熟知负指数幂的应用.8.B【分析】根据合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式求解判断即可.【详解】解:A.a3+a2≠2a5,故错误,不符合题意;B.a3•(a2)3=a3•a6=a9,故正确,符合题意;C.a8÷a4=a4,故错误,不符合题意;D.(a+b)(b-a)=b2-a2,故错误,不符合题意;故选:B.【点睛】本题主要考查了合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式,熟记相关运算法则是解题的关键.9.C【分析】根据单项式的定义,结合选项找出单项式即可.【详解】解:−15a2b2,-25是单项式,共有2个故选C【点睛】本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,注意单独的一个数或字母也是单项式.10.C【分析】利用有理数的定义,数轴绝对值判定即可.【详解】解:①0是绝对值最小的有理数,此①正确,①相反数大于本身的数是负数,此①正确,①数轴上到原点的距离相等且在原点两侧的数互为相反数,故①不正确, ①两个负数比较,绝对值大的反而小.故①不正确, 综上,①①的说法正确, 故选:C .【点睛】本题主要考查了有理数、数轴、相反数,解题的关键是熟记有理数的定义. 11.C【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,逐一进行判定即可.【详解】解:A 、左边不是多项式,因此不是因式分解,故此选项不符合题意; B 、左边与右边不相等,因此不是因式分解,故此选项不符合题意;C 、提取公因式y -后,将多项式化成了两个整式积的形式,是因式分解,故此选项符合题意;D 、左边是积的形式,右边是多项式,因此不是因式分解,故此选项不符合题意; 故选C .【点睛】此题考查了因式分解的概念,正确理解因式分解是将一个多项式化成几个整式积的形式是解答此题的关键. 12.D【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1, 又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1, 即a ,b ,c 中两正一负, ①abc <0, 则||abcabc =−1; 故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键. 13.C【分析】根据二次根式的性质,知-a≥0,即a≤0,根据数轴表示数的方法即可求解.【详解】解:0a =,a a =-, ①a≤0,故实数a 在数轴上的对应点一定在原点或原点左侧. 故选:C .【点睛】此题主要考查了二次根式的性质,实数与数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型. 14.A【分析】运用多项式乘多项式的乘法法则解决此题.【详解】解:()()22322366x x x x x x x +-=-+-=+-.由题意得,()()2632x mx x x +-=+-,①2266x x x mx +-=+-, ①1m =. 故选:A .【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键. 15.A【分析】根据各自的运算公式计算判断即可. 【详解】①235a a a ⋅=, ①A 正确;①326328327x y x y ⎛⎫-=- ⎪⎝⎭,①B 不正确; ①3182-⎛⎫-=- ⎪⎝⎭, ①C 不正确;①()2222x y x xy y -=-+, ①D 不正确;故选A .【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键.16.A【分析】根据有理数a ,b ,c 在数轴上的位置,可得0c a b <<<,c a >b >,可对A,B 选项进行判断,根据有理数的加减法法则可判断C,D .【详解】解:根据题意可得0c a b <<<,c a >b >, A. 0c a ->,故该选项正确,符合题意;, B. a b >,故该选项不正确,不符合题意;C. 0a b +<,故该选项不正确,不符合题意;D. 0c b <<,0b -<()0c b c b ∴-=+-< ∴c b b c -=-,故该选项不正确,不符合题意;故选A【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小;也考查了数轴的认识,以及有理数的加法运算和绝对值的意义.17.B【分析】根据同底数幂乘法、除法、幂的乘方及合并同类项法则逐一计算即可得答案.【详解】A.x 2·x 3=x 2+3=x 5,故该选项计算错误,不符合题意,B.()32628x x -=-,故该选项计算正确,符合题意, C.x 6÷x 3=x 6-3=x 3,故该选项计算错误,不符合题意,D.x 2与x 3不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查同底数幂乘法、除法、幂的乘方及合并同类项,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;熟练掌握运算法则是解题关键.18.B故选B.19.B【分析】先进行二次根式的运算,再估算大小.【详解】解:222==+,≈,3 1.732∴+≈,2 5.464<<,5.0 5.464 5.5故选B.【点睛】此题考查无理数的估算,二次根式的混合运算,先运算,再进行估算即可.20.C【分析】分别根据实数、立方根和算术平方根的定义对各小题进行逐一判断即可.【详解】解:①如果一个实数的立方根等于它本身,这个数有0或1或-1,所以①不正确;①a2的算术平方根是|a|,故①不正确;①-8的立方根是-2,故①正确;,不是无理数,故①不正确;所以不正确的有3个.故选:C.【点睛】本题考查了实数、立方根和算术平方根,熟知算术平方根的定义、立方根的定义及实数的分类是解答此题的关键.21.2022x≠【分析】根据分式有意义的条件:分母≠0即可得出结论.x-≠【详解】解:由题意可得20220x≠解得:2022x≠.故答案为:2022【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.22.6【分析】根据平方差公式即可求出答案.【详解】解:①x 2-y 2=30,且x +y =5,①(x -y )(x +y )=30,①x -y =6,故答案为:6.【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 23.-x 2y . 【详解】试题解析:21(2)2x xy x y ⋅-=- 考点:单项式乘以单项式.24.0.710【分析】把万分位上的数字6四舍五入即可.【详解】解:0.7096精确到千分位,则0.70960.710≈故答案为:0.710.【点睛】此题考查的是求一个数的近似数,掌握四舍五入法是解决此题的关键. 25. 67-5 【分析】根据算术平方根的定义和立方根的定义即可得出结论.【详解】解:①2636()749=,3(5)125-=-;①3649的算术平方根是675-. 故答案为:67;-5. 【点睛】此题考查的是求一个数的平方根、算术平方根和立方根,掌握平方根的定义、算术平方根的定义和立方根的定义是解决此题的关键.26. 3x ≤ 2【分析】①根据二次根式有意义的条件得出不等式,运算即可;①根据分式的值为零的条件得出不等式,运算即可.【详解】①由题意得:3-x ≥0,解得:3x ≤;①由题意得:x-2=0且x-1≠0,解得:2x =;故答案为:3x ≤;2【点睛】本题考查了二次根式有意义的条件和分式的值为零的条件,掌握知识点是解题关键.27.-3【分析】先求出圆的周长,再用点A 表示的数减去圆周长即可求出B 所对应的数【详解】解:①半径为3π,①圆周长=326ππ⋅= ①A 所对应的数是3,且由A 向左侧动一周至B ,①3-6=-3,①点B 所对应的数是-3故答案为:-3【点睛】本题考查了数轴表示数及有理数的减法,数轴上的数右边的总比左边的大28.【分析】根据只有符号不同的两个数叫做互为相反数解答.1的相反数是1故答案为:1【点睛】本题考查了相反数,是基础题,熟记概念是解题的关键.29.6.349×710【详解】试题解析:将6349万用科学记数法表示为:6.349×107.考点:科学记数法—表示较大的数.30.-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求解即可.【详解】解:原式31=--4=-.故答案为:4-.【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则.31.6【分析】有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.【详解】解:﹣112,1.2,0,3.14,37,﹣111113是有理数, π不是有理数,故答案为6.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解答本题的关键. 32.-28或0【分析】根据相反数,有理数的大小比较,数轴的性质得到a ,b ,c 的值,再代入计算.【详解】解:a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,①a =0,b =-1,c =-3或1,当c =-3时,23a b c -+=()()23013--+-=28-;当c =1时,23a b c -+=()23011--+=0,故答案为:-28或0.【点睛】本题考查了代数式求值,解题的关键是根据相反数,有理数的大小比较,数轴的性质得到各字母的值.33.x 10【分析】幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:(x 2)5=x 2×5=x 10.故答案为:x 10.【点睛】本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.34.9a ,b 是两个连续的整数,即可求得,a b 的值,从而求解.【详解】解:①a b <,且a ,b 是两个连续的整数,45<<,①4,5a b ==,∴9a b +=,故答案为:9.35.-1.8【分析】根据根式的性质即可得到答案.【点睛】本题考查的知识点是根式性质,解题的关键是熟练的掌握根式性质.36.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可【详解】解:①①238103a a -=-,①260+-=a a①3a =-或2a =,①两个根式都是最简根式,①2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点睛】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式37【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:||【点睛】本题考查绝对值的意义,解题关键是掌握负数的绝对值是它的相反数. 38.2或3..【详解】,,①2,3.故答案为2或3.【点睛】本题主要考查了估算无理数的大小,正确找出符合题意的整数是解题的关键.39.【详解】分析:根据二次根式乘法,可化简二次根式.详解:原式=故选答案为:点睛:本题考查了二次根式的性质与化简,利用了二次根式的乘法.40. < >【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【详解】解:﹣5<2, ①424530=<525630=, ①﹣45>﹣56. 故答案为:<,>.【点睛】本题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.41.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键. 42.(1)错误在第一步和第四步,理由见解析;(2)当1,1x y ==时,3x y x y +-无解当0,1x y ==时,31x y x y+=-- 【分析】(1)根据算术平方根的定义可知错误步骤及原因;(2)可由算术平方根和立方根的定义求出x,y 的值代入求解即可,其中x 的值有两个.【详解】解:(1)错误在第一步和第四步第一步错误原因:①1的平方根是1±,①21x y -=±第四步错误原因:当1,1x y ==时,3x y x y+-无解(21=,得2(2)1x y -=,所以21x y -=±,1=-,得121y -=-,21121x y y -=⎧⎨-=-⎩,解得11x y =⎧⎨=⎩ 21121x y y -=-⎧⎨-=-⎩,解得01x y =⎧⎨=⎩①当1,1x y ==时,3x y x y +-无解 当0,1x y ==时,31x y x y+=-- 【点睛】本题考查了平方根和立方根,正确理解平方根和立方根的定义和性质是解题的关键.43.数轴见详解,1(3)2(1)452-+<-<--<-<. 【分析】将各数表示在数轴上,再用“<”连接即可.【详解】解:如图所示:①用“<”连接各数为:1(3)2(1)452-+<-<--<-<; 【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.44.(1)2256-x y xy ;(2)22x y -+,149- 【分析】(1)根据整式的加减计算法则进行求解即可;(2)先去括号,然后根据整式的加减计算法则进行化简,最后代值计算即可.【详解】解:(1)①2245A x y xy =-,2234B x y xy =-,①()()2222224534A B x y xy x y xy -=---222210348x y xy x y xy --+=2265x y xy -=;(2)2211112()()2323x x y x y --+-+ 22121122323x x y x y =-+-+ 22x y =-+,当1x =,23y =-时, 原式2221()3=-⨯+- 429=-+ 149=-. 【点睛】本题主要考查了整式的加减计算,整式的化简求值,含乘方的有理数混合计算,解题的关键在于能够熟练掌握相关计算法则.45.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;【详解】(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点睛】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.46.32【分析】利用同底数幂的除法法则,同底数幂的乘法法则,幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:当210a =,25b =,280c =时,()2222222222280510802510180102532c b ac b ac b a -+÷⨯÷⨯=÷⨯=÷⨯=⨯⨯===.【点睛】本题考查的是同底数幂的除法,同底数幂的乘法,幂的乘方,熟练掌握相对应的运算法则是解决本题的关键.47.(1)-3.5;(2)-12【分析】(1)根据有理数混合运算的法则,先算乘方,后算乘除,最后算加减,对每一项分别计算,然后求值即可;(2)根据有理数混合运算的法则,除一个数等于乘一个数的倒数,利用乘法交换律先计算-6和4的积,然后利用乘法分配律分别计算即可.【详解】(1)解:原式=114882⎛⎫⎛⎫-+-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=﹣4+12=﹣3.5 (2)原式=131131642441821264126412⎛⎫⎛⎫-⨯⨯-+-=-⨯-+-=-+=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了有理数的混合运算,乘法的交换律和分配律,解决本题的关键是熟练掌握整式混合运算的法则.48.(1)34; (2) -63;(3)-3x 2+2y-1; (4) 9x-14.【分析】(1)逆用乘法分配律进行计算即可;(2)先把除法化为乘法, 再用乘法分配律进行计算即可;(3)合并同类项即可;(4)去括号,合并同类项即可.【详解】(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯- =2225373123555⨯-⨯+⨯ =()2357125⨯-+ =34.(2)221581()()(2)(14)4696--+÷-+-⨯-=158()36(14)4694--+⨯+⨯- =-9-30+32-56=-63(3)x 2+5y -4x 2-3y -1=-3x 2+2y-1(4)7x +4(x 2-2)-2(2x 2-x +3)=7x+4x 2-8-4x 2+2x-6=9x-14.【点睛】本题考查了有理数的混合运算,掌握相关法则是解题关键,合理运用运算定律能起到简便计算的目的.49.(1)()()22a b a b -+(2)2700【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.【详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.50.11.【分析】先将代数式配方,然后再把1x =代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=. 【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.。
中考试题专题 整式一、选择题1.(台湾)已知(19x -31)(13x -17)-(13x -17)(11x -23)可因式分解成(ax +b )(8x +c ),其中a 、b 、c 均为整数,则a +b +c =?A .-12B .-32C .38D .72 。
【关键词】分解因式 【答案】A2.(台湾)将一多项式[(17x 2-3x +4)-(ax 2+bx +c )],除以(5x +6)后,得商式为(2x +1),余式为0。
求a -b -c =?A .3B .23C .25D .29 【关键词】整式除法运算 【答案】D3.(重庆市江津区) 下列计算错误的是 ( )A .2m + 3n=5mnB .C .D .【关键词】幂的运算 【答案】A4.(重庆市江津区)把多项式分解因式,下列结果正确的是 ( )A. B. C. D. 【关键词】分解因式 【答案】A5.(北京市)把分解因式,结果正确的是 A.B. C D【关键词】分解因式 【答案】D6. (仙桃)下列计算正确的是( ).A 、B 、C 、D 、【关键词】整式运算性质. 【答案】C7. (四川省内江市) 在边长为的正方形中挖去一个边长为的小正方形(>)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .426a a a =÷632)(x x =32a a a =⋅a ax ax 22--)1)(2(+-x x a )1)(2(-+x x a 2)1(-x a )1)(2(+-ax ax 3222x x y xy -+()()x x y x y +-()222x x xy y-+()2x x y +()2x x y -235a a a +=623a a a ÷=()326aa =236a a a ⨯=ab a b 2222)(b ab a b a ++=+ aa abB .C .D .【关键词】用不同形式的代数式来表示同一部分的面积。
实数与整式
一、选择题(每小题3分,共24分)
1.2008-的相反数是 ( )
A .12008-
B .2008
C .12008
D .2008- 2.若a 与易的相反数互为倒数,则a b 的值是 ( )
A .1
B .0
C .1-
D .无法确定 3.近几年我国财政收入不断创出新高,2007年上半年全国财政收入为26117.84亿元. 那么,2007年上半年每月全国财政收入平均约为 ( )
A .44.3529710⨯亿元
B .34.3529710⨯亿元
C .54.3529710⨯亿元
D .4.35297亿元
4.下列等式必定成立的是 ( )
A .236
a a a ⋅= B .235a a a +=
C .2(3)3x x x x -+=-+
D .331x x x -÷= 5.如果代数式21213
x x -+的值是2,那么代数式261x x -+的值等于 ( ) A .2 B .3 C .4 D .5
6.计算机是将信息转换成二进制数进行处理的.二进制即“逢2进1”.如(1101)2表示二进制数,将它转换成十进制形式是1×32十1⨯22+0×12+l ×0
2=13.那么将二 进制数(1000) 2转换成十进制形式是数 ( )
A .7
B .8
C .9
D .10 7.已知代数式
1312
a x y -与23
b a b x y -+-的和仍然是单项式,那么a 、b 的值分别是 ( ) A .a =2.b =1- B .a =2.b=l
C .a =-2,b =1-
D .a =-2,b=l 8.如图:沿正方形不同的对角线对折两次.互相重合的两个小正方形内 的数字作乘积运算.把两次乘积结果相加和为 ( )
A .0
B .2
C .3
D .1
二、填空题(每小题3分,共24分)
9.比较大小:23- 34
- (填“>”或“<”号). 10.北京等5个城市的国际标准时间(单位:h)可以在数轴上表示如下:
如果将两地国际标准时间的差简称为时差.那么汉城与多伦多的时差为 时. 11.在实数的原有运算法则中我们补充定义新运算“⊕”如下:
当x ≥y 时,x ⊕y=y 2十l ;当x <y 时,x ⊕y=2x 十1则当x =2时,
(1)(3)x x x ⊕⋅-⊕的值为 (“·
”和“一”仍为实数运算中的乘号和减号). 12.若26x y -=,其中y 是绝对值最小的数,则x = .
13.若2a =,3b =,则2a b = .
14.如图,在数轴上点A 和点B 之间表示整数的点有 个.
15.我国政府为解决老百姓看病难的问题,多次下调药品价格.某种药品在2005年降价30%后.又在2007年降价20%至a 元,则这种药品在2005年降价前的价格为 元.
16.如图,是用小石子摆出的一系列五边形图案,按这种方案摆下去,当n =5时,共需 个小石子.
三、解答题(共52分)
17.(本题4分)将下列实数:一l ,0,3.1416,cos30°,0.1010l0010001,π+2,
一25,227
-, (一sin45°) °写入相应的集合中. 无理数集合:{ …};
有理数集合:{ …};
整数集合:{ …};
正数集合:{ …}.
18.(本题4分)在下面的集合中有一些实数,请你从中选出1个有理数和1个无理数.再 任意想出两个无理数,再用“十,一,×,÷”中的3种符号将你选出和想出的四个数进行3次运算.使运算结果为0.
19.计算(每小题4分,共16分) (1) 02311(1)()42--
+---
(2)
1202008200711()cos 302()2221-++-⨯+
(3) 00( 3.14)1tan 6032
π----
-
(4) 201200828sin 452(1)--+⋅-+-
20.化简(每小题4分,共12分)
(1) 2
3(2)x y x y ⋅-
(2) 2(31)(23)(21)x x x +--+
(3) (23)(23)x y z x y z -++-
21.(本题5分)若实数a 、b 在数轴上的位置如图所示,试化简:
2(2)21a b a b a +--+--+
22.(本题5分)先化简,再求值。
2(32)(32)5(1)(21)x x x x x +-----,其中13
x =-
23.(本题6分)若2(21)a -与2b +互为相反数,求代数式22
()()a b a b +--的值
附加题(本题10分)
(1)数轴上表示一2和一5的两点间的距离是 ,数轴上表示1和一3的两点 间的距离是 ;
(2)数轴上表示x 和1-的两点间的距离是 ;
(3)当代数式12x x ++-取最小值时,相应的x 的取值范围是多少?
参考答案
一、选择题
1.B 2.C 3.B 4.B 5.C 6.B 7.A 8.D
二、填空题
9.> 10.13 11.1- 12.3 13.±12 14.4 15.
10056a 16.25 三、解答题
17.无理数集合:{0cos30,2,...}π+
有理数集合:0022{1,0,3.1416,0.1010010001,,(sin 45)...}7
---
整数集合:00{1,0,sin 45)...}--
正数集合:000{3.1416,cos30,0.1010010001,2,(sin 45)...}π+-
18.例如:从中选出0和0(0++=即可。
19.计算
(1)1 (214 (3)4 (4)32- 20.化简
(1)2323(2)63x y x y x y x y -=-
(2)2222(31)(23)(21)69234412114x x x x x x x x x x +--+=-+----=--
(3)原式=22222(23)4129x y z x y yz z --=-+-
21.原式=22()1a b a b a ++---++=5a +
22.原式=222945544195x x x x x x --+-+-=-当13x =-时,原式=19()583⨯--=-
23.∵2(21)a -与2b +互为相反数∴1,22a b =
=-∵22()()4a b a b ab +--= ∴原式= 14(2)42
⨯-⨯=- 附加题:(1)3 ,4 (2)1x + (3)12x -≤≤。