阶段滚动检测(一)
- 格式:doc
- 大小:5.57 MB
- 文档页数:18
单元滚动检测卷(一)[测试范围:第一单元及第二单元 时间:120分钟 分值:150分]第Ⅰ卷(选择题 共40分)一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分) 1.四个数-1,0,12,2中为无理数的是( D )A .-1B .0 C.12D. 22.在-3,-1,0,2这四个数中,最小的数是( A )A .-3B .-1C .0D .23.若x 是2的相反数,|y |=3,则x -y 的值是 ( D )A .-5B .1C .-1或5D .1或-54.已知a <c <0<b ,则abc 与0的大小关系是 ( C )A .abc <0B .abc =0C .abc >0D .无法确定【解析】 由a <c <0<b 知a ,c 为负数,b 为正数,则abc >0,故选C. 5.我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( A )A .1.94×1010B .0.194×1010C .19.4×109D .1.94×1096.有理数a ,b 在数轴上的位置如图1-1所示,则a +b 的值( A )图1-1A .大于0B .小于0C .小于aD .大于b【解析】 观察图象知-1<a <0,b >1,所以a +b >0. 7.下列计算正确的是( A )A .a 6÷a 3=a 3B .(a 2)3=a 8C .(a -b )2=a 2-b 2D .a 2+a 2=a 48.如果(2a -1)2=1-2a ,则( B )A .a <12 B .a ≤12 C .a >12 D .a ≥129.化简⎝ ⎛⎭⎪⎫x -2x -1x ÷⎝ ⎛⎭⎪⎫1-1x 的结果是( B )A.1x B .x -1 C.x -1x D.x x -1【解析】 ⎝⎛⎭⎪⎫x -2x -1x ÷⎝ ⎛⎭⎪⎫1-1x=x 2-2x +1x ÷x -1x=(x -1)2x ·x x -1=x -1,故选B.10.设a =19-1,a 在两个相邻整数之间,则这两个整数是( C )A .1和2B .2和3C .3和4D .4和5【解析】 ∵16<19<25,即4<19<5, ∴4-1<19-1<5-1,即3<19-1<4, 故a 在3,4两个整数之间.第Ⅱ卷(非选择题 共110分)二、填空题(本大题有6小题,每小题5分,共30分) 11.(1)-3的相反数是__3__;-3的倒数是__-13__.(2)H7N9禽流感病毒的直径大约为0.0000000805米,用科学记数法表示为__8.1×10-8__米(保留两位有效数字).12.(1)计算:12+(-1)-1+(3-2)0=. (2)计算(50-8)÷2的结果是__3__. 13.(1)函数y =2-x +1x +1中自变量x 的取值范围是__x ≤2且x ≠-1__. (2)若等式⎝⎛⎭⎪⎫x 3-20=1成立,则x 的取值范围是__x ≥0且x ≠12__. 【解析】 本题含有0次幂及二次根式.根据0次幂底数不为0,二次根式被开方数为非负数,列不等式求解. 即x3≥0且x3-2≠0,解得x ≥0且x ≠12.14.(1)分解因式:3a 2-12=__3(a +2)(a -2)__. (2)分解因式:-a 3+a 2b -14ab 2=__-a ⎝ ⎛⎭⎪⎫a -12b 2__.【解析】 当一个多项式是三项式时,应先提公因式,然后尝试用完全平方公式或平方差公式分解因式.-a 3+a 2b -14ab 2=-a ⎝ ⎛⎭⎪⎫a 2-ab +14b 2=-a ⎝ ⎛⎭⎪⎫a -12b 2.15.(1)若实数a ,b 满足:||3a -1+b 2=0,则a b =__1__. (2)已知1a -1b =12,则ab a -b 的值是__-2__.【解析】 由1a -1b =12,得b -a ab =12, ∴abb -a =2, ∴aba -b=-2. 16.先找规律,再填数: 11+12-1=12, 13+14-12=112, 15+16-13=130, 17+18-14=156, ……则12 013+12 014-__11 007__=12 013×2 014.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.如图1-2,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,求m 的值.图1-2解:由题意得m =2- 2.18.计算:(1-3)0+|-2|-2cos 45°+⎝ ⎛⎭⎪⎫14-1.解:原式=1+2-2×22+4=5.19.按下面的程序计算:输入x =3,请列式计算出结果.输入x →立方→-x →÷2→答案图1-3解:按程序写出算式为(x 3-x )÷2,当x =3时,原式=(33-3)÷2=12. 20.先化简,再求值:(1+a )(1-a )+(a -2)2, 其中a =-3.解:原式=1-a 2+a 2-4a +4=-4a +5,当a =-3时,原式=12+5=17. 21.若x ,y 为实数,且|x +1|+y -1=0,求⎝ ⎛⎭⎪⎫x y 2 013的值.解:∵|x +1|≥0,y -1≥0, 且|x +1|+y -1=0,∴x +1=0,y -1=0,解得x =-1,y =1, ∴⎝ ⎛⎭⎪⎫x y 2 013=(-1)2 013=-1. 22.先化简,再求值:⎝ ⎛⎭⎪⎫x +1x 2-1+x x -1÷x +1x 2-2x +1,其中x =2. 解:原式=x +1+x (x +1)(x +1)(x -1)×(x -1)2x +1=(x +1)2(x +1)(x -1)×(x -1)2x +1 =x -1.把x =2代入x -1=2-1=1.23.把四张形状,大小完全相同的小长方形卡片(如图1-4)不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图1-5),盒子底面未被卡片覆盖的部分用阴影表示,求图中两块阴影部分的周长的和.图1-4图1-5解:设小长方形的宽为x cm,则长为(m-2x)cm,则两阴影部分周长之和为2[(m-2x)+(n-2x)]+2{2x+[n-(m-2x)]}=2(m+n-4x+4x+n-m)=2×2n=4n.24.我国古代的许多数学成果都曾位居世界前列,其中“杨辉三角”就是一例.如图1-6,这个三角形的构造法则是:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.图1-6【解析】(1)由图依次补充第五行,第六行的系数,即可得(a+b)5=a5+5a4b +10a3b2+10a2b3+5ab4+b5.(2)要计算的式子为6项,且2的指数依次递减.又-1=(-1)5.结合(a+b)5展开式系数规律,可得原式为(2-1)5=1.解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.。
阶段滚动检测 (一)(90分钟100分)一、选择题(本题包括16小题,每小题3分,共48分。
)1.(2020·廊坊模拟)北魏贾思勰《齐民要术·作酢法》这样描述苦酒:“乌梅苦酒法:乌梅去核,一升许肉,以五升苦酒渍数日,曝干,捣作屑。
欲食,辄投水中,即成醋尔。
”下列有关苦酒主要成分的说法正确的是( )A.苦酒的主要溶质是非电解质B.苦酒的主要溶质是强电解质C.苦酒的主要溶质是弱电解质D.苦酒的溶液中只存在分子,不存在离子【解析】选C。
根据题意分析苦酒即成醋尔,说明苦酒的成分是乙酸。
A.苦酒的主要溶质是乙酸,属于弱电解质,故A、B错误,C正确;D.苦酒的溶质属于弱电解质,在水中部分电离,所以既有电解质分子CH3COOH,又有H+和CH3COO-,故D错误。
2.(2020·大连模拟)将30 mL 0.5 mol·L-1 NaOH溶液加水稀释到500 mL。
N A表示阿伏加德罗常数的值,关于稀释后溶液的叙述不正确的是( )A.溶液中OH-浓度为0.03 mol·L-1B.该溶液中含Na+个数为0.015N AC.向原溶液中加入470 mL蒸馏水即可D.该溶液中含有氧原子个数大于0.015N A【解析】选C。
溶液稀释前后溶质的物质的量不变,则30 mL×0.5 mol·L-1=500 mL×c,c=0.03 mol·L-1,A正确;稀释前后Na+物质的量不变,为0.015 mol,B正确;应在500 mL容量瓶中定容配制,C错误;溶液中水分子也含有氧原子,D正确。
3.下列关于氢氧化铁胶体的说法不正确的是( )A.往NaOH饱和溶液中滴加FeCl3饱和溶液,加热煮沸制备氢氧化铁胶体B.氢氧化铁胶体的胶粒大小在1~100 nmC.氢氧化铁胶体可发生丁达尔效应D.往氢氧化铁胶体中滴加电解质溶液可发生聚沉现象【解析】选A。
往NaOH饱和溶液中滴加FeCl3饱和溶液,得到氢氧化铁红褐色沉淀,A项错误;胶体的胶粒大小在1~100 nm,这是胶体区别于其他分散系的本质特征,B项正确;胶体可发生丁达尔效应,可借助此性质区分胶体与溶液,C项正确;氢氧化铁胶体的胶粒带电,滴加电解质溶液可发生聚沉现象,D项正确。
姓名,年级:时间:滚动检测(一)一、选择题1.科学社会主义之所以“科学”,主要在于它( )A.揭示了资本主义社会的基本矛盾B.揭示了剩余价值规律C.揭示了社会发展的客观规律D.揭示了资本主义制度的腐朽性[解析]根据题意和所学知识可知,马克思主义之所以被称为“科学”,主要是因为它在认识和分析资本主义制度的基础上,揭示了资本主义必然灭亡、社会主义必然胜利这一客观规律,故C项正确。
资本主义社会的基本矛盾是生产社会化与资本主义生产资料私人占有之间的矛盾,与题意不符,排除A.马克思的《资本论》提出了剩余价值学说,与题意不符,排除 B.马克思主义之所以被称为“科学”是因为其揭示了社会发展的客观规律,而不是揭示了资本主义制度的腐朽,排除D。
[答案]C2.马克思对资本主义生产过剩危机的分析,并没有停留于经济现象的分析,而是深入到资本主义经济关系或经济制度中探寻根源。
因此,马克思经济危机理论的创立( )①科学地揭示了资本主义经济危机的实质②阐明了资本主义经济危机周期性的根源③论证了资本主义生产方式的历史过渡性④揭示了资本家和雇佣工人间的剥削关系A.①②③ B.①③④ C.①②④ D.②③④[解析]本题考查马克思的经济危机理论。
马克思经济危机理论的主要内容包括资本主义经济危机是生产过剩的危机,资本主义的基本矛盾是经济危机爆发的根源,经济危机给生产带来的破坏,使社会化生产所需要的比例关系强制性的得到调整,从而使资本主义再生产进行下去,因此①②③符合题意,④属于马克思的剩余价值理论,本题答案为A。
[答案]A3.列宁曾明确指出:“社会主义能否实现,取决于我们把苏维埃政权和苏维埃管理组织同资本主义最新的进步的东西结合得好坏。
”“我们不能设想,除了建立在庞大的资本主义文化所获得的一切经验教训的基础上的社会主义,还有别的什么社会主义.”这说明()A.社会主义同资本主义的斗争不可避免B.要树立“利用资本主义来建设社会主义"的思想C.一球两制是长期现象D.社会主义比资本主义优越[解析]A不合题意,材料不是强调是否能避免斗争的问题。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
阶段滚动检测(三)第一~七章(90分钟100分)第Ⅰ卷(选择题共48分)一、选择题(本题包括16小题,每小题3分,共48分)1.(滚动单独考查)N A表示阿伏加德罗常数,下列叙述正确的是( )A.标准状况下,2.24 L Cl2通入足量NaOH溶液中,反应转移电子的数目为0.2N AB.1 mol K与足量O2反应,生成K2O、K2O2和KO2的混合物时转移的电子数为N AC.常温常压下,1.7 g H2O2中含有的电子数为N AD.标准状况下,1 mol CO2所含共用电子对数为2N A2.下列可逆反应达到平衡后,增大压强同时升高温度,平衡一定向右移动的是( )A.2AB(g)A2(g)+B2(g) ΔH>0B.A2(g)+3B2(g)2AB3(g) ΔH<0C.A(s)+B(g)C(g)+D(g) ΔH>0D.2A(g)+B(g)3C(g)+D(s) ΔH<03.(2013·池州模拟)对于达到平衡的可逆反应:X+YW+Z,其他条件不变时,增大压强,正、逆反应速率变化的情况如图所示。
下列对X、Y、W、Z四种物质状态的描述正确的是( )A.W、Z均为气体,X、Y中只有一种为气体B.X、Y均为气体,W、Z中只有一种为气体C.X、Y或W、Z中均只有一种为气体D.X、Y均为气体,W、Z均为液体或固体4.已知:①H+(aq)+OH-(aq)====H2O(l)ΔH1(ΔH1表示中和热);②2SO2(g)+O2(g)2SO3(g) ΔH2。
其他条件不变时,改变反应物的量,则下列判断正确的是( )A.ΔH1增大,ΔH2减小B.ΔH1增大,ΔH2增大C.ΔH1减小,ΔH2减小D.ΔH1不变,ΔH2不变5.(滚动交汇考查)下列说法正确的是( )A.原子中,核内中子数与核外电子数的差值为143B.纯碱、CuSO4·5H2O和生石灰分别属于盐、混合物和氧化物C.凡是能电离出离子的化合物都是离子化合物D.NH3、硫酸钡和水分别属于非电解质、强电解质和弱电解质6.(滚动交汇考查)下列叙述中错误的是( )A.砹化银见光容易分解,难溶于水B.H2O、H2S、H2Se随着相对分子质量的增大,沸点逐渐升高C.H2CO3比H2SiO3酸性强,故将CO2通入Na2SiO3溶液中有H2SiO3析出D.氢氧化铊[Tl(OH)3]不一定呈两性7.(滚动单独考查)下列离子方程式中不正确的是( )A.碳酸氢钙溶液中加入过量氢氧化钠溶液:Ca2++2HC+2OH-====CaCO3↓+2H2O+CB.4 mol·L-1的NaAlO2溶液和7 mol·L-1的盐酸等体积均匀混合:4Al+7H++H2O====3Al(OH)3↓+Al3+C.0.1 mol溴化亚铁溶液中滴入含0.1 mol Cl2的氯水:2Fe2++2Br-+2Cl2====2Fe3++Br2+4Cl-D.向Mg(HCO3)2溶液中加入过量的NaOH溶液:Mg2++2HC+2OH-====MgCO3↓+C+2H2O8.(2013·阜阳模拟)已知X、Y、Z、W、T是短周期中原子序数依次增大的5种主族元素。
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
阶段滚动检测(一)第一、二章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若全集U=R ,集合A={x||2x+3|<5},B={x|y=log 3(x+2)},则U ð(A ∩B)=( ) (A){x|x ≤-4或x ≥1} (B){x|x<-4或x>1} (C){x|x<-2或x>1} (D){x|x ≤-2或x ≥1}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y=13x (D)y=lg|x| 3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.(2013·长春模拟)已知函数()2xlog x,x 0,f x 3,x 0,>⎧=⎨≤⎩则f(f(14))的值是( )(A)9 (B)19 (C)-9 (D)-195.若a=log 20.9,11321b 3,c (),3-==则( )(A)a<b<c (B)a<c<b (C)c<a<b (D)b<c<a6.若函数y=3x 3-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ 7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是( )(A)a>1 (B)a ≤2 (C)1<a ≤2 (D)a ≤1或a>28.(2013·昆明模拟))120x dx ⎰的值是( )()()()()1A B 14341C D 1232ππ--ππ--9.函数f(x)=2lg xx 的大致图象为( )10.(2013·石家庄模拟)设集合A=[0,12),B=[12,1],函数()()1x ,x A,2f x 21x ,x B,⎧+∈⎪=⎨⎪-∈⎩若x 0∈A,且f(f(x 0))∈A,则x 0的取值范围是 ( )()()()()111113A (0,B (,C (,)D 0,442428] ] [] 11.(2013·沈阳模拟)函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( )(A)7 (B)8 (C)9 (D)1012.(2013·太原模拟)已知y=f(x)为R 上的可导函数,当x ≠0时,()()f x f x 0x'+>,则关于x 的函数()()1g x f x x=+的零点个数为( ) (A)1 (B)2 (C)0 (D)0或2二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.(2013·延吉模拟)已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知p:12≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .15.对于函数y=f(x),若存在区间[a,b ],当x ∈[a,b ]时的值域为[ka,kb ](k>0),则称y=f(x)为k 倍值函数.若f(x)=ln x+x 是k 倍值函数,则实数k 的取值范围是 .16.函数f(x)=ax 3-3x+1对于x ∈[-1,1],总有f(x)≥0成立,则a= .三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(2013·唐山模拟)已知集合A={x ∈R|log 2(6x+12)≥log 2(x 2+3x+2)},2x 3x B {x R |24}.-=∈<求A ∩(R B ð).18.(12分)已知函数()211x 1x f x x 11x 12x 3x 1.⎧>⎪⎪⎪≤≤⎨⎪<⎪⎪⎩+,,=+,-,+,- (1)求f(1),f(f(f(-2)))的值. (2)求f(3x-1).(3)若f(a)=32,求a 的值.19.(12分)已知定义域为R 的函数()x x 12bf x 2a+-+=+是奇函数.(1)求a ,b 的值.(2)若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围. 20.(12分)(2013·泉州模拟)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为()2x 2f x a 2a ,x 0,24x 13=-++∈+[],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a). (1)令t=2xx 1+,x ∈[0,24],求t 的取值范围. (2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?21.(13分)(2013·银川模拟)已知函数f(x)的自变量取值区间为A ,若其值域区间也为A ,则称区间A 为f(x)的保值区间.(1)求函数f(x)=x 2形如[n ,+∞),n ∈R 的保值区间.(2)若g(x)=x -ln(x +m)的保值区间是[2,+∞),求m 的取值.22.(13分)(2012·新课标全国卷)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+ (1)求f(x)的解析式及单调区间.(2)若f(x)≥12x 2+ax+b,求(a+1)b 的最大值.答案解析1.【解析】选D.因为A={x||2x+3|<5}={x|-4<x<1}, B={x|y=log 3(x+2)}={x|x+2>0}={x|x>-2},所以A ∩B={x|-2<x<1},所以U ð(A ∩B)={x|x ≤-2或x ≥1}.2.【解析】选C.由题可知A 不是单调函数,B 不是奇函数,D 是偶函数,只有C 满足.3.【解析】选D.A={0,1}的子集有4个,①错误;“若am 2<bm 2,则a<b ”的逆命题为“若a<b,则am 2<bm 2”在m=0时不成立,②错误;“命题p ∨q 为真”而“命题p ∧q 不一定为真”,“命题p ∧q 为真”则“命题p ∨q 为真”③正确;全称命题的否定是特称命题,命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得20x -3x 0-2<0”,④错误.四种说法中,错误的个数是3.4.【解析】选B.因为f(14)=log 214=-2,所以f(f(14))=f(-2)=3-2=19.5.【解析】选B.由对数函数的性质知log 20.9<0,而b,c 都大于0,故a 最小;又11133211b 3()()c 33-==>,所以a<c<b. 6.【解析】选D.因为y'=x 2-2x,又0<x<2,所以-1≤y'<0.故k=tan α∈[-1,0). 又因为α∈[0,π),则α∈[34π,π),所以α的最小值是34π. 7.【解析】选C.命题p:()()18a 0f 0f 1(1)(2a 2)0∆>⎧⎪⎨<⎪⎩=+,=--, 得a>1.命题q:2-a<0,得a>2, ≨﹁q:a ≤2,故由p 且﹁q 为真命题,得1<a ≤2,故选C.8.【解析】选A.)120x dx ⎰表示半圆(x-1)2+y 2=1(y ≥0)与抛物线y=x 2所围成的阴影部分的面积(如图), 故)12x dx ⎰31221001x 11x dx |.44343ππ=π⨯-=-=-⎰9.【解析】选D.因为函数f(x)为偶函数,所以图象关于y 轴对称,排除A,B.当0<x<1时,f(x)=2lgxx <0,所以选D. 10.【解析】选C.x 0∈[0,12)⇒x 0+12∈[12,1),f(x 0)=x 0+12,f(f(x 0))=f(x 0+12)=2(1-x 0-12)=(1-2x 0)∈[0,12)⇒x 0∈(14,12],x 0的取值范围是(14,12).11.【解析】选A.由f (x +1)=-f (x ),可得f (x +2)=-f (x +1)= f (x ),所以函数f (x )的周期为2,求h (x )=f (x )-g (x )的零点,即求f (x )=g (x )在区间[-5,4]的解的个数.画出函数f (x )与g (x )的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.12.【思路点拨】函数g(x)=f(x)+1x的零点,即为方程xf(x)=-1的根,令h(x)=xf(x),通过研究h(x)的值域来研究h(x)=-1的零点问题. 【解析】选 C.()()()()()f x xf x f x xf x f x 000x x x'+''+>⇒>⇒>[],即[xf(x)]′x>0.当x>0时,[xf(x)]′>0,xf(x)为增函数;当x<0时,[xf(x)]′<0,xf(x)为减函数.设h(x)=xf(x)⇒h(0)=0,即当x ≠0时,xf(x)>0.g(x)=f(x)+1x=0⇒xf(x)=-1,由上述可知xf(x)>0,所以xf(x)=-1无解,故函数g(x)=f(x)+1x的零点个数为0.13.【解析】由题意得b 0,a 12a,=⎧⎨-=-⎩得1a 1a b .33b 0,⎧=⎪+=⎨⎪=⎩,故 答案:1314.【解析】q:x>a+1或x<a,从而﹁q:a ≤x ≤a+1.由于p 是﹁q 的充分不必要条件,故a 111a 2≥⎧⎪⎨≤⎪⎩+,,即0≤a ≤12.答案:[0,12]15.【思路点拨】f(x)=ln x+x 在[a,b ]上单调递增,得f(a)=ka 及f(b)=kb ,即f(x)=kx 存在两个不等实根,据此求出实数k 的取值范围. 【解析】因为f(x)=ln x+x 是k 倍值函数,f(x)在[a,b ]上单调递增,ln a a ka ln b b kb+=⎧⎨+=⎩,即ln x+x=kx 在(0,+≦)上有两根,设g(x)=ln x+(1-k)x ,则g(x)在(0,+≦)上有两个零点,即y=ln x 与y=(k-1)x 相交于两点,k-1>0,当k=1+1e时相切,所以1<k<1+1e. 答案:(1,1+1e )16.【思路点拨】分离参数,构造函数,转化为最值问题.【解析】若x =0,则不论a 取何值,f(x)≥0显然成立;当x >0,即x ∈(0,1]时,f(x)=ax 3-3x+1≥0可化为a ≥2331x x-,. 设g(x)=2331x x -,则g ′(x)=()4312x x-,所以g(x)在区间1(0,2]上单调递增,在区间[12,1]上单调递减,因此g(x)max =g(12)=4,从而a ≥4; 当x <0,即x ∈[-1,0)时,f(x)=ax 3-3x+1≥0可化为a ≤2331x x-,g ′(x)= ()4312x x->0,g(x)在区间[-1,0)上单调递增,因此g(x)min =g(-1)=4,从而a ≤4,综上a =4. 答案:417.【解析】由log 2(6x+12)≥log 2(x 2+3x+2)得226x 120,x 3x 20,6x 12x 3x 2,+>⎧⎪++>⎨⎪+≥++⎩解得:-1<x ≤5.即A={x|-1<x ≤5}. B={x ∈R|2x 3x 24-<}={x ∈R|2x 32x 22-<}, 由2x 32x 222x 32x -<-<得,解得-1<x<3.即B={x ∈R|-1<x<3}, 则R B ð={x ∈R|x ≤-1或x ≥3}. 则A ∩(R B ð)={x ∈R|3≤x ≤5}. 18.【解析】(1)≧≨又≧f(-2)=-1, f(f(-2))=f(-1)=2,≨f(f(f(-2)))=f(2)=1+12=32. (2)若3x-1>1,即x>23, 则f(3x-1)=1+13x 1- =3x3x 1-; 若-1≤3x-1≤1,即0≤x ≤23, 则f(3x-1)=(3x-1)2+1=9x 2-6x+2; 若3x-1<-1,即x<0,则f(3x-1)=2(3x-1)+3=6x+1.≨f(3x-1)=23x 2,x 3x 1329x 6x 2,0x 36x 1,x 0.⎧>⎪⎪⎪≤≤⎨⎪<⎪⎪⎩,--+,+ (3)≧f(a)=32,≨a>1或-1≤a ≤1. 当a>1时,有1+1a=32, ≨a=2;当-1≤a ≤1时,有a 2+1=32,≨a=〒2. ≨a=2. 19.【解析】(1)因为f(x)是定义在R 上的奇函数, 所以f(0)=0,即1b2a-++=0, 解得b =1,从而有f(x)=x x 121.2a+-++又由f(1)=-f(-1)知,112124a 1a-+-+=-,++解得a =2. (2)由(1)知f(x)=x x 12122+-++x 11221=-+,+由上式易知f(x)在(-≦,+≦)上为减函数.由f(x)为奇函数,得不等式f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(-2t 2+k), 又f(x)为减函数,由上式推得t 2-2t>-2t 2+k , 即对一切t ∈R 有3t 2-2t -k>0, 从而判别式Δ=4+12k<0,解得k<1.3- 20.【解析】(1)当x=0时,t=0;当0<x ≤24时,x+1x≥2(当x=1时取等号),≨t=2x 11x 1x x=++∈(0,12], 即t 的取值范围是[0,12].(2)当a ∈[0,12]时,记g(t)=|t-a|+2a+23,则g(t)=2t 3a ,0t a,321t a ,a t .32⎧-++≤≤⎪⎪⎨⎪++<≤⎪⎩≧g(t)在[0,a]上单调递减,在(a,12]上单调递增,且g(0)=3a+23,g(12)=a+76,g(0)-g(12)=2(a-14).故M(a)=()11g(),0a ,2411g 0,a 42⎧≤≤⎪⎪⎨⎪<≤⎪⎩,即M(a)=71a ,0a ,642113a ,a .342⎧+≤≤⎪⎪⎨⎪+<≤⎪⎩≨当且仅当a ≤49时,M(a)≤2.故当0≤a ≤49时不超标,当49<a ≤12时超标. 【方法技巧】解决函数应用题的基本步骤第一步:认真读题,缜密审题,确切理解题意,明确问题实际背景,然后进行科学的抽象、概括,将实际问题转化成函数问题,即实际问题数学化.第二步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解. 第三步:将所得函数问题的解代入实际问题进行验证,看是否符合实际,并对实际问题作答.21.【思路点拨】(1)因为f(x)=x 2在x=0时取最小值,故应分n<0与n ≥0讨论.(2)先由2在定义域内,得出m 的范围,再根据函数在[2,+≦)上的最小值为2构造方程求出m 的值,求最小值时,应根据极值是否在区间[2,+≦)内分类讨论.【解析】(1)若n<0,则n =f(0)=0,矛盾. 若n ≥0,则n =f(n)=n 2,解得n =0或1, 所以f(x)的保值区间为[0,+≦)或[1,+≦). (2)因为g(x)=x -ln(x +m)的保值区间是[2,+≦), 所以2+m>0,即m>-2. 令g ′(x)=11x m-+>0,得x>1-m , 所以g(x)在(1-m ,+≦)上为增函数, 同理可得g(x)在(-m,1-m)上为减函数.若2≤1-m ,即m ≤-1时,g(x)在[2,1-m)上为减函数,在(1-m ,+≦)上为增函数,则当x=1-m 时,函数有极小值,也是最小值,由g(1-m)=2得m = -1满足题意.若m>-1时,则函数在[2,+≦)上为增函数,故g(x)min=g(2)=2,得m=-1,矛盾.所以满足条件的m值为-1.22.【思路点拨】(1)求导函数f′(x),然后根据已知条件求得f(x)的解析式,最后求单调区间.(2)f(x)≥12x2+ax+b⇒f(x)- 12x2-ax-b≥0,令h(x)=f(x)-12x2-ax-b,通过研究h(x)的性质,求得(a+1)b的最大值,注意分类讨论.【解析】(1)≧f(x)=f′(1)e x-1-f(0)x+12x2,≨f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,≨f(x)=f′(1)e x-1-x+12x2,≨f(0)=f′(1)e-1=1,≨f′(1)=e得:f(x)=e x-x+12x2.设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,≨y=g(x)在x∈R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,≨f(x)的解析式为f(x)=e x-x+12x2且单调递增区间为(0,+≦),单调递减区间为(-≦,0).(2)由f(x)≥12x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h ′(x)>0⇒y=h(x)在x ∈R 上单调递增. x →-≦时,h(x)→-≦与h(x)≥0矛盾. ②当a+1>0时,由h ′(x)>0得x>ln(a+1), 由h ′(x)<0得x<ln(a+1)得当x=ln(a+1)时,h(x)min =(a+1)-(a+1)ln(a+1)-b ≥0. (a+1)b ≤(a+1)2-(a+1)2ln(a+1)(a+1>0). 令F(x)=x 2-x 2ln x(x>0), 则F ′(x)=x (1-2ln x), 由F ′(x)>0得由F ′(x)<0得当F (x)max =e 2,≨当(a+1)b 的最大值为e 2.【变式备选】已知函数f(x)=ln x ,g(x)= 12x 2-2x .(1)设h(x)=f(x+1)-g ′(x)(其中g ′(x)是g(x)的导函数),求h(x)的最大值.(2)证明:当0<b<a 时,求证: f(a+b)-f(2a)<b a2a-. (3)设k ∈Z,当x>1时,不等式k(x-1)<xf(x)+3g ′(x)+4恒成立,求k 的最大值. 【解析】(1)h(x)=f(x+1)-g ′(x)=ln(x+1)-x+2,x>-1, 所以h ′(x)=1x1x 1x 1--=++. 当-1<x<0时,h ′(x)>0;当x>0时,h ′(x)<0.因此,h(x)在(-1,0)上单调递增,在(0,+≦)上单调递减.因此,当x=0时,h(x)取得最大值h(0)=2. (2)当0<b<a 时,-1<b a2a-<0. 由(1)知:当-1<x<0时,h(x)<2,即ln(1+x)<x . 因此,有f(a+b)-f(2a)a b b a b alnln(1)2a 2a 2a+--==+<. (3)不等式k(x-1)<xf(x)+ 3g ′(x)+4化为k<xln x xx 1+-+2, 所以k<xln x xx 1+-+2对任意x>1恒成立. 令m(x)=xln x x x 1+-+2,则m ′(x)=()2x ln x 2x 1---, 令n(x)=x-ln x-2(x>1),则n ′(x)=1x 11xx--=>0, 所以函数n(x)在(1,+≦)上单调递增. 因为n(3)=1-ln 3<0,n(4)=2-2ln 2>0,所以方程n(x)=0在(1,+≦)上存在唯一实根x 0,且满足x 0∈(3,4). 当1<x<x 0时,n(x)<0, 即m ′(x)<0,当x>x 0时,n(x)>0,即m ′(x)>0,所以函数m(x)=x xln x2x 1++-在(1,x 0)上单调递减,在(x 0,+≦)上单调递增. 所以m(x)min =m(x 0)()()000000x 1ln x 2x 1x 1x 22x 1+=+-+-=+-=x 0+2∈(5,6).所以k<m(x)min=x0+2∈(5,6).故整数k的最大值是5.关闭Word文档返回原板块。
滚动过关检测一 集合、常用逻辑用语、不等式、函数一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2022·湖南湘潭模拟]已知集合A ={-1,0,1,2,3},B ={x |2x>2},则A ∩B =( ) A .{0,1,2,3}B .{1,2,3} C .{2,3}D .{-1,0,1}2.[2022·湖南武冈二中月考]已知a >b >0,下列不等式中正确的是( ) A.c a >c b B.1a -1<1b -1C .-a 2>-ab D .ab >b 23.设f (x )为定义在R 上的奇函数,且满足f (x )=-f (x +2),f (1)=1,则f (-1)+f (8)=( )A .-2B .-1C .0D .14.已知定义在R 上的函数f (x )满足,①f (x +2)=f (x ),②f (x -2)为奇函数,③当x ∈[0,1)时,f x 1-f x 2x 1-x 2>0(x 1≠x 2)恒成立.则f ⎝ ⎛⎭⎪⎫-152、f (4)、f ⎝ ⎛⎭⎪⎫112的大小关系正确的是( )A .f ⎝ ⎛⎭⎪⎫112>f (4)>f ⎝ ⎛⎭⎪⎫-152B .f (4)>f ⎝ ⎛⎭⎪⎫112>f ⎝ ⎛⎭⎪⎫-152C .f ⎝ ⎛⎭⎪⎫-152>f (4)>f ⎝ ⎛⎭⎪⎫112D .f ⎝ ⎛⎭⎪⎫-152>f ⎝ ⎛⎭⎪⎫112>f (4) 5.[2022·西南大学附中月考]给定函数f (x )=x2,g (x )=-x 2+x ,x ∈R .用m (x )表示f (x ),g (x )中的较小者,记为m (x )=min {}f x ,g x,则m (x )的最大值为()A.14B .1C .0D .2 6.[2022·福建福州模拟]已知e 是自然对数的底数,关于x 的方程e |x -2|=x 有两个不同的解x 1,x 2(x 1<x 2),则( )A .x 1<1,x 2>3B .x 1>1,x 2<3C .x 1>1,x 2>3D .x 1<1,x 2<37.[2022·湖北宜昌模拟]若正实数x ,y 满足x +y =1,且不等式4x +1+1y <m 2+32m 有解,则实数m 的取值范围是( )A .m <-3或m >32B .-3<m <32C .m ≤-3或m ≥32D .-3≤m ≤328.[2022·重庆南开中学月考]函数f (x )=x1+|x |,则下列结论中错误的是( )A .y =f (x )的图象关于点(-1,1)对称B .f (x )在其定义域上单调递增C .f (x )的值域为(-1,1)D .函数g (x )=f (x )-x 有且只有一个零点二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列命题中,错误的命题有( ) A .函数f (x )=x 与g (x )=(x )2是同一个函数B .命题“∃x ∈[0,1],x 2+x ≥1”的否定为“∀x ∈[0,1],x 2+x <1” C .函数y =sin x +4sin x ⎝⎛⎭⎪⎫0<x <π2的最小值为4D .设函数f (x )={ 2x +2,x <02x,x ≥0,则f (x )在R 上单调递增10.[2022·河北保定模拟]下列条件中,其中p 是q 的充分不必要条件的是( ) A .p :a ≥1,b ≥1;q :a +b ≥2 B .p :tan α=1;q :α=k π+π4(k ∈Z )C .p :x >1;q :ln(e x+1)>1D .p :a 2<1;q :函数f (x )=x 2+(2-a )x -2a 在(0,1)上有零点 11.[2022·湖北恩施模拟]若a >b >1>c >0,则有( ) A .log c a >log c b B .a c>b cC .a (b +c )>b (a +c ) D.a b <b c12.[2022·山东潍坊月考]已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x,x ≤0x 3-6x 2+9x +1,x >0,则下列结论正确的是( )A .f (x )在(-1,1)上单调递减B .f (log 23)>f (log 25)C .当x ∈(-1,a ]时,函数f (x )的值域为[1,5],则1≤a ≤4D .当1<t <5时,函数g (x )=[f (x )]2-(t +5)f (x )+5t 恰有7个不同的零点 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.函数y =4-x2ln x +1的定义域为________.14.若函数f (x )=2+ae x -1为奇函数.则a =________.15.[2022·天津河西区月考]已知x >0,y >0,x +y 2=4,则log 2x +2log 2y 的最大值为________.16.[2022·北京育才中学月考]设函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,-x 2+x +14,x >0,则f [f (0)]=________;若方程f (x )=b 有且仅有3个不同的实数根,则实数b 的取值范围是________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知命题p :“∀x ∈R ,关于x 的方程x 2+mx +m +3=0有两个不相等的负实根”是假命题.(1)求实数m 的取值集合M ;(2)在(1)的条件下,设不等式(x -a )(x -2)<0的解集为N ,其中a ≠2.若x ∈N 是x ∈M 的充分条件,求实数a 的取值范围.18.(12分)已知函数f (x )=x 2+ax -a -1(a ∈R ). (1)若f (x )在[1,+∞)上单调递增,求a 的取值范围;(2)解关于x 的不等式f (x )≤0.19.(12分)已知函数f (x )=log 21+axx -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.20.(12分)某厂家拟在2022年举行产品促销活动.经测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用t 万元(t ≥0)满足x =3-kt +1(k 为常数).如果不搞促销活动,那么该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2022年该产品的利润y 万元表示为年促销费用t 万元的函数;(2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大,并求出最大利润.21.(12分)[2022·广东佛山一中月考]已知f (x )是定义在(-1,1)上的奇函数,且当0<x <1时,f (x )=9x9x +3,(1)求f (x )在(-1,1)上的解析式和值域; (2)求f ⎝ ⎛⎭⎪⎫12022+f ⎝ ⎛⎭⎪⎫32022+f ⎝ ⎛⎭⎪⎫52022+…+f ⎝ ⎛⎭⎪⎫20212022的值.22.(12分)[2022·重庆南开中学月考]设函数f (x )=a 2x -t -1a x(a >0,且a ≠1)是定义域为R 的奇函数,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫1,32. (1)求t 和a 的值;(2)若∀x ∈R ,f (kx -x 2)+f (x -1)<0,求实数k 的取值范围; (3)是否存在实数m ,使函数g (x )=22x+2-2x-mf (x )在区间[1,log 23]上的最大值为1.若存在,求出m 的值;若不存在,请说明理由.滚动过关检测一 集合、常用逻辑用语、不等式、函数1.答案:C解析:因为B ={x |2x>2}={x |x >1},所以A ∩B ={2,3}. 2.答案:D解析:由a >b >0,∴1a <1b ,而c ≥0时,c a ≤cb,因此A 不正确;a -1,b -1与0的大小关系不确定,因此B 不正确;由a >b >0,∴-a 2<-ab ,因此C 不正确;由a >b >0,∴ab >b 2,因此D 正确. 3.答案:B解析:∵f (x )是定义在R 上的奇函数,∴f (0)=0,又f (x )=-f (x +2),则f (x +2)=-f (x +4),所以f (x )=f (x +4),即函数的周期T =4,∴f (8)=f (4)=f (0)=0,又f (-1)=-f (1)=-1,∴f (-1)+f (8)=-1.4.答案:C解析:由f (x +2)=f (x )可得f (x )的周期为2, 因为f (x -2)为奇函数,所以f (x )为奇函数, 因为x ∈[0,1)时,f x 1-f x 2x 1-x 2>0,所以f (x )在(0,1)上单调递增,因为f (x )为奇函数,所以f (x )在(-1,0)上单调递增, 所以f (x )在(-1,1)上单调递增,因为f ⎝ ⎛⎭⎪⎫-152=f ⎝ ⎛⎭⎪⎫-152+2×4=f ⎝ ⎛⎭⎪⎫12,f (4)=f (4-2×2)=f (0), f ⎝ ⎛⎭⎪⎫112=f ⎝⎛⎭⎪⎫112-2×3=f ⎝ ⎛⎭⎪⎫-12, 所以f ⎝ ⎛⎭⎪⎫12>f (0)>f ⎝ ⎛⎭⎪⎫-12,即f ⎝ ⎛⎭⎪⎫-152>f (4)>f ⎝ ⎛⎭⎪⎫112. 5.答案:A解析:令x 2<-x 2+x 得0<x <12,所以m (x )=⎩⎪⎨⎪⎧x 2,x ∈⎝ ⎛⎭⎪⎫0,12-x 2+x ,x ∈-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞当x ∈⎝ ⎛⎭⎪⎫0,12时,m (x )max <m ⎝ ⎛⎭⎪⎫12=14,当x ∈(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞时,m (x )max =m ⎝ ⎛⎭⎪⎫12=14,综上所述,m (x )max =14.6.答案:C 解析:令f (x )=e|x -2|-x ,则函数f (x )的图象在R 上连续,∵f (1)=e -1>0,f (2)=1-2=-1<0,f (3)=e -3<0,f (4)=e 2-4>0,∴f (1)f (2)<0,f (3)f (4)<0,∴函数f (x )在区间(1,2),(3,4)上各有一个零点,即1<x 1<2,3<x 2<4.7.答案:A解析:若不等式4x +1+1y <m 2+32m 有解,则m 2+32m >⎝ ⎛⎭⎪⎫4x +1+1y min ,4x +1+1y =12⎝ ⎛⎭⎪⎫4x +1+1y (x +1+y )=12⎝ ⎛⎭⎪⎫5+4y x +1+x +1y ≥12⎝⎛⎭⎪⎫5+24y x +1·x +1y =12(5+2×2)=92, 当且仅当⎩⎪⎨⎪⎧4y x +1=x +1y x +y =1即⎩⎪⎨⎪⎧x =13y =23时,4x +1+1y 最小值为92, 所以m 2+32m >92,即2m 2+3m -9>0,所以(2m -3)(m +3)>0,解得:m <-3或m >32.8.答案:A解析:f (x )的定义域为(-∞,+∞),因为f (-x )=-x 1+|-x |=-x1+|x |=-f (x ),所以f (x )为奇函数,f (x )的图象关于原点对称,在f (x )的图象上取点(0,0),它关于(-1,1)对称的点(-2,2)不在f (x )的图象上,故A 不正确;当x >0时,f (x )=x1+x =11x+1为增函数,又f (x )为奇函数,且f (0)=0,所以f (x )在其定义域上单调递增,故B 正确;当x >0时,f (x )=x1+x =11x+1∈(0,1),又f (x )为奇函数,所以当x <0时,f (x )∈(-1,0),又f (0)=0,所以f (x )的值域为(-1,1),故C 正确;令g (x )=f (x )-x =0,得x1+|x |=x ,得x =0,所以函数g (x )=f (x )-x 有且只有一个零点,故D 正确.9.答案:ACD解析:函数f (x )=x 定义域为R ,函数g (x )=(x )2的定义域为[0,+∞),所以两个函数的定义域不相同,所以两个函数不是相同函数;所以A 不正确;命题“∃x ∈[0,1],x2+x ≥1”的否定为“∀x ∈[0,1],x 2+x <1”,满足命题的否定形式,所以B 正确;函数y =sin x +4sin x ⎝ ⎛⎭⎪⎫0<x <π2,因为0<x <π2,所以0<sin x <1,可知y =sin x +4sin x>2sin x ·4sin x =4,所以函数没有最小值,所以C 不正确;设函数f (x )=⎩⎪⎨⎪⎧2x +2,x <0,2x,x ≥0,两段函数都是增函数,并且x <0时,x →0,f (x )→2,x ≥0时,函数的最小值为1,两段函数在R 上不是单调递增,所以D 不正确.10.答案:AC解析:对于A ,由a ≥1,b ≥1,显然可得a +b ≥2,反之不成立,故正确;对于B ,显然是充要条件,不正确;对于C ,∵x >1,∴e x >e ,e x +1>e ,ln(e x+1)>1,反之不成立,正确;对于D ,当a 2<1即-1<a <1时,f (x )=x 2+(2-a )x -2a =(x -a )(x +2)在(0,1)上不一定有零点,D 不正确.11.答案:BC解析:A.因为y =log c x 在(0,+∞)上单调递减,所以log c a <log c b ,故错误;B.因为y =x c在(0,+∞)上单调递增,所以a c>b c,故正确;C.因为a (b +c )-b (a +c )=(a -b )c >0,所以a (b +c )>b (a +c ),故正确;D.因为a b -b c =ac -b 2bc,且ac -b 2无法确定正负,故错误.12.答案:BCD解析:当x >0时,f ′(x )=3x 2-12x +9=3(x -1)(x -3),∴x ∈(0,1)∪(3,+∞)时,f ′(x )>0,x ∈(1,3)时,f ′(x )<0,∴f (x )在(0,1),(3,+∞)上单调递增,在(1,3)上单调递减,又1<log 23<log 25<3,∴f (log 23)>f (log 25),故A 错误,B 正确;由解析式可得,f (x )图象如图:对于C ,由f (1)=f (4)=5,所以当1≤a ≤4时,x ∈(-1,a ]上函数值域为[1,5],故C 正确;对于D ,由[f (x )]2-(t +5)f (x )+5t =0,即[f (x )-5][f (x )-t ]=0,得f (x )=5或f (x )=t ,∵y =f (x )与y =5有3个公共点,当1<t <5时,y =f (x )与y =t 有4个公共点,此时共有7个公共点,故D 正确.13.答案:(-1,0)∪(0,2] 解析:由⎩⎪⎨⎪⎧4-x 2≥0ln x +1≠0x +1>0解得⎩⎪⎨⎪⎧-2≤x ≤2x ≠0x >-1,所以定义域为:(-1,0)∪(0,2].14.答案:4解析:由题意,f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,则f (-x )=-f (x ),故2+ae x -1=-⎝ ⎛⎭⎪⎫2+a e -x -1,即2+a e x -1=-2-a e x 1-e x ,整理得4+a -a e xe x-1=4-a =0,解得a =4.15.答案:2解析:因为x >0,y >0,x +y 2=4,由基本不等式得4=x +y 2≥2xy 2,化为xy 2≤4,当且仅当x =2,y =2时取等号.则log 2x +2log 2y =log 2(xy 2)≤log 24=2.因此log 2x +2log 2y 的最大值是2.16.答案:14⎝ ⎛⎭⎪⎫14,12 解析:函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0-x 2+x +14,x >0,则f [f (0)]=f (e 0)=f (1)=14.x ≤0时,f (x )≤1,x >0时,f (x )=-x 2+x +14,对称轴为:x =12,开口向下,函数的最大值为f ⎝ ⎛⎭⎪⎫12=-14+12+14=12,x →0时,f (0)→14,方程f (x )=b 有且仅有3个不同的实数根,则实数b的取值范围是:⎝ ⎛⎭⎪⎫14,12.17.解析:(1)根据题意,若∀x ∈R ,关于x 的方程x 2+mx +m +3=0有两个不相等的负实根,则⎩⎪⎨⎪⎧Δ=m 2-4m +3>0x 1+x 2=-m2<0x 1x 2=m +3>0,解得m >6,故M ={m |m ≤6}.(2)由(x -a )(x -2)<0且a ≠2,得当a <2时,N ={x |a <x <2},当a >2时,N ={x |2<x <a }.因x ∈N 是x ∈M 的充分条件,所以⎩⎪⎨⎪⎧2≤6a ≤6a ≠2,解得a <2或2<a ≤6.18.解析:(1)f (x )的对称轴为x =-a 2,因为f (x )在[1,+∞)上单调递增,所以-a2≤1,解得a ≥-2.(2)因为f (x )=(x +a +1)(x -1),当a +1<-1,即a <-2时,解集为{x |1≤x ≤-a -1}; 当a +1=-1,即a =-2时,解集为{x |x =1}; 当a +1>-1,即a >-2时,解集为{x |-a -1≤x ≤1}.19.解析:(1)因为函数f (x )=log 21+axx -1是奇函数,所以f (-x )=-f (x ),所以log 21-ax -x -1=-log 21+axx -1,即log 2ax -1x +1=log 2x -11+ax ,所以a =1,f (x )=log 21+x x -1, 令1+xx -1>0,解得x <-1或x >1,所以函数的定义域为{x |x <-1或x >1}. (2)f (x )+log 2(x -1)=log 2(1+x ),当x >1时,x +1>2,所以log 2(1+x )>log 22=1.因为x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,所以m ≤1,所以m 的取值范围是(-∞,1].20.解析:(1)由已知,当t =0时,x =1(万件),所以1=3-k ,解得k =2,所以x =3-2t +1. 由已知,每件产品的销售价格为1.5×8+16xx(元),所以2022年的利润y =1.5x ·8+16x x -8-16x -t =28-16t +1-t (t ≥0)(2)因为y =29-⎣⎢⎡⎦⎥⎤t +1+16t +1, 所以(t +1)+16t +1≥216=8,当且仅当t +1=16t +1即t =3时取等号. 所以y ≤29-8=21,即y max =21(万元).答:该厂家2022年的促销费用投入3万元时,厂家的利润最大为21万元. 21.解析:(1)当-1<x <0时,0<-x <1,f (-x )=9-x9-x +3=11+3·9x ,因为f (x )是(-1,1)上的奇函数,所以f (x )=-f (-x )=-11+3·9x ,当x =0时,f (0)=0,所以,f (x )在(-1,1)上的解析式为f (x )=⎩⎪⎨⎪⎧-11+3·9x ,-1<x <00,x =09x 9x+3,0<x <1;当-1<x <0时,9x ∈⎝ ⎛⎭⎪⎫19,1,1+3·9x∈⎝ ⎛⎭⎪⎫43,4,-11+3·9x ∈⎝ ⎛⎭⎪⎫-34,-14, 当0<x <1时,9x∈(1,9),1+-39x +3∈⎝ ⎛⎭⎪⎫14,34,所以,f (x )在(-1,1)上的值域为⎝ ⎛⎭⎪⎫-34,-14∪{0}∪⎝ ⎛⎭⎪⎫14,34; (2)当0<x <1时,f (x )=9x9x +3,f (x )+f (1-x )=9x9x +3+91-x91-x +3=9x9x +3+99+3·9x =1,所以f ⎝ ⎛⎭⎪⎫12022+f ⎝ ⎛⎭⎪⎫20212022=f ⎝ ⎛⎭⎪⎫32022+f ⎝ ⎛⎭⎪⎫20192022=f ⎝ ⎛⎭⎪⎫52022+f ⎝ ⎛⎭⎪⎫20172022= (1)故f ⎝⎛⎭⎪⎫12022+f ⎝ ⎛⎭⎪⎫32022+f ⎝ ⎛⎭⎪⎫52022+…+f ⎝ ⎛⎭⎪⎫20212022=10112.22.解析:(1)∵f (x )是定义域为R 上的奇函数, ∴f (-x )=-f (x ),且f (0)=0,∴f (0)=1-t -11=0,∴t =2,经检验知符合题意,f (x )=a x -a -x,∵函数f (x )的图象过点⎝ ⎛⎭⎪⎫1,32,∴a -a -1=32,得2a 2-3a -2=0,解得:a =2或a =-12,因为a >0且a ≠1,∴a =2.(2)由(1)得f (x )=2x -2-x,由f (kx -x 2)+f (x -1)<0,得f (kx -x 2)<-f (x -1), ∵f (x )为奇函数,∴f (kx -x 2)<f (1-x ), ∵2>1,∴f (x )=2x -2-x为R 上的增函数,∴kx -x 2<1-x 对一切x ∈R 恒成立,即x 2-(k +1)x +1>0对一切x ∈R 恒成立, 故Δ=(k +1)2-4<0,解得-3<k <1. (3)g (x )=22x+2-2x -m (2x -2-x),设t =2x -2-x ,则(2x -2-x )2-m (2x -2-x )+2=t 2-mt +2,∵x ∈[1,log 23],∴t ∈⎣⎢⎡⎦⎥⎤32,83,记h (t )=t 2-mt +2,∴函数h (t )=t 2-mt +2在⎣⎢⎡⎦⎥⎤32,83有最大值为1,①若对称轴t =m 2>2512,∴h (t )max =h ⎝ ⎛⎭⎪⎫32=174-32m =1⇒m =136,不合题意.②若对称轴t =m 2≤2512,⎩⎪⎨⎪⎧ m 2≤2512h tmax=h ⎝ ⎛⎭⎪⎫83=1⇒⎩⎪⎨⎪⎧m ≤256m =7324⇒m =7324,综上所述:故存在实数m =7324,使函数g (x )在[]1,log 23上的最大值为1.。
阶段滚动检测(一)(第一、二章) (120分钟 150分) 第I 卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={0,a},B ={b|b 2-3b<0,b ∈Z},A ∩B ≠Ø,则实数a 的值为( )(A)1 (B)2 (C)1或2 (D)2或3 2.已知a 、b 都是实数,那么“a 2>b 2”是“a>b ”的( ) (A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件3.(2012·安阳模拟)设集合A ={x|-2<-a<x<a ,a>0},命题p :1∈A ,命题q :2∈A.若p ∨q 为真命题,p ∧q 为假命题,则a 的取值范围是( ) (A)0<a<1或a>2 (B)0<a<1或a ≥2 (C)1<a<2 (D)1≤a ≤24.函数f(x)=πx +log 2x 的零点所在区间为( )1111A []B []16884111C []D [1]422(),(),(),(),5.在函数y=|x|(x ∈[-1,1])的图象上有一点P(t,|t|), 此函数与x 轴、直线x=-1及x=t 围成图形(如图阴影部 分)的面积为S ,则S 与t 的函数关系图可表示为( )6.定义在R 上的函数f(x)满足()2log (4x)x 0f x f (x 1)f (x 2)x 0≤⎧⎨>⎩-,=,---,则f(3)的值为( )(A)-1 (B)-2 (C)1 (D)27.下列图象中,有一个是函数()3221f x x ax (a 1)x 13=++-+(a ∈R ,a ≠0)的导函数y =f ′(x)的图象,则f(-1)等于( )()()()()51A B 3315C D 33--8.(2012·琼海模拟)已知函数f(x)=ax 3+bx 2+x(a ,b ∈R ,ab ≠0)的图象如图所示(x 1,x 2为两个极值点),且|x 1|>|x 2|,则有( )(A)a >0,b >0 (B)a <0,b <0 (C)a <0,b >0 (D)a >0,b <09.已知函数f(x)=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f(x)的极大值、极小值分别为( )()()()()44A 0B 0272744C 0D 02727,,-,,-10.不等式e x -x>ax 的解集为P ,且[0,2]⊆P ,则实数a 的取值范围是( )(A)(-∞,e -1) (B)(e -1,+∞) (C)(-∞,e +1) (D)(e +1,+∞)第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题4分,共20分.请把正确答案填在题中横线上)11.(2012·杭州模拟)函数ln x 1y +=__________.12.若f(x)是幂函数,且满足()()f 43f 2=,则f(12)=__________.13.(2012•蚌埠模拟)定义在R 上的偶函数f(x)在[0,+∞)上是增函数,且f(13)=0,则不等式f(18log x )>0的解集是___________.14.拟定从甲地到乙地通话m 分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m 的最小整数,若通话费为10.6元,则通话时间m ∈__________.15.已知函数f(x)=lnx +2x ,g(x)=a(x 2+x),若f(x)≤g(x)恒成立,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(13分)(2012·台州模拟)已知命题p:函数22y log (x 2ax 3a 2)=-+-的定义域为R ;命题q:方程2ax 2x 10++=有两个不相等的负数根,若p ∨q 是假命题,求实数a 的取值范围.17.(13分)如图,设点P 从原点沿曲线y=x 2向点A(2,4)移动,记直线OP 、曲线y=x 2及直线x=2所围成的面积分别为S 1,S 2,若S 1=S 2,求点P 的坐标.18.(13分)集合A 是由具备下列性质的函数f(x)组成的: ①函数f(x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:(1)判断函数()()x 121f x 2(x 0)f x 46()(x 0)2≥≥及=-是否属于集合A ?并简要说明理由;(2)对于(1)中你认为属于集合A 的函数f(x),不等式f(x)+f(x +2)<2f(x +1)是否对于任意的x ≥0恒成立?请说明理由.19.(13分)如图所示:图1是定义在R 上的二次函数y=f(x)的部分图象,图2是函数g(x)=log a (x +b)的部分图象.(1)分别求出函数f(x)和g(x)的解析式;(2)如果函数y =g(f(x))在区间[1,m)上单调递减,求m 的取值范围. 20.(14分)已知函数f(x)=ax 2+2x +c(a 、c ∈N *)满足: ①f(1)=5;②6<f(2)<11. (1)求a 、c 的值;(2)若对任意的实数x ∈[1322,],都有f(x)-2mx ≤1成立,求实数m 的取值范围.21.(14分) 已知函数f(x)=x 2+bsinx-2(b ∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x)-F(-x)=0.(1)求函数f(x)的解析式;(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调递减,求实数a 的取值范围;(3)函数h(x)=ln(1+x2)-12f(x)-k有几个零点?答案解析1.【解析】选C.B={1,2}.由A∩B≠Ø,得a=1或2,故选C.2.【解析】选D.令a=-2,b=1.(-2)2>12-2>1,充分性不成立.令a=1,b=-2,1>-2 12>(-2)2,必要性不成立,故选D.3.【解析】选C.p∨q为真命题,p∧q为假命题,则命题p,q一真一假.命题p为真时,a>1,又-2<-a,则a<2,∴1<a<2.由a<2知命题q为假,故选C.4.【解析】选C.因为f(x)在定义域内为单调递增函数,而在4个选项中,f(14)·f(12)<0,所以零点所在区间为[14,12].5.【解析】选B.当t ∈[-1,0]时,S 增速越来越慢,当t ∈[0,1]时,S 增速越来越快,故选B.6.【解题指南】根据自变量的值,选择相应区间上的函数解析式代入求解. 【解析】选B.依题意得f(3)=f(2)-f(1)=f(1)-f(0)-f(1)=-f(0)=-log 2(4-0)=-2, 故选B.7.【解析】选B.∵f ′(x)=x 2+2ax +(a 2-1),∴导函数f ′(x)的图象开口向上.又∵a ≠0,∴其图象必为第三个图. 由图象特征知f ′(0)=0,且-a>0,∴a =-1. 故f(-1)=-13-1+1=-13.8.【解析】选B.由已知,x 1、x 2是f ′(x)=3ax 2+2bx+1的两个零点.又121210x x 0 a 03a,.x x 02b b 003a⎧⎪⎧⎧⎪∴∴⎨⎨⎨+⎩⎩⎪-⎪⎩<<<,<<< 9.【解题指南】解答本题的突破口在于由f(x)的图象与x 轴切于(1,0)点得到f ′(1)=0及f(1)=0.【解析】选A.f ′(x)=3x 2-2px -q , 由f ′(1)=0,f(1)=0得32p q 01p q 0⎧⎨⎩--=--=,解得p 2q 1⎧⎨⎩==-,∴f(x)=x 3-2x 2+x.由f ′(x)=3x 2-4x +1=0,得x =13或x =1,进而求得当x =13时,f(x)取极大值427,当x =1时,f(x)取极小值0,故选A.10.【解题指南】转化为恒成立问题,利用导数求解.【解析】选A.因为e x -x>ax 的解集为P ,且[0,2]⊆P ,所以对任意x ∈[0,2],e x-x>ax 恒成立,当x =0时,不等式恒成立,当0<x ≤2时,a<xe x-1也应恒成立.令g(x)=x e x -1,则g ′(x)=x2(x 1)e x -,当1<x ≤2时,g ′(x)>0,当0<x<1时,g ′(x)<0.所以当x =1时,g(x)取得最小值e -1, 所以a 的取值范围是(-∞,e -1),故选A. 11.【解析】由题意知2x 10,x 3x 40+⎧⎨--+⎩>>,解得-1<x <1.答案:(-1,1)12.【解析】设f(x)=x α,则有42αα=3,解得2α=3,α=log 23,∴f(12)=(12)22log 3log 32-==13.答案: 1313.【解析】由已知可得118811log x log x 33->或<,∴0<x <12或x >2. 答案:(0,12)∪(2,+∞)14.【解析】∵10.6=1.06×(0.50×[m]+1),∴0.5[m]=9,∴[m]=18, ∴m ∈(17,18]. 答案:(17,18]15.【解析】设F(x)=f(x)-g(x),其定义域为(0,+∞),则F ′(x)=1x+2-2ax -a =(2x 1)(ax 1)x-+-,x ∈(0,+∞).当a ≤0时,F ′(x)>0,F(x)单调递增,F(x)≤0不可能恒成立,当a>0时,令F ′(x)=0,得x =1a或x =-12 (舍去).当0<x<1a 时,F ′(x)>0,当x>1a 时,F ′(x)<0,故F(x)在(0,+∞)上有最大值F(1a ),由题意F(1a )≤0恒成立,即ln 1a +1a-1≤0,令φ(a)=ln 1a +1a -1,则φ(a)在(0,+∞)上单调递减,且φ(1)=0,故ln 1a +1a-1≤0成立的充要条件是a ≥1. 答案:[1,+∞)16.【解析】由题意得p 和q 均是假命题,由p:x 2-2ax+3a-2>0恒成立,Δ=4a 2-4(3a-2)<0得1<a <2,⌝p 真:a ≥2或a ≤1,由q :当a=0时,不满足,当a ≠0时,020,a 10a⎧⎪∆⎪-⎪⎨⎪⎪⎪⎩><>得0<a <1,⌝q 真:a ≥1或a ≤0,综上,由p 假和q 假得a ≤0或a=1或a ≥2.17.【解析】设直线OP 的方程为y=kx,P 点的坐标为(x,x 2),则()()x2220x kx x dx x kx dx,-=-⎰⎰ 即23x3220x 1111(kx x )(x kx )2332-=-,解得12kx 2-13x 3=83-2k-(13x 3-12kx 2),解得k=43,即直线OP 的方程为y=43x,所以点P 的坐标为(43,169).18.【解析】(1)函数f 1(x)2不属于集合A.因为f 1(x)的值域是[-2,+∞),所以函数f 1(x)-2不属于集合A.f 2(x)=4-6·(12)x (x ≥0)属于集合A ,因为:①函数f 2(x)的定义域是[0,+∞);②f 2(x)的值域是[-2,4);③函数f 2(x)在[0,+∞)上是增函数.(2)是.∵f(x)+f(x +2)-2f(x +1)=6·(12)x (-14)<0, ∴不等式f(x)+f(x +2)<2f(x +1)对任意的x ≥0恒成立.19.【解题指南】解答本题关键是借助图形得到函数所过的点,求出对应的解析式,进而求解(2).【解析】(1)由题图1得,二次函数f(x)的顶点坐标为(1,2), 故可设函数f(x)=k(x -1)2+2,又函数f(x)的图象过点(0,0),故k =-2, 整理得f(x)=-2x 2+4x.由题图2得,函数g(x)=log a (x +b)的图象过点(0,0)和(1,1),故有a alog b 0a 2log (1b)1b 1⎧⎧∴⎨⎨⎩⎩=,=,+=,=,∴g(x)=log 2(x +1)(x>-1).(2)由(1)得y =g(f(x))=log 2(-2x 2+4x +1)是由y =log 2t 和t =-2x 2+4x +1复合而成的函数,而y =log 2t 在定义域上单调递增,要使函数y =g(f(x))在区间[1,m)上单调递减,必须t =-2x 2+4x +1在区间[1,m)上单调递减,且有t>0恒成立.由t =0得x t 的图象的对称轴为x =1.所以满足条件的m 的取值范围为20.【解析】(1)∵f(1)=a +2+c =5,∴c =3-a.① 又∵6<f(2)<11,即6<4a +c +4<11,② 将①式代入②式,得14a 33<<-, 又∵a 、c ∈N *,∴a =1,c =2. (2)由(1)知f(x)=x 2+2x +2.方法一:设g(x)=f(x)-2mx =x 2+2(1-m)x +2. ①当2(1m)2--≤1,即m ≤2时,g(x)max =g (32)=294-3m ,故只需294-3m ≤1,解得m ≥2512,又∵m ≤2,故无解. ②当2(1m)2-->1,即m>2时,g(x)max =g(12)=134-m ,故只需134-m ≤1,解得m ≥94.又∵m>2,∴m ≥94.综上可知,m 的取值范围是m ≥94.方法二:∵x∈[12,32],∴不等式f(x)-2mx≤1恒成立⇔2(1-m)≤-(x+1x )在[12,32]上恒成立.易知[-(x+1x )]min=-52,故只需2(1-m)≤-52即可.解得m≥94.【方法技巧】二次函数的最值求解技巧:当二次函数的定义域不是R时,求函数的最值,要充分利用函数的图象,重点关注开口方向和对称轴与所给定区间的关系:若对称轴不在区间内,则该区间是函数的单调区间,最值在两个端点处,反之,则必有一个在顶点处取,即函数的最值不在端点处,就在顶点处.21.【解析】(1)F(x)=f(x)+2=x2+bsinx-2+2=x2+bsinx,依题意,对任意实数x,恒有F(x)-F(-x)=0.即x2+bsinx-(-x)2-bsin(-x)=0,即2bsinx=0,所以b=0,所以f(x)=x2-2.(2)∵g(x)=x2-2+2(x+1)+alnx,∴g(x)=x2+2x+alnx,g′(x)=2x+2+ax.∵函数g(x)在(0,1)上单调递减,∴在区间(0,1)上,g′(x)=2x+2+ax =22x2x ax++≤0恒成立,∴a≤-(2x2+2x)在(0,1)上恒成立,而-(2x2+2x)在(0,1)上单调递减,∴a≤-4.(3)∵h(x)=ln(1+x 2)-12f(x)-k=ln(1+x 2)- 12x 2+1-k,∴h ′(x)=22x1x+ -x. 令h ′(x)= 22x1x+-x=0,解得x=0,-1,1, ∴当x<-1时,h ′(x)>0,当-1<x<0时,h ′(x)<0, 当0<x<1时,h ′(x)>0,当x>1时,h ′(x)<0, ∴h(x)极大值=h(±1)=ln2+12-k, ∴h(x)极小值=h(0)=1-k,所以①当k>ln2+12时,函数没有零点; ②当1<k<ln2+12时,函数有四个零点; ③当k<1或k=ln2+12时,函数有两个零点; ④当k=1时,函数有三个零点.。
2020年高考数学一轮复习单元滚动检测卷系列考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.滚动检测一第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x ∈R |y =lg(2-x )},N ={y ∈R |y =2x -1},则( )A .M =NB .M ∩N =∅C .M ⊇ND .M ∪N =R 2.函数f (x )=11-x+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 3.已知命题p :△ABC 中,AB →·AC→<0,命题q :△ABC 是钝角三角形,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.命题“∃x 0∈[π2,π],sin x 0-cos x 0>2”的否定是( )A .∀x ∈[π2,π],sin x -cos x <2B .∃x 0∈[π2,π],sin x 0-cos x 0≤2C .∀x ∈[π2,π],sin x -cos x ≤2D .∃x 0∈[π2,π],sin x 0-cos x 0<25.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 等于( )A .6B .-6C .0D .126.已知函数f (x )=⎩⎨⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,0]∪(1,+∞)D .(-∞,1]∪(2,+∞) 7.对于非空集合A ,B ,定义运算:A B ={x |x ∈A ∪B ,且x ∉A ∩B },已知M ={x |a <x <b },N ={x |c <x <d },其中a 、b 、c 、d 满足a +b =c +d ,ab <cd <0,则M N 等于( )A .(a ,d )∪(b ,c )B .(c ,a ]∪[b ,d )C .(a ,c ]∪[d ,b )D .(c ,a )∪(d ,b )8.已知函数f (x )=⎩⎨⎧-x 2-2x +a ,x <0,-x 2+1+a ,x ≥0,且函数y =f (x )-x 恰有3个不同的零点,则实数a 的取值范围是( )A .(0,+∞)B .[-1,0)C .[-1,+∞)D .[-2,+∞)第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.已知命题p :-4<x -a <4,命题q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是______________.10.若函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是__________.11.已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=________. 12.若函数f (x )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎨⎧ x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f (294)+f (416)=________. 13.已知m ≠0,函数f (x )=⎩⎨⎧ 3x -m ,x ≤2,-x -2m ,x >2,若f (2-m )=f (2+m ),则实数m 的值为________.14.设函数f (x )=⎩⎨⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是_____________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(13分)已知集合A ={x ||x -a |≤2},B ={x |lg(x 2+6x +9)>0}.(1)求集合A 和∁R B ;(2)若A ⊆B ,求实数a 的取值范围.16.(13分)设p :实数x 满足x 2-4ax +3a 2<0(其中a ≠0),q :实数x 满足x -3x -2<0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.17.(13分)已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.18.(13分)设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+1 x+1的值域,集合C为不等式(ax-1a)·(x+4)≤0的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.19.(14分)经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似地满足f(t)=4+1t,人均消费g(t)(元)与时间t(天)的函数关系近似地满足g(t)=115-|t-15|.(1)求该城市的旅游日收益ω(t)(万元)与时间t(1≤t≤30,t∈N)的函数关系式;(2)求该城市的旅游日收益的最小值.20.(14分)已知定义域为R的函数f(x)=-2x+b2x+1+2是奇函数.(1)求b的值;(2)判断函数f(x)的单调性并证明;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.答案解析1.D [集合M 是函数y =lg(2-x )的定义域,所以M =(-∞,2),集合N 为函数y =2x -1的值域,所以N =(0,+∞),所以M ∪N =R .]2.C [∵⎩⎪⎨⎪⎧1-x ≠0,1+x >0,∴x >-1且x ≠1, 所以C 为正确选项,故选C.]3.A [由于在△ABC 中,AB →·AC→<0,可得A 为钝角,故△ABC 是钝角三角形,反之不成立,可能是B ,C 之一为钝角.故p 是q 的充分不必要条件.]4.C [特称命题的否定是全称命题,改量词并否定结论,所以C 正确.]5.B [作出函数f (x )的图象,可知函数f (x )在(-∞,-a 2]上单调递减,在[-a 2,+∞)上单调递增.又已知函数f (x )的单调递增区间是[3,+∞),所以-a 2=3,解得a =-6.]6.C [设函数h (x )=f (x )+x ,当x ≤0时,h (x )=x 是增函数,此时h (x )的值域是(-∞,0];当x >0时,h (x )=e x +x 是增函数,此时h (x )的值域(1,+∞).综上,h (x )的值域是(-∞,0]∪(1,+∞).函数g (x )=f (x )+x -m 有零点,即方程f (x )+x -m =0有解,也即方程m =f (x )+x 有解.故m 的取值范围是(-∞,0]∪(1,+∞).]7.C [由新定义的概念可知当a +b =c +d ,ab <cd <0时,a <c <d <b .再由题意可知M N =(a ,c ]∪[d ,b ),根据选项可知应为C.故选C.]8.B [函数y =f (x )-x 恰有3个不同的零点等价于函数y=⎩⎪⎨⎪⎧-x 2-3x ,x <0,-x 2-x +1,x ≥0的图象与直线y =-a 有3个不同的交点,作出图象,如图所示,可得当0<-a ≤1时,满足题意,故-1≤a <0.故选B.]9.[-1,6]解析 由p :-4<x -a <4成立,得a -4<x <a +4;由q :(x -2)(3-x )>0成立,得2<x <3,所以綈p :x ≤a -4或x ≥a +4,綈q :x ≤2或x ≥3,又綈p 是綈q 的充分条件,所以⎩⎪⎨⎪⎧ a -4≤2,a +4≥3,解得-1≤a ≤6,故答案为[-1,6]. 10.[-8,-6]解析 设g (x )=3x 2-ax +5,由已知得⎩⎨⎧ a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.11.-74解析 若a ≤1,f (a )=2a -1-2=-3,2a -1=-1(无解);若a >1,f (a )=-log 2(a +1)=-3,a =7,f (6-a )=f (-1)=2-2-2=14-2=-74.12.516解析 因为函数f (x )的周期是4,则f (294)=f (8-34)=f (-34),∵f (x )是奇函数,∴f (-34)=-f (34)=-34×14=-316,f (416)=f (8-76)=f (-76)=-f (76)=-sin 7π6=sin π6=12,则f (294)+f (416)=-316+12=516.13.8或-83解析 若m >0,则f (2-m )=3(2-m )-m =6-4m ,f (2+m )=-(2+m )-2m =-2-3m ,∴6-4m =-2-3m ,解得m =8.若m <0,则f (2-m )=-(2-m )-2m =-2-m ,f (2+m )=3(2+m )-m =6+2m ,∴-2-m =6+2m ,解得m =-83.14.(1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞) 解析 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1. 当x <1时,f (x )=2x -1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1, ∴f (x )min =-1.(2)由于f (x )恰有2个零点,分两种情况讨论:当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点;当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点.因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2. 15.解 (1)∵|x -a |≤2⇔-2≤x -a ≤2⇔a -2≤x ≤2+a ,∴集合A ={x |-2+a ≤x ≤2+a },∵lg(x 2+6x +9)>0,∴x 2+6x +9>1,∴集合B ={x |x <-4或x >-2}.∴∁R B =[-4,-2].(2)由A ⊆B ,得2+a <-4或者-2<-2+a .解得a <-6或a >0,所以a 的取值范围为{a |a <-6或a >0}.16.解 (1)当a =1时,由x 2-4ax +3a 2<0,解得1<x <3,即p 为真时,实数x 的取值范围是(1,3);由x -3x -2<0,解得2<x <3,即q 为真时,实数x 的取值范围是(2,3).若p ∧q 为真,则p 为真且q 为真,所以实数x 的取值范围是(2,3).(2)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.当a >0时,p :a <x <3a ,所以⎩⎪⎨⎪⎧ a ≤2,3a ≥3,解得1≤a ≤2; 当a <0时,p :3a <x <a ,而⎩⎪⎨⎪⎧3a ≤2,a ≥3无解,不合题意. 所以实数a 的取值范围是[1,2].17.解 (1)由题意可知⎩⎪⎨⎪⎧ -2<x -1<2,-2<3-2x <2,解得12<x <52, ∴函数g (x )的定义域为(12,52).(2)由g (x )≤0得f (x -1)+f (3-2x )≤0, ∴f (x -1)≤-f (3-2x ).∵f (x )是奇函数,∴f (x -1)≤f (2x -3). 又∵f (x )在(-2,2)上单调递减,∴⎩⎪⎨⎪⎧ -2<x -1<2,-2<2x -3<2,x -1≥2x -3.解得12<x ≤2,∴g (x )≤0的解集为(12,2].18.解 (1)由-x 2-2x +8>0得-4<x <2, 即A =(-4,2),∁R A =(-∞,-4]∪[2,+∞). y =x +1x +1=(x +1)+1x +1-1, 当x +1>0,即x >-1时y ≥2-1=1, 此时x =0,符合要求;当x +1<0,即x <-1时,y ≤-2-1=-3, 此时x =-2,符合要求.所以B =(-∞,-3]∪[1,+∞), 所以A ∩B =(-4,-3]∪[1,2).(2)(ax -1a )(x +4)=0有两根x =-4或x =1a 2.当a >0时,C ={x |-4≤x ≤1a 2},不可能C ⊆∁R A ;当a <0时,C ={x |x ≤-4或x ≥1a 2},若C ⊆∁R A ,则1a 2≥2,∴a 2≤12,∴-22≤a <0.故a 的取值范围为[-22,0).19.解 (1)由题意得,ω(t )=f (t )·g (t )=(4+1t )(115-|t -15|)(1≤t ≤30,t ∈N ),即ω(t )=⎩⎪⎨⎪⎧ (4+1t )(t +100)(1≤t <15,t ∈N ),(4+1t )(130-t )(15≤t ≤30,t ∈N ).(2)①当1≤t <15,t ∈N 时,ω(t )=(4+1t )(t +100)=4(t +25t )+401≥4×225+401=441,当且仅当t =25t ,即t =5时取等号,此时ω(t )取最小值,为441;②当15≤t ≤30,t ∈N 时,ω(t )=(4+1t )(130-t )=519+(130t -4t ),易知ω(t )在[15,30]上单调递减,所以当t =30时,ω(t )取最小值,为40313.因为40313<441,所以该城市旅游日收益的最小值为40313万元.20.解 (1)∵f (x )在定义域R 上是奇函数, ∴f (0)=0,即b -12+2=0,∴b =1.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1. 设x 1<x 2,则f (x 1)-f (x 2)=12x 1+1-12x 2+1=2x2-2x1(2x1+1)(2x2+1).∵函数y=2x在R上是增函数且x1<x2,∴2x2-2x1>0.又(2x1+1)(2x2+1)>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在(-∞,+∞)上为减函数.(3)∵f(x)是奇函数,∴不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(k -2t2),∵f(x)为减函数,由上式推得t2-2t>k-2t2.即对一切t∈R,3t2-2t-k>0,从而判别式Δ=4+12k<0⇒k<-13.∴k的取值范围是(-∞,-1 3).。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
阶段滚动检测(一)第一、二章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},集合B是函数y=lg(1-x2)的定义域,则下列结论正确的是( )A.A=BB.A BC.B AD.A∩B=∅2.(2014·烟台模拟)已知幂函数y=f(x)的图象过点,则log2f(2)的值为( )A. B.- C.2 D.-23.(2014·珠海模拟)下列函数中,在其定义域中,既是奇函数又是减函数的是( ) A.f(x)= B.f(x)=C.f(x)=2-x-2xD.f(x)=-tanx4.(2014·长春模拟)下列命题中,真命题是( )A.∃m0∈R,使函数f(x)=x2+m0x(x∈R)是偶函数B.∃m0∈R,使函数f(x)=x2+m0x(x∈R)是奇函数C.∀m∈R,使函数f(x)=x2+mx(x∈R)都是偶函数D.∀m∈R,使函数f(x)=x2+mx(x∈R)都是奇函数5.(2014·南昌模拟)已知在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),该函数的图象与x轴,直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系可表示为( )6.设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,q:m≥,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2014·长沙模拟)现有四个函数:①y=x·sinx;②y=x·cosx;③y=x·|cosx|;④y=x·2x的图象(部分)如下,则按照从左到右图象对应的函数序号正确的一组是( )A.①④③②B.④①②③C.①④②③D.③④②①8.已知函数f(x)=,命题p:∀x∈[0,+∞),f(x)≤1,则( )A.p是假命题,p:∃x 0∈[0,+∞),f(x0)>1B.p是假命题,p:∀x∈[0,+∞),f(x)≥1C.p是真命题,p:∃x 0∈[0,+∞),f(x0)>1D.p是真命题,p:∀x∈[0,+∞),f(x)≥19.(2014·青岛模拟)已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则( )A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)10.设定义域为R的函数f(x)满足以下条件:(i)对任意x∈R,f(x)+f(-x)=0;(ii)对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1).则以下不等式一定成立的是( ) ①f(a)>f(0);②f>f();③f<f(-a);④f>f(-a).A.①③B.②④C.①④D.②③11.(2014·武汉模拟)已知f(x)是定义在[a,b]上的函数,其图象是一条连续不断的曲线,且满足下列条件:①f(x)的值域为G,且G⊆[a,b];②对任意不同的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.那么,关于x的方程f(x)=x在[a,b]上根的情况是( )A.没有实数根B.有且只有一个实数根C.恰有两个不同的实数根D.有无数个不同的实数根12.对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.下面有三个命题:(1)若函数f(x)为理想函数,则f(0)=0.(2)函数g(x)=2x-1(x∈[0,1])是理想函数.(3)若函数f(x)是理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,则f(x0)=x0.其中正确的命题个数有( )A.0B.1C.2D.3二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.若函数f(x)=是奇函数,则g(-8)= .14.(2014·兰州模拟)若函数y=|log3x|在区间(0,a]上单调递减,则实数a的取值范围为.15.(2014·安阳模拟)曲线f(x)=x+在x=处的切线方程是,在x=x0处的切线与直线y=x和y轴围成三角形的面积为.16.(2014·成都模拟)给出下列四个命题:①函数f(x)=lnx-2+x在区间(1,e)上存在零点;②若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;③“a=1”是“函数f(x)=在定义域上是奇函数”的充分不必要条件;④函数y=f(1+x)的图象与函数y=f(1-x)的图象关于y轴对称.其中正确的命题是.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(2014·重庆模拟)函数y=的定义域为集合A,B=[-1,6),C={x|x<a}.(1)求集合A及A∩B.(2)若C⊆A,求a的取值范围.18.(12分)(2014·温州模拟)已知函数f(x)=1-(a>0且a≠1)是定义在R上的奇函数.(1)求a的值.(2)求函数f(x)的值域.(3)当x∈[1,+∞)时,tf(x)≤2x-2恒成立,求实数t的取值范围.19.(12分)(2014·福州模拟)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式y=+4(x-6)2,其中2<x<6,m为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m的值.(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数).试确定销售价格x的值,使网校每日销售套题所获得的利润最大.(保留1位小数)20.(12分)(2014·北京模拟)f(x)=alnx-(a+1)x+x2(a≥0).(1)若直线l与曲线y=f(x)相切,切点是P(2,0),求直线l的方程.(2)讨论f(x)的单调性.21.(12分)(2014·中山模拟)已知函数f(x)=(2-a)lnx++2ax(a≤0).(1)当a=0时,求f(x)的极值.(2)当a<0时,讨论f(x)的单调性.(3)若对任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.22.(14分)已知函数f(x)=ax+lnx,其中a为常数.(1)当a=-1时,求f(x)的最大值.(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.(3)当a=-1时,试推断方程|f(x)|=+是否有实数解.答案解析1.C 因为A={x|x2-x-2<0}=(-1,2),B={x|y=lg(1-x2)}=(-1,1).验证知B A正确.2.A 设幂函数为f(x)=xα,则f==,解得α=,所以f(x)=,所以f(2)=,即log2f(2)=log2=.3.C f(x)=在定义域上是奇函数,但不单调.f(x)=为非奇非偶函数.f(x)=-tanx在定义域上是奇函数,但不单调,所以选C.4.A 当m0=0时,函数f(x)=x2为偶函数,所以选A.5.【思路点拨】根据S与t的变化过程进行判断.B 由题意知,当-1<t<0时,面积越来越大,但增长的速度越来越慢.当t>0时,S 的增长会越来越快,故函数S图象在纵轴的右侧的切线斜率会逐渐增大,选B.6.C 因为f(x)=x3+2x2+mx+1,所以f′(x)=3x2+4x+m.由f(x)为增函数得f′(x)≥0在R上恒成立,则Δ≤0,即16-12m≤0,解得m≥,即p⇒q,反之,q⇒p.故p是q的充要条件.7.C 对于①,y=x〃sinx是偶函数,图象关于y轴对称对应第一个图形;对于②,y=x〃cosx是奇函数,且当x>0时,函数值有正值也有负值,所以对应第三个图形;对于③,y=x〃|cosx|是奇函数,图象关于原点对称,且当x>0时,y>0,故对应第四个图形,所以④y=x〃2x对应第二个图形.故从左到右图象对应的函数序号为①④②③,选C.8.C 因为f(x)=是R上的减函数,所以当x∈[0,+≦)时,f(x)≤f(0)=1. 所以p为真命题,p为:∃x 0∈[0,+≦),f(x0)>1,故选C.【误区警示】本题易误选,原因是对全称命题的否定不熟悉.9.C 由f(x)=f(4-x),可知函数关于x=2对称.由xf′(x)>2f′(x),得(x-2)f′(x)>0,所以当x>2时,f′(x)>0,函数递增,当x<2时,f′(x)<0,函数递减.当2<a<4,1<log2a<2,22<2a<24,即4<2a<16.因为f(log2a)=f(4-log2a),所以2<4-log2a<3,即2<4-log2a<3<2a,所以f(4-log2a)<f(3)<f(2a),即f(log2a)<f(3)<f(2a).10.【思路点拨】根据f(x)的奇偶性、单调性,将①②③④四个不等式逐个验证真伪,进行判断.B 由(i)知f(-x)=-f(x),所以函数为奇函数.由(ii)知函数在[1,a]上单调递增,因为>,所以f>f(),即②成立.排除A,C.因为a>1,所以<-1,又-(-a)=+a==>0,所以-a<<-1,因为函数在[1,a]上单调递增,所以在[-a,-1]上也单调递增,所以有f>f(-a)成立,即④也成立,所以选B.11.B 令g(x)=f(x)-x,x∈[a,b],则g(a)=f(a)-a≥0,g(b)=f(b)-b≤0,所以g(a)〃g(b)≤0.又因为不同的x,y∈[a,b],都有<1,则|f′(x)|<1,所以g′(x)=f′(x)-1<0,所以函数g(x)在[a,b]上单调递减,故函数g(x)在[a,b]上只有一个零点,即方程f(x)=x在[a,b]上有且只有一个实数根.12.D (1)取x1=x2=0,可得f(0)≥f(0)+f(0),所以f(0)≤0.又由条件①f(0)≥0,故f(0)=0.(2)显然g(x)=2x-1在[0,1]上满足条件①g(x)≥0也满足条件②g(1)=1.若x1≥0,x2≥0,x1+x2≤1,则g(x1+x2)-[g(x1)+g(x2)]=-1-[(-1)+(-1)]=--+1=(-1)(-1)≥0.即满足条件③,故g(x)是理想函数.(3)由条件知,任给m,n∈[0,1],当m<n时,由m<n知n-m∈(0,1],所以f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).若x0<f(x0),则f(x0)≤f(f(x0))=x0,前后矛盾;若x0>f(x0),则f(x0)≥f(f(x0))=x0,前后矛盾.所以f(x0)=x0.13.【解析】因为函数f(x)为奇函数,所以f(-8)=g(-8)=-f(8)=-log28=-3,即g(-8)=-3.答案:-314.【解析】易知函数y=|log3x|的单调递减区间为(0,1]. 又y=|log3x|在区间(0,a]上单调递减,所以(0,a]⊆[0,1],故得a∈(0,1].答案:(0,1]15.【解析】f′(x)=1-,所以f′=1-4=-3,又f=+2=,所以切线方程为y-=-3,即3x+y-4=0.可得在x=x0处的切线斜率为f′(x0)=1-,故方程为:y-=(x-x0),令y=x可得x=y=2x0,令x=0可得y=,故三角形的面积为S=〓〃|2x0|=2.答案:3x+y-4=0 216.【解析】①f(1)=ln1-2+1=-1<0,f(e)=ln e-2+e=e-1>0,则f(1)f(e)<0,又f(x)在(1,e)上是连续函数,故正确;②如函数f(x)=x3,f′(x)=3x2,f′(0)=0,而y=f(x)在R上无极值.故错误;③当a=1时,f(x)=,则f(-x)===-f(x),即f(x)为奇函数;由f(x)=在定义域上是奇函数有f(-x)===-f(x)=,则a=〒1.故正确.④设函数y=f(1+x)的图象上一点(x0,y0),则(x0,y0)关于y轴的对称点为(-x0,y0),此点在y=f(1-x)的图象上,故正确.答案:①③④【加固训练】下列命题:①若函数f(x)=lg(x+)为奇函数,则a=1;②函数f(x)=|sinx|的周期T=π;③方程lgx=sinx有且只有三个实数根;④对于函数f(x)=,若0<x1<x2,则f<.以上命题为真命题的是.(写出所有真命题的序号)【解析】由函数为奇函数知f(0)=0即lg=0,所以a=1.故①正确,易知②也正确,由图象可知③正确,④错误. 答案:①②③17.【解析】(1)由题意得log2(x2-3x-3)≥0,即x2-3x-3≥1,即x2-3x-4≥0,解得x≥4或x≤-1.所以A={x|x≥4或x≤-1}.因为B=[-1,6),所以A∩B={x|4≤x<6或x=-1}.(2)因为A={x|x≥4或x≤-1},C={x|x<a}.又因为C⊆A,所以a的取值范围为a≤-1.18.【解析】(1)因为f(x)是奇函数,所以f(-x)=-f(x).又f(x)=,所以=-,即(a-2)[2a2x+(a-2)a x+2]=0对任意x恒成立,所以a=2.(或者利用f(0)=0,求得a=2,再验证是奇函数)(2)因为f(x)=1-=1-.又因为2x>0,所以2x+1>1,所以0<<2,-1<1-<1.所以函数f(x)的值域为(-1,1). (3)由题意得,当x≥1时,t≤2x-2,即t〃≤2x-2恒成立,因为x≥1,所以2x≥2,所以t≤(x≥1)恒成立, 设u(x)==2x-(x≥1). 下证u(x)在当x≥1时是增函数.任取x2>x1≥1,则u(x2)-u(x1)=--+=(-)〃[1+]>0, 所以当x≥1时,u(x)是增函数,所以u(x)min=u(1)=0,所以t≤u(x)min=u(1)=0,所以实数t的取值范围为t≤0. 19.【解析】(1)因为x=4时,y=21, 代入关系式y=+4(x-6)2,得+16=21,解得m=10.(2)由(1)可知,套题每日的销售量y=+4(x-6)2,所以每日销售套题所获得的利润f(x)=(x-2)=10+4(x-6)2(x-2)=4x3-56x2+240x-278(2<x<6),从而f′(x)=12x2-112x+240=4(3x-10)(x-6)(2<x<6).令f′(x)=0,得x=,且在上,f′(x)>0,函数f(x)单调递增;在上,f′(x)<0,函数f(x)单调递减,所以x=是函数f(x)在(2,6)内的极大值点,也是最大值点,所以当x=≈3.3时,函数f(x)取得最大值,故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. 20.【解析】(1)因为P(2,0)在函数f(x)的图象上,所以f(2)=0,所以aln2-2(a+1)+2=0,即(ln2-2)a=0,因为ln2-2≠0,所以a=0.所以f(x)=x2-x,所以f′(x)=x-1,所以f′(2)=1,所以直线l的方程为y=x-2,即x-y-2=0.(2)f(x)的定义域为{x|x>0}.f′(x)=-(a+1)+x=,由f′(x)=0得x=1或x=a,①当a=1时,f′(x)≥0在(0,+≦)上恒成立,当且仅当x=1时,f′(x)=0,所以f(x)的单调递增区间是(0,+≦);②当a=0时,f′(x)>0⇒x>1,f′(x)<0⇒0<x<1,所以f(x)的单调递增区间是(1,+≦),f(x)的单调递减区间是(0,1);③当0<a<1时,f′(x)>0⇒0<x<a或x>1,f′(x)<0⇒a<x<1,所以f(x)的单调递增区间是(0,a)和(1,+≦),f(x)的单调递减区间是(a,1);④当a>1时,f′(x)>0⇒0<x<1或x>a,f′(x)<0⇒1<x<a,所以f(x)的单调递增区间是(0,1)和(a,+≦),f(x)的单调递减区间是(1,a). 【误区警示】本题在讨论f(x)的单调性时易错,原因有二,一是忽视函数的定义域为(0,+≦),二是忽视对参数a进行分类讨论.21.【解析】(1)当a=0时,f(x)=2lnx+,f′(x)=-=(x>0),所以f(x)在上是减函数,在上是增函数,所以f(x)的极小值为f=2-2ln2,无极大值.(2)f′(x)=-+2a==(x>0).①当-2<a<0时,f(x)在和上是减函数,在上是增函数;②当a=-2时,f(x)在(0,+≦)上是减函数;③当a<-2时,f(x)在和上是减函数,在上是增函数.(3)当-3<a<-2时,由(2)可知f(x)在[1,3]上是减函数,所以|f(x1)-f(x2)|≤f(1)-f(3)=-4a+(a-2)ln3,由(m+ln3)a-2ln3>|f(x1)-f(x2)|对任意的a∈(-3,-2),x1,x2∈[1,3]恒成立,所以(m+ln3)a-2ln3>|f(x1)-f(x2)|max,即(m+ln3)a-2ln3>-4a+(a-2)ln3对任意-3<a<-2恒成立,即m<-4+对任意-3<a<-2恒成立,由于当-3<a<-2时,-<-4+<-,所以m≤-.【加固训练】(2014〃北京模拟)已知函数f(x)=lnx,g(x)=-(a>0).(1)当a=1时,若曲线y=f(x)在点M(x0,f(x0))处的切线与曲线y=g(x)在点P(x0,g(x0))处的切线平行,求实数x0的值.(2)若∀x∈(0,e],都有f(x)≥g(x)+,求实数a的取值范围.【解析】(1)当a=1时,f′(x)=,g′(x)=.若f(x)在点M(x0,f(x0))处的切线与g(x)在点P(x0,g(x0))处的切线平行,所以=,解得x0=1.此时f(x)在点M(1,0)处的切线为y=x-1,g(x)在点P(1,-1)处的切线为y=x-2,所以x0=1.(2)若∀x∈(0,e],都有f(x)≥g(x)+,记F(x)=f(x)-g(x)-=lnx+-.只要F(x)在(0,e]上的最小值大于等于0,F′(x)=-=,则F′(x),F(x)随x的变化情况如下表:当a≥e时,函数F(x)在(0,e)上单调递减,F(e)为最小值.所以F(e)=1+-≥0,得a≥,所以a≥e.当a<e时,函数F(x)在(0,a)上单调递减,在(a,e)上单调递增,F(a)为最小值,所以F(a)=lna+-≥0,得a≥,所以≤a<e,综上,a≥.22.【解析】(1)当a=-1时,f(x)=-x+lnx,所以f′(x)=-1+=.当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,所以f(x)在(0,1)上递增,在(1,+≦)上递减,所以f(x)max=f(1)=-1.(2)因为f′(x)=a+,x∈(0,e],∈,若a≥-,则f′(x)≥0,f(x)在(0,e]上递增,所以f(x)max=f(e)=ae+1≥0,不合题意.若a<-,则由f′(x)>0⇒a+>0,即0<x<-,由f′(x)<0⇒a+<0,即-<x≤e,从而f(x)在上为增函数,在上为减函数,所以f(x)max=f=-1+ln,令-1+ln=-3,则ln=-2.所以-=e-2,即a=-e2.因为-e2<-,所以a=-e2为所求.(3)由(1)知当a=-1时,f(x)max=f(1)=-1,所以|f(x)|≥1,又令g(x)=+,g′(x)=,令g′(x)=0,得x=e,当0<x<e时,g′(x)>0,g(x)在(0,e)上单调递增;当x>e时,g′(x)<0,g(x)在(e,+≦)上单调递减,所以g(x)max=g(e)=+<1,所以g(x)<1,所以|f(x)|>g(x),即|f(x)|>+,所以方程|f(x)|=+没有实数解.关闭Word文档返回原板块。