高一数学简单几何体
- 格式:pdf
- 大小:1.21 MB
- 文档页数:8
学习简单的几何体几何体一般是由平面图形组成的,是一类自由度较高的几何图形。
熟练掌握几何体,不仅可以帮助我们更好地理解三维几何学,还可以应用到日常生活中,比如设计、建筑、制造等方面。
在本文中,我们将介绍几个简单的几何体,以便读者更好的理解和掌握。
1. 立方体立方体是最简单的几何体之一,它有六个面,每个面都是正方形。
因为每个面都相等,所以立方体具有对称性。
如果边长为a,则它的体积为a³,表面积为6a²。
2. 圆柱圆柱由两个平行圆面和一个侧面连接而成。
如果圆柱的高度为h,底面圆的半径为r,则它的体积为πr²h,表面积为2πr²+2πrh。
圆柱是一种常见的几何体,我们可以把它应用到建筑、设计等领域中。
3. 金字塔金字塔是由一个底面组成的,这个底面可以是任何形状,例如正方形、三角形、矩形等。
金字塔的高度可以从底面到顶点的距离来计算。
如果我们知道底面的面积和高度,则可以计算出金字塔的体积为1/3×(底面积×高度)。
表面积的计算较为复杂,需要根据金字塔的底面形状来计算每个面的面积,然后将其相加。
4. 球体球体是一个非常有趣的几何体,它由一个曲面组成,所有点到球心的距离都相等。
如果球的半径为r,则它的体积为4/3×πr³,表面积为4πr²。
球体具有非常高的对称性,因此在几何学和物理学中经常被用作实验、计算和建模的对象。
在本文中,我们介绍了几个非常常见的几何体,它们在多个领域中都有广泛的应用。
虽然这些几何体的定义和计算方法很简单,但是它们对设计、建筑、物理学等领域都具有重大作用,因此值得我们花费时间去深入学习和掌握。
《简单几何体的表面积与体积》说课稿各位老师,大家好:今天我说课的内容是《简单几何体的表面积与体积》。
本节位于必修课程主题三几何与代数对应立体几何初步这一单元。
本节之前从形的角度认识了空间几何体,接下来将从度量的角度进一步认识空间几何体。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学分析、教学评价等六方面加以分析和说明。
一、说教材分析。
1. 内容结构:2.内容分析:本节主要内容是简单几何体的表面积和体积的计算方法,是在前面学习了基本立体图形的分类、概念、结构特征、平面表示的基础上,从度量的角度进一步认识简单几何体.也是研究生产、生活中更复杂形状的物体的表面积和体积的基础。
本节内容包括棱柱、棱锥、棱台的表面积与体积;圆柱、圆锥、圆台、球的表面积与体积.3.育人价值:在实际教学过程中,在对简单几何体的表面积与体积公式的了解与使用公式解决简单的实际问题过程中,提高学生逻辑推理、数学运算、直观想象等素养和空间想象等能力,让学生体会数学来源于生活,激发学习激情。
二、说学情分析。
1.学生在小学、初中阶段已经学习了正方体、长方体、圆柱的表面积和体积以及圆锥体积的计算方法.2.通过之前的学习,学生已经熟悉一些平面图形和空间几何体的互化的思想,尤其是空间几何问题向平面问题的转化。
3.学习圆的面积公式时“分割、近似替代、求和、取极限”这种思想已有体现,现在需要学生进一步体会这种重要思想方法。
三、说教学目标。
目标:1).掌握简单几何体的表面积和体积公式,并能利用这些公式解决简单的实际问题; 简单几何体的表面积和体积 柱体、椎体、台体的表面积和体积 球的表面积和体积(第三课时) 圆柱、圆锥、圆台的表面积和体积(第二课时) 棱柱、棱锥、棱台的表面积和体积(第一课时) 球的体积球的表面积2).柱体、锥体、台体、球的体积公式的推导过程,掌握探究过程中的类比、一般化与特殊化、极限等数学思想方法,并尝试使用这些数学思想方法进行数学学习.目标分析:(1)学生能结合基本立体图形的结构特征掌握简单几何体的表面积和体积公式;能从联系的角度认识柱体、锥体、台体的体积公式的联系。
简单几何体
【词语】:几何体
【注音】:jǐ hé tǐ
【释义】:占据着空间的有限部分,如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫空间几何体.也叫立体.
按构成体的主要元素---面的特点,可以把体分成两类:
第一类是有曲面参与其中的曲面几何体,如:圆柱体、球体.
第二类是纯由平面围成的平面几何体,即由若干个平面多边形围成的多面体,如棱柱体、正方体.
一般来说一个几何体是由面、交线(面与面相交处)、交点(交线的相交处或是曲面的收敛处)而构成的.对于几何体来说,最主要的构成要素是面.一个几何体可以没有交线,没有交点这些要素,但不可能没有面.
很容易想到,由一个面构成的几何体就是球体.这里的球体不要理解成只是圆球体,还可以是椭球体,甚至是不规则的曲面几何体.
只包含一个交点和一条交线的体是圆锥体.。
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
简单几何体一. 棱柱1. 概念:2. 结构特征: (1) 两底面互相平行; (2)侧面是平行四边形; (3)侧棱互相平行3. 分类一:三棱柱、四棱柱、五棱柱⋯⋯ 分类二:斜棱柱、直棱柱、正棱柱 .直棱柱:侧棱与底面垂直的棱柱叫做直棱柱 . 正棱柱:底面是正多边形的直棱柱叫做正棱柱 . 平行六面体:底面是平行四边形的四棱柱叫做平行六面体二. 棱锥1. 概念:2. 结构特征: (1)有一个面是多边形 (包括三角形 ); (2)其余各面是有一个公共顶点的三角形3. 分类:一般棱锥、正棱锥 .正棱锥:底面为正多边形,公共顶点在底面的投影是底面中心的棱锥叫做正棱锥 正四面体:各面都是等边三角形的三棱锥叫做正四面体 .三. 棱台1. 概念:2. 结构特征: (1) 侧棱的延长线相交于一点; (2)侧面是梯形; (3)两底面互相平 行,两底面相似 .四. 圆柱1.概念:2.结构特征: (1)两底面互相平行; (2) 任意两条母线都平行; (3)母线与底面垂直; (4)轴截面为矩形; (5)侧面 展开图是矩形 .五. 圆锥1.概念:斜棱柱 直棱柱 正四棱柱 正六棱柱 平行六面体棱锥 正四棱锥正六棱锥 正四面体四棱台 正四棱台2.结构特征: (1)所有母线相交于一点; (2)旋转轴与底面垂直; (3) 轴截面为等腰三角形; (4)侧面展开图是扇 形.六 .圆台1.概念:2.结构特征: (1) 两底面互相平行; (2)母线的延长线相交于一点; (3)轴截面为等腰梯形; (4) 侧面展开图是扇 环.七.球体1.概念:2.结构特征: (1) 球面是曲面,不能展开成平面图形; (2)球面上任一点与球心的连线都是半径大圆:经过球心的截面去截球面所得的圆称为大圆 小圆:不经过球心的截面去截球面所得的圆称为小圆3. 球的截面的性质: (1) 球的截面是圆面;(2) 球心和截面圆心的连线垂直于截面; (3)球心到截面的距离 d 与球半径 R 及截面圆半径 r 的关系是 rR 2 d 2 .4. 两点间的球面距离:在球面上, 两点之间的最短路线,就是经过这两点的大圆在这两点间的一段劣弧的长 度,这个弧长叫做两点间的球面的距离 .OAO一、选择题1.如果一个圆锥的侧面展开图恰是一个半圆,那么这个圆锥轴截面三角形的顶角为 A .B .C . B .643 2.如图 8-22,用一个平面去截一个正方体,得到一个三棱锥 别为 S 1、 S 2、 S 3,则这个三棱锥的体积为 ( )3.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( ) A .必定都不是直角三角形 B .至多有一个直角三角形 C .至多有两个直角三角形 D .可能都是直角三角形33B . R36.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则 ( )A . S 1< S 2< S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 27.图 8-23 中多面体是过正四棱柱的底面正方形 ABCD 的顶点 A 作截面 AB 1C 1D 1 而截得的,且B 1B=D 1D.已知截面 AB 1C 1D 1与底面 ABCD 成 30°的二面角, AB=1 ,则这个多面体的体积为 ( )66AB .C .238. 设地球半径为 R ,在北纬 30°圈上有甲、乙两地, A3 . πRB . 3 πRC .36D.6 46它们的经度差为120°, 那么这两地间的纬线之长为 ( ) 2.在这个三棱锥中,除截面外的三个面的面积分 A .V=2 S 1S 2S 33B .V= 2S 1S 2S 3C .V=2S 1 S 2 S3D .V = S 1S 2 S34.长方体的三个相邻面的面积分别为积为 2,3,6, 这个长方体的顶点都在同一个球面上,则这个球面的表面A .2 5.把一个半径为 半径为 ( )B .56 πC . 14πD .64 πR 的实心铁球熔化铸成两个小球(不计损耗 ),两个小球的半径之比为 1∶2,则其中较小球 C .325R5DπR.2πR9.如图 8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是 (10.如图 8-25,在三棱柱的侧棱 A 1A 和 B 1B 上各有一动点 P ,Q ,且满足 A 1P=BQ ,过 P 、Q 、 C三点的截 面把棱柱分成两部分,则其体积之比为 ( )A .3∶1B .2∶1C . 4∶ 111.如图 8-26,下列四个平面形中,每个小四边形皆为正方形,其中可以沿两个 正方形的相邻边折叠围成一个立方体的图形是 ( )12.已知 A 、B 、C 、D 为同一球面上的四点,且连接每点间的线段长都等于 离等于 ( )2,则球心 O 到平面 BCD 的距A .666B .C .D .6 12 18、填空题13.命题 A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥 .命题 A 的等价命题 B 可以是:底面为正三角形,且的三棱锥是正三棱锥 .14.如图 8-27,在三棱锥 S —ABC 中, E 、F 、G 、H 分别是棱 SA 、SB 、BC 、AC 的中点,截面 EFGH 将三棱锥分割为两个几何体 AB —EFGH 、SC —EFGH ,其 体积分别是 V 1、 V 2,则 V 1∶ V 2的值是 .15.已知三棱锥的一条棱长为 1,其余各条棱长皆为 2,则此三棱锥的体16.已知正四棱柱的体积为定值 V ,则它的表面积的最小值为三、解答题17.正四棱台上、下底面边长分别为 a 和 b,上、下底面积之和等于侧面积,求 棱台体积 .18.一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积 .19.如图 8-29,半球内有一内接正方体,正方体的一个面在半球的底面圆内, 若正方体的一边长为 6 ,求半球的表面积和体积20.用一块钢锭浇铸一个厚度均匀, 且全面积为 2 平方米的正四棱锥形有盖容 器(如图 8-30),设容器的高为 h 米,盖子边长为 a 米.(1)求 a 关于h的函数解析式;V 最大?求出V 的最大值.(2) 设容器的容积为V 立方米,则当h 为何值时,(求解本题时,不计容器的厚度)【综合能力训练】1.C2.B3.D4.C5.B6.A7.D8.A9.B 10.B 11.C 12.B 13.侧棱相等 /侧棱与底面所成角相等 / ⋯⋯14.1∶1 15. 611 16.63 V 2 17.解: V=ab(a 2+ab+b 2).3(a b)18: 解析:由三视图知正三棱柱的高为2 cm, 由侧视图知正三棱柱的底面三边形的高为cm.设底面边长为 a ,则 ∴a=4.∴正三棱柱的表面积 S=S 侧 +2S 底=3×4×2+2 × ×4× =8(3+ )(cm)19.解 设球的半径为 r,过正方体与半球底面垂直的对角面作截面 α,则 α截半球面得半圆,得一矩形,且矩形内接于半圆,如图所示,则矩形一边长为 6 ,另一边长为 2 · 6 =23 ,∴r 2=( 6 )2+( 3 ) 2=9,∴ r=3,故 S 半球=2π2r +π2r =27π,23V 半球= π3r =18 π,即半球的表面积为 27 π,体积为 18 π.3注:本题是正方体内接于半球问题,它与正方体内接于球的问题是有本质差别的,请注意比较20.解 (1)设 h ′为正四棱锥的斜高,21a 24 h'a 2,由已知得 2h 2 1a 2 h'2 ,答案: 8(3+ )(cm).α截正方体4解得a= (h>0). h21(2)V= 1 ha2= 2h(h>0) ,3 3(h21)113(h ) h易得V=因为h+ 1≥2 hh=2 ,所以1 V≤ ,61等号当且仅当h=1,即h=1时取得.故当h=1米时,V 有最大值,V 的最大值为1立方米.6f(x)=ax 2+bx + c(a ≠0是) 偶函数,那么 g(x)=ax 3+bx 2+cx( )已知 f(x)=x5+ax 3+bx -8,且 f(-2)=10,那么 f(2)等于 (则 f(x)在(-∞,0)上有 ( )A .最小值- 5B .最大值- 5C .最小值- 1D .最大值- 3x 2 27.函数 f(x)的奇偶性为 _____ .1 x 28.若 y = (m - 1)x 2+ 2mx + 3 是偶函数,则 m = .19.已知 f(x)是偶函数, g(x)是奇函数,若 f(x) g(x) ,则 f(x)的解析式为 __________x110.已知函数 f(x)为偶函数,且其图象与 x 轴有四个交点,则方程 f(x)=0 的所有实根之和为 . 11.设定义在 [-2,2]上的偶函数 f(x)在区间[0,2]上单调递减,若 f(1-m)<f(m),求实数 m 的取值范围.12.已知函数 f(x)满足 f(x + y)+ f( x - y)= 2f( x) ·f( y)(x R ,y R),且 f(0) ≠,0试证 f(x)是偶函数. 13.已知函数 f(x)是奇函数,且当 x >0 时,f(x)=x 3+2x 2—1,求 f(x)在 R 上的表达式.14. f(x)是定义在 (-∞,- 5] [5,+ ∞)上的奇函数,且 f(x)在[5,+∞)上单调递减,试判断 f(x)在 (-∞,- 5]上的单调性,并用定义给予证明 .15.设函数 y =f(x)(x R 且 x ≠ 0对) 任意非零实数 x 1、 x2满足 f(x1·x 2)= f(x 1)+f(x 2),求证 f (x)是偶函数.奇偶性练习 1.已知函数 2. A .奇函数已知函数 A . 1 a , a 3 ,B .偶函数C .既奇又偶函数D .非奇非偶函数f(x)=ax 2+bx + 3a +b 是偶函数,且其定义域为 b =0 B .a =- 1,b =0 C .a =1,b =0 [a -1,2a ],则 ( ) D .a =3,b =0 3. 2 已知 f(x)是定义在 R 上的奇函数,当 x ≥0时, f(x)= x2则 f(x)在 R 上的表达式是 ( A . y =x(x -2) B .y =x(|x |-1)C .y =|x |(x -2)D .y =x(|x |- 2)4. A . - 26 B .- 18C .- 10D .10 5. 函数 f(x) 1 x 2 x 1 是( 1 2 x 1 x2xA .偶函数B .奇函数C .非奇非偶函数D .既奇又偶函数6.若 (x) ,g(x)都是奇函数, f (x) a bg(x) 2在(0,+ ∞)上有最大值 5,奇偶性练习 参考答案1.解析: f(x)= ax 2+bx +c 为偶函数, (x) x 为奇函数,∴g(x)=ax 3+bx 2+cx =f(x)·(x)满足奇函数的条件. 答案: A22.解析:由 f(x)=ax 2+bx +3a +b 为偶函数,得 b =0.又定义域为 [a -1,2a],∴ a -1=2a ,∴ a 1 .答案: A .33.解析:由 x ≥0时, f(x)=x 2-2x ,f(x)为奇函数,∴当 x < 0 时, f(x)=- f(- x)=- (x 2+ 2x)=- x 2-2x =x(-x -2).(x 0),即 f(x)=x(|x|-2)(x 0), 4.解f(x)+8=x 5+ax 3+bx 为奇函f(-2)+8=18,∴f(2)+8=-18,∴f(2)=-26.答案: A 5.解析:此题直接证明较烦,可用等价形式 f(-x)+f(x)=0. 答案: B 6.解析: (x) 、 g(x)为奇函数,∴ f(x) 2 a (x) bg(x)为奇函数. 又 f(x)在(0,+ ∞)上有最大值 5,∴ f(x)- 2有最大值 3.∴f(x)-2在(-∞,0)上有最小值- 3,∴f(x)在(-∞,0)上有最小值- 1. 答案: C 7.答案:奇函数8.答案: 0 解析:因为函数 y = (m -1)x 2+2mx +3 为偶函数,∴f (- x)= f(x),即(m - 1)(- x)2+ 2m(- x)+ 3= (m — 1)x 2+ 2mx + 3,整理得 m =0.1 1 1 1 1 1 f(x) g(x) x 11,得 f(x)12(x 11 x 1 1) x 21 1.答案: f(x) x 211 10.答案: 0 11.答案: 1 m 212.证明:令 x =y =0,有 f(0)+f(0)= 2f(0) f ·(0),又 f(0) ≠,0∴可证 f(0)=1.令 x =0, ∴f(y)+ f(-y)=2f(0) ·f(y) f(- y)= f( y),故 f(x)为偶函数. 9.解析:由 f(x) 是偶函数, g(x)是奇函数,可得 f(x) g(x)1 x 1 1 ,联立 (x) x(x 2) x( x 2) 答案: D13.解析:本题主要是培养学生理解概念的能力.f(x)=x3+2x2-1.因为f(x)为奇函数,∴ f(0)=0.当x<0 时,-x>0,f(-x)=(-x)3+2(-x)2-1=-x3+2x2-1,∴f(x)=x3-2x2+1.x32x21 (x 0),因此, f (x) 0 (x 0),x32x21 (x 0). 点评:本题主要考查对奇函数概念的理解及应用能力.14.解析:任取x1<x2≤-5,则-x1>-x2 ≥-5.因为f(x)在[5,+∞]上单调递减,所以f(-x1)<f(-x2) f(x1)<-f(x2) f(x1)>f(x2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x1,x2 R 且不为0 的任意性,令x1=x2=1代入可证,f(1)=2f(1),∴f(1)=0.又令x1=x2=-1,∴ f[-1×(-1)]=2f(1)=0,∴f (-1)=0.又令x1=-1,x2=x,∴ f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,然后再结合x1=x2=1,x1=x2=- 1 或x1=x2=0 等,具体题目要求构造出适合结论特征的式子即可.。
北师大版高中高一数学必修2《简单几何体》评课稿一、教材概述《简单几何体》是北师大版高中高一数学必修2教材的其中一章节。
该章节主要介绍了几何体的定义、性质以及与平面几何的联系,为学生打下坚实的数学基础。
二、教学目标本章的教学目标主要包括以下几个方面: 1. 掌握几个常见简单几何体的定义和性质。
2. 能够应用几何体的性质解决相关问题。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学重点与难点本章的教学重点和难点主要体现在以下几个方面: 1. 掌握平面几何与立体几何的联系与区别。
2. 理解各个简单几何体的定义和性质的关系。
3. 运用几何体的性质解决实际问题。
四、教学内容与方法1. 教学内容本章主要内容包括以下几个方面: 1. 立体几何的基本概念:点、线、面、体的概念及其特征。
2. 简单几何体的定义和性质:包括立方体、正方体、长方体、棱柱、棱锥、圆柱、圆锥等。
3. 几何体的表面积和体积计算方法。
2. 教学方法在教学过程中,可以采用以下方法: 1. 通过讲解、示范等方式,引导学生掌握几何体的定义和性质。
2. 结合实际生活中的例子,帮助学生理解各种几何体的应用场景。
3. 设计一些小组活动或讨论题,激发学生的思维,培养解决问题的能力。
五、教学步骤与重点1. 教学步骤本章的教学步骤可以分为以下几个部分: 1. 引入:通过引入一些与几何体相关的实际问题,激发学生的兴趣和思考。
2. 知识讲解:讲解各种几何体的定义和性质,引导学生理解几何体的概念。
3. 示例分析:通过实际例子,引导学生理解几何体的应用和计算方法。
4. 练习与巩固:设计一些练习题,巩固学生对几何体的理解和应用能力。
5. 知识总结:对本章内容进行总结,并展示学生的学习成果。
2. 教学重点本章的教学重点主要包括以下几个方面: 1. 几何体的定义和性质的理解。
2. 几何体的应用和计算方法。
3. 空间思维和逻辑思维的培养。
六、评价与改进本章的教学过程应注意以下几点评价与改进: 1. 关注学生的学习情况:及时发现学生的学习困难,给予个别辅导和指导。
高中数学简单几何体教案
教学内容:简单几何体(立方体、正方体、长方体、圆柱体、圆锥体、球体)
教学目标:
1. 了解简单几何体的基本概念和特征;
2. 掌握简单几何体的计算方法;
3. 能够应用简单几何体的知识解决实际问题。
教学重点:
1. 简单几何体的定义和特征;
2. 简单几何体的体积和表面积计算方法。
教学步骤:
一、导入(5分钟)
老师通过提问或展示图片等方式,引导学生回顾立体几何体的相关知识,激发学生的学习兴趣。
二、学习简单几何体的定义和特征(10分钟)
1. 介绍立方体、正方体、长方体、圆柱体、圆锥体、球体的定义和特征;
2. 展示并讲解每种几何体的图形和属性。
三、简单几何体的计算方法(15分钟)
1. 讲解不同几何体的体积和表面积计算公式;
2. 以实例演示如何计算各种几何体的体积和表面积。
四、练习与讨论(15分钟)
1. 学生进行针对不同几何体的计算练习;
2. 学生相互讨论答案,解决问题。
五、拓展应用(10分钟)
老师给学生提供一些与简单几何体相关的实际问题,让学生应用所学知识解决问题。
六、总结与反思(5分钟)
学生总结本节课学到的知识点,老师进行总结和点评,帮助学生巩固所学内容。
七、作业布置(5分钟)
布置相关练习作业,加深学生对简单几何体的理解和掌握。
教学资源:教材、教具、练习册等。
教学评价:教师通过学生的课堂表现、练习结果和作业完成情况等多方面进行评价,及时纠正学生的错误,并提出改进意见。
备注:教案可根据实际情况进行调整和修改,保证教学过程的流畅进行。
2. 简单几何体知识网络 简单几何体结构简图画龙点晴概念棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。
两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.棱柱的分类: 按侧棱与底面的关系,棱柱可分为:斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.正棱柱:底面是正多边形的直棱柱叫做正棱柱.按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱……棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱可表示为:棱柱ABCDE-A/B/C/D/E/,或棱柱AC/.棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形;(3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。
平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.正方体: 棱长都相等的长方体叫做正方体.公式棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C与高的乘积, 即, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C1与侧棱长的乘积,即, 棱柱的全面积等于侧面积与两底面积的和.[活用实例][例1] 如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=,(1)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(2)求这个平行六面体的表面积.[题解](1) 如图,连结A1O,则A1O⊥底面ABCD.作OM⊥AB交AB于M,作ON⊥AD交AD于N,连结A1M,A1N.由三垂线定理得A1M⊥AB,A1N⊥AD.∵∠A1AM=∠A1AN,∴Rt△A1NA≌Rt△A1MA.∴A1M=A1N.∴OM=ON. ∴点O在∠BAD的平分线上.(2),侧面AB1和侧面DC1的面积都等于4=6,侧面AD1和侧面BC1的面积都等于5=7.5,又ABAD,两底面面积都等于4=20,平行六面体的表面积为2(6+7.5)+20=47.[例2] 如图,A1B1C1-ABC是直三棱柱,过点A1、B、C1的平面和平面ABC的交线记作.(1)判定直线A1C1和的位置关系,并加以证明;(2)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线的距离.[题解](1)根据棱柱的定义知平面A1B1C1和平面ABC平行.由题设知直线A1C1=平面A1B1C1∩平面A1BC1,直线=平面A1BC1∩平面ABC.根据两平面平行的性质定理有∥A1C1.(2)解法一:过点A1作A1E⊥于E,则A1E的长为点A1到l的距离.连结AE.由直棱柱的定义知A1A⊥平面ABC.∴ 直线AE是直线A1E在平面ABC上的射影.又 在平面ABC上,根据三垂线定理的逆定理有AE⊥.由棱柱的定义知A1C1∥AC,又∥A1C1, ∥AC.作BD⊥AC于D,则BD是Rt△ABC斜边AC上的高,且BD=AE,从而AE=BD=在Rt△A1AE中,∵ A1A=1,∠A1AE=90°,故点A1到直线的距离为.解法二:同解法一得∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt△ABC∽Rt△BEA,AE:BC=AB:AC,, 以下同解法一.[例3] 如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.[题解](1)∵A1B1C1-ABC是正三棱柱, ∴四边形B1BCC1是矩形.连结B1C交BC1于E,则B1E=EC.连结DE.在△AB1C中,∵AD=DC,∴DE∥AB1.又平面DBC1, DE平面DBC1, ∴AB1∥平面DBC1.(2)作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连结EF,则EF是ED在平面B1BCC1上的射影.∵AB1⊥BC1,由(1)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,∴∠DEF 是二面角α的平面角.设AC=1, 则DC=∵△ABC是正三角形,∴在Rt△DCF中,CF=取BC中点G.∵EB=EC,∴EG⊥BC. 在Rt△BEF中,AC=1,又BF=BC-FC=, GF=,, 即EF=.∴∠DEF=45°. 故二面角α为45°.概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥……棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示.例如,棱锥S-ABCDE,或棱锥S-AC.正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥.正棱锥的性质:(1)各侧棱相等,各侧面是全等的等腰三角形;(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。
高一数学几何体公式知识点几何体是指在三维空间中具有一定形状和大小的实体,如球体、长方体、圆柱体等。
在高一数学中,我们需要掌握一些与几何体相关的公式和知识点,这些公式和知识点可以帮助我们计算几何体的面积、体积等数值。
接下来,我们将介绍几种常见的几何体和其相关的公式知识点。
1. 球体球体是一种具有完全圆形外表面的几何体。
我们可以通过以下公式计算球体的表面积和体积:- 球体表面积公式:S = 4πr²,其中S表示表面积,r表示球的半径。
- 球体体积公式:V = (4/3)πr³,其中V表示体积,r表示球的半径。
2. 圆柱体圆柱体是一种具有圆形底面和平行的两个等圆柱面的几何体。
下面是圆柱体的一些重要公式:- 圆柱体的侧面积公式:A = 2πrh,其中A表示侧面积,r表示底面的半径,h表示圆柱体的高。
- 圆柱体的底面积公式:B = πr²,其中B表示底面积,r表示底面的半径。
- 圆柱体的表面积公式:S = 2πr² + 2πrh,其中S表示表面积。
3. 长方体长方体是一种具有六个矩形面的几何体。
以下是长方体的一些关键公式:- 长方体的体积公式:V = lwh,其中V表示体积,l表示长方体的长度,w表示宽度,h表示高度。
- 长方体的表面积公式:S = 2lw + 2lh + 2wh,其中S表示表面积。
4. 锥体锥体是一种具有一个圆锥面和一个尖点的几何体。
以下是锥体的一些重要公式:- 锥体的侧面积公式:A = πrl,其中A表示侧面积,r表示圆锥面的半径,l表示锥体的母线长度。
- 锥体的底面积公式:B = πr²,其中B表示底面积,r表示底面的半径。
- 锥体的表面积公式:S = πr(r + l),其中S表示表面积。
5. 圆台圆台是一种具有一个圆台面和一个平行于圆台面的圆底面的几何体。
以下是圆台的一些关键公式:- 圆台的侧面积公式:A = π(R + r)l,其中A表示侧面积,R表示圆台面的大半径,r表示圆底面的小半径,l表示圆台的斜高。
高一数学简单几何体知识点简介:在高一的数学学习中,几何学是一个重要的内容。
其中,了解几何体的基本知识点是必不可少的。
下面将介绍一些高一数学中涉及的简单几何体知识点。
一、线段线段是由两个点确定的一条有限长的直线。
线段的长度可以用单位长度来衡量。
(补充:)二、直线和射线直线是由无数个点组成的,可以无限延伸的线段。
直线上的任意两点可以确定一条直线。
在图中,直线通常用字母表示,如l。
射线也是由无数个点组成的,但它有一个端点,并且只能延伸一个方向。
射线在图中用有箭头的直线表示。
三、角角是由两条射线共享一个端点而形成的图形。
角的大小可以用度数来衡量,常用的符号是°。
根据角的大小可以分为以下几种类型:1. 锐角:角的度数小于90°。
2. 直角:角的度数等于90°。
3. 钝角:角的度数大于90°小于180°。
4. 平角:角的度数等于180°。
四、三角形三角形是由三条线段连接而成的图形。
三角形的三个顶点用大写字母表示,对应的三条边则用小写字母表示。
根据三角形的边长和角度可以分为以下几种类型:1.等边三角形:三条边的长度都相等。
2.等腰三角形:两条边的长度相等。
3.直角三角形:有一个角是直角(90°).4.锐角三角形:三个角都是锐角。
5.钝角三角形:至少有一个角是钝角。
五、四边形四边形是由四条线段连接而成的图形。
四边形的四个顶点用大写字母表示,对应的四条边则用小写字母表示。
根据四边形的边长和角度可以分为以下几种类型:1.矩形:四个角都是直角,相邻边相等。
2.正方形:四个角都是直角,四条边相等。
3.平行四边形:对边平行,对边长度相等。
4.菱形:对边平行,对边长度相等,相邻边相等。
六、圆圆是由一条曲线和其中心组成的图形。
其中心到曲线上的任意一点的距离称为半径,用字母r表示。
圆上任意两点之间的线段称为弦,弦中垂线与弦的交点称为弦心距。
七、体积和表面积体积是指一个几何体所占的空间。