数列教案
- 格式:doc
- 大小:38.50 KB
- 文档页数:4
数列的教案【篇一:数列的概念的教学设计】数列的概念教学设计一、教材与教学分析1.数列在教材中的地位根据新课程的标准,“数列”这一章首先通过大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。
教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学三维目标分析知识目标:使学生理解数列概念、分类、表示方法以及数列通项公式能力目标:1)通过对数列概念的教学让学生了解数列和函数间的关系2)会用通项公式写出数列的任意一项3)对于简单的数列会根据其前几项写出它的一个通项公式情感目标:1)培养学生观察抽象的能力2)培养学生从特殊到一般的归纳能力3)创设师生共同研究的教学情境,培养学生乐于求索,勇于创新的精神教学重点:理解数列概念教学难点:根据数列的前几项抽象归纳出数列的通项公式二、教学方法与学习方法启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。
探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。
合作学习——通过组织小组讨论达到探究、归纳的目的。
三、教学过程设计1.创设情景,引入新课有人说,大自然是懂数学的.通过多媒体图片展示花瓣数:2,3,5,8,13,具有一定的规律性,学生发现,教师适时点拨规律.图片展示树的分支也呈现同样的规律性.从而介绍学习数列的意义:数列是反映自然规律的模型——引出课题;设计意图:为了让学生体会数学源于生活并激发学生的学习兴趣,采用生活中学生熟悉的问题引入,关注学生的最近发展区,学生思维产生“结点”;2.实例分析,理解概念内涵数学发展的过程中,类似于上述例子很多,例如:①庄子“一尺之棰,日取其半,万世不竭.” 11214181, 16②我国从84年奥运会到08年奥运会共获得了163枚金牌数:5,15, 16,16, 28, 32, 51.③电影院有30排座位,第一排有20个座位,从第二排起,后一排都比前一排多2个座位,那么各排的座位数依次为:20,22,24,26,?,78④堆放的钢管从上到下每层数目:4,5, 6, 7,8, 9, 10通过以上实例应到学生思考每组数字具有怎样的特征:都有一定的顺序点拨:本问题研究第几个位置上的数字是什么的问题?也就是研究按顺序排列的一列数的问题,这就是数列;设计意图:对教材中的引例进行深化,为帮助学生形成数列概念;一个数学概念的学习与形成需要大量的、有意义的实例才能帮助学生理解透彻;多给学生参与的机会才能将问题理解清楚,从而掌握概念、概括概念的本质;3.抽象概括,形成数列概念由学生通过对上述问题本质的理解,试概括出数列的定义,教师给予指导;按一定次序排列的一列数叫数列,数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项(首项)、第2项、?、第n 项?,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列;数列的一般形式可以写成:a1,a2,?,an,?简记为{an},其中an 是数列的第n项;引导学生对概念进行反思与巩固①说出生活中的一个数列实例.②数列“1,2,3,4,5”与数列“5 ,4, 3,2,1 ”是否为同一个数列?③数列“-5,-3,-1,1,3,5,?”中,a3,a6各是什么数?设计意图:结合数列的定义,让学生举出数列的例子,并让学生判断举出的例子是否是数列,生生互动;检测学生是否理解数列的概念;给出3个问题由学生讨论并回答,教师启发总结,进一步加深对数列概念的理解,师生互动;4.深入探究,理解概念外延①数列的函数观点数列研究的是第几个位置上的数是多少的问题,其中存在几个变量?是否符合函数的变量间的关系?用此观点分析数列上述一数列,对于数列中的每个序号n,都有唯一的一个项an与之对应:序号 1 2 3 4 ??64↓↓↓↓ ↓项1 22223 ??263*引导学生从函数的观点分析数列:数列可以看成以正整数集n或它的有限子集{1,2, ?k}为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,即数列是一个特殊的函数;设计意图:抓住数列蕴含着两变量间关系的本质,以问题形式提出,学生对知识建构形成自然,然后用从特殊到一般的方法帮助学生理解;②数列的通项公式从函数角度看,通项公式就是an与n之间的函数关系式an=f(n);如数列1,2,3 ,n, 通项公式为an=f(n)=n即an=n 1111又如数列1,,, ,, 通项公式为an= n23n教学中,学生体会数列通项公式将数列所有项及性质表达很清楚,故求通项公式对研究数列是非常有帮助的;5.应用概念,解决问题例1.根据下面数列{an}的通项公式,写出它的前5项:(启发学生回答)⑴an=n (2)an=(-1)n?n n+1题后反思:方法,类似于求函数值,在通项公式中依次取n=1、2、3、4、5得到数列的前5项. 例2写出下面数列的一个通项公式.(启发学生回答)(1)1,2,4,8,...(2)3,5,7,9,... (3)9,99,999,9999,... (4)1,-1,1,-1,...题后反思:①题目条件中让写出“一个”通项公式,能否再写出一个符合题意的通项公式?注:给出数列的前几项,可以归纳出不止一个通项公式;②写通项公式的一般方法:由各项的特点,找出各项共同的构成规律.通过观察、归纳研究数列中的项与序号之间的关系,写出一个满足条件的最简捷的公式.6.课堂练习,检测与反馈练习1.写出下列数列的一个通项公式:(1)1,4,9,16,... (2)5,55,555,5555,...(3) 1--, 234练习2.如图是第七届国际数学教育大会的会徽图案,是由一串直角三角形演化而成的,其中 oa1,oa2,oa3, ,oa8的长度组成数列1=a1a2=a2a3= =a7a8=1,记oa111{an}(n∈n,1≤n≤8)若按上述方式,一直下去,你能计算出oa2012的长度吗?aa5a63a21a7a87.课堂小结引导学生思考:通过本节课的学习谈谈你有哪些收获?①本节学习的数学知识:数列的概念和简单表示;四、教学评价与反思1.通过概念课教学,力求使学生明确(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。
《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。
通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。
1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。
通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。
第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。
通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。
2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。
通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。
第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。
通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。
3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。
通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。
第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。
通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。
4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。
通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。
第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。
通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。
5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。
通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。
第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。
高中数学数列概念优秀教案教学目标:1. 掌握数列的基本概念,能够区分等差数列和等比数列。
2. 熟练运用数列的通项公式求解各种问题。
3. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 掌握数列的定义和分类。
2. 掌握等差数列和等比数列的性质及通项公式。
3. 运用数列的知识解决实际问题。
教学难点:1. 等比数列的通项公式推导。
2. 如何运用数列的知识解决实际问题。
教学过程:一、导入(5分钟)教师引入数列的概念,并举一些实际例子来说明数列在生活中的应用,如等差数列可以表示每天存钱增加的数量,等比数列可以表示细菌繁殖的数量等。
二、概念讲解(15分钟)1. 数列的定义和分类。
2. 等差数列的性质及通项公式。
3. 等比数列的性质及通项公式。
三、例题讲解(20分钟)1. 讲解一些常见的数列题目,如求等差数列和等比数列的前n项和、求某一项的值等。
2. 引导学生运用数列的知识解决实际问题,如经济学中的收入增长问题、物理学中的运动问题等。
四、练习与讨论(15分钟)教师布置一些练习题让学生自行解答,并对学生的答案进行讨论和纠正。
同时,鼓励学生提出自己的解题思路,培养他们的数学思维能力。
五、作业布置(5分钟)布置相关作业,巩固学生的学习成果。
六、总结(5分钟)教师对本节课的重点内容进行总结,激励学生对数列的学习做进一步的思考和总结。
教学反思:通过本节课的教学,学生应该能够掌握数列的基本概念及相关性质,并能够熟练运用数列的通项公式解决各种问题。
同时,教师应该注重引导学生提高数学思维能力,培养他们的逻辑推理能力。
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。
二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。
三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】等差数列前n项和公式的推导和应用。
【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。
你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
举例说明数列的组成,如自然数数列、等差数列等。
1.2 数列的项解释数列中的每一个数称为数列的项。
强调数列项的顺序和重复性质。
1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。
举例讲解如何写出简单数列的通项公式。
第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。
练习写出几个给定数列的列举表示。
2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。
举例说明如何用公式法表示等差数列和等比数列。
2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。
引导学生通过观察图形来理解数列的特点。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。
举例说明如何确定一个数列的项数。
3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。
举例说明如何判断一个数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。
举例说明如何判断一个数列的周期性。
第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。
推导等差数列的通项公式。
4.2 等比数列的通项公式讲解等比数列的定义和性质。
推导等比数列的通项公式。
4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。
举例讲解如何求解其他类型数列的通项公式。
第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。
推导等差数列的前n项和的公式。
5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。
推导等比数列的前n项和的公式。
5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。
举例讲解如何求解其他类型数列的前n项和。
第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。
数列的概念教案教学目标:1. 理解数列的概念和基本特征;2. 能够识别数列中的常数项和通项;3. 能够根据规律确定数列的公式;4. 能够应用数列的特性解决问题。
教学准备:1. 幻灯片或白板、马克笔;2. 数列的示例题目。
教学过程:导入:(5分钟)1. 引入数列的概念:数列是指按照一定规律排列的一列数的集合。
数列中的每个数称为项。
2. 引导学生思考数列的例子:例如1,3,5,7,9是一个数列,其中的每个数都按加2的规律依次递增。
3. 提出问题:学生们有没有发现数列中的规律?如何确定数列的下一个数?探究:(15分钟)1. 给出示例数列:2,4,6,8,10,...2. 让学生观察数列,推测规律并列出下一个数。
3. 学生演示推理过程,例如:每个数都比前一个数大2,所以下一个数是12。
4. 引导学生总结:这个数列的规律是每个数比前一个数大2。
这个规律被称为数列的公式或通项公式。
5. 引入数列的常数项:数列中的某个特定项,如数列2,4,6,8,10,...中的10。
6. 引导学生区分常数项和通项。
示范与练习:(15分钟)1. 给出新的数列示例,如2,4,8,16,32,...2. 让学生观察数列,思考常数项和通项的确定。
3. 鼓励学生进行讨论,并给予提示,例如:每个数都是前一个数乘以2,所以通项公式为An = 2^n。
4. 让学生尝试应用通项公式计算数列的其他项。
拓展与应用:(10分钟)1. 给出更复杂的数列示例,让学生运用已学知识确定规律和通项公式。
2. 提供问题情境,让学生应用数列的概念解决实际问题。
归纳与总结:(5分钟)1. 学生回顾本节课学到的数列概念、特征和运用方法。
2. 教师总结并强调数列在数学和实际问题中的重要性。
展示与评价:1. 学生展示他们对数列概念的理解,可以通过口头回答问题或完成练习题的形式进行评价。
2. 教师给予反馈和评价,并鼓励学生进一步探究数列的性质和应用。
求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。
2. 学会求解数列的通项公式,并能应用于实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。
2. 教学难点:数列通项公式的推导和应用。
四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。
2. 利用例题,演示数列通项公式的应用过程。
3. 布置习题,巩固所学知识。
五、教学过程1. 引入数列的概念,讲解数列的基本性质。
2. 讲解数列通项公式的求法,引导学生掌握求解方法。
3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。
4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。
5. 总结本节课的重点内容,布置课后作业。
教案结束。
例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。
解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。
将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。
该数列的通项公式为an = n/2 + 1/2。
习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。
2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。
3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。
4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。
5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。
六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。
2. 学习利用函数的方法求解数列的通项公式。
3. 提升学生分析问题、解决问题的能力。
小学数学等差数列教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!小学数学等差数列教案【优秀8篇】作为一位无私奉献的人·民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。
长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。
但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。
新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。
”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。
“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。
近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。
一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。
上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。
教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。
然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。
第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。
学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。
关于高中数学数列的教案
一、教学目标:
1. 了解数列的定义和性质;
2. 掌握常见数列的计算方法;
3. 能够应用数列解决实际问题。
二、教学重点:
1. 掌握数列的概念和性质;
2. 了解常见数列的计算方法;
3. 能够灵活运用数列解决实际问题。
三、教学内容:
1. 数列的基本概念和性质;
2. 常见数列的分类及计算方法;
3. 数列在实际问题中的应用。
四、教学过程:
1. 导入:通过一个实际问题引入数列的概念,引发学生的思考和兴趣。
2. 提出问题:让学生探讨数列的定义和性质,引导他们发现规律。
3. 讲解数列的基本概念和性质,并介绍常见数列的计算方法。
4. 练习:让学生进行数列的计算练习,巩固所学知识。
5. 应用:通过一些实际问题,让学生运用数列解决问题,培养他们的应用能力。
6. 总结:总结本节课的重点知识,梳理数列的学习内容。
7. 作业:布置相关练习,巩固学生所学的知识。
五、教学手段:
1. 课堂讲授;
2. 举例说明;
3. 练习探讨;
4. 讨论交流。
六、教学评价:
1. 课堂表现;
2. 练习成绩;
3. 实际应用能力。
七、教学资源:
1. 教材;
2. 幻灯片;
3. 实例分析。
八、教学反思:
1. 教学内容是否符合学生的实际需求;
2. 学生的学习情况,是否需要调整教学计划;
3. 如何进一步提升学生的数列解决问题能力。
以上教案为高中数学数列的教学范本,希望能对您有所帮助。