计算方法试卷2答案
- 格式:doc
- 大小:49.50 KB
- 文档页数:2
《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。
《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。
第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。
解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。
计算方法第3版习题答案习题1解答1.1 解:直接根据定义得*411()102x δ-≤⨯*411()102r x δ-≤⨯*3*12211()10,()1026r x x δδ--≤⨯≤⨯*2*5331()10,()102r x x δδ--≤⨯≤1.2 解:取4位有效数字 1.3解:4335124124124()()()101010() 1.810257.563r a a a a a a a a a δδδδ----++++++≤≤=⨯++⨯123()r a a a δ≤123132231123()()()a a a a a a a a a a a a δδδ++0.016=1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故******(())(())()0.02()r r n f x x x f x n n x n x xδδδ-=≈==1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=±2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤,1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈=现100,()1x S δ=≤,从而得()1()0.00522100S x xδδ≈≤=⨯ 1.7 解:因S ld =,故S d l ∂=∂,Sl d∂=∂,*****()()()()()S S S l d l d δδδ∂∂≈+∂∂*2()(3.12 4.32)0.010.0744S m δ=+⨯=, ******()()0.0744()0.55%13.4784r S S S l d S δδδ===≈1.8 解:(1)4.472 (2)4.471.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减(3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357sin ..3!5!7!x x x x x -=-+-,(2)1(1)(1)1lnxdx ln ln ln N+N=N N +-N N +N +-⎰1(1)1lnln N +=N +N +-N1.11 解:0.00548。
《计算方法》期中复习试题、填空题:1、 已知f(1) =1∙0, f(2) =1.2, f(3) =1∙3 ,则用辛普生(辛卜生)公式计算求得3[f(x)dx^—、 1,用三点式求得f (I^ _________ 。
答案:2.367, 0.25 2、f(1)= -1, f(2) =2, f(3)二1,则过这三点的二次插值多项式中X2的系数为 __________ ,拉格朗日插值多项式为 _________________________ 。
1 1L 2(X)W (X V (X -3—3)二(X -I)(X -2)3、近似值X * =0.231关于真值X = 0.229有(2 ) 位有效数字;4、设f (X)可微,求方程x = f (x)的牛顿迭代格式是()X n - f(X n )X n 1 =Xn -答案1-f (X n)5、对 f(x)=x 3X 1,差商 f[0,1,2,3] =( 1 ), f[0,1,2,3,4] =( 0 ); &计算方法主要研究( 截断)误差和( 舍入)误差;7、用二分法求非线性方程 f (x)=0在区间(a,b)内的根时,二分n 次后的误差限为&已知f(1) = 2, f(2) = 3, f ⑷=5.9 ,则二次 NeWtOn 插值多项式中 X 2系数为(0.15 );I11.3-1 .31 I L f (x)dx L f (x)dx fc- [ f (—) + f( ------ )]11、 两点式高斯型求积公式O T(X)dx≈( 022.、32 3),代数精度为(5 );y=10+A 1+J T 一_^12、 为了使计算XT (XT)(X")的乘除法次数尽量地少,应将该表答案:-1,1y =10 (3 (4 -6t)t)t,t =xT_ ,为了减少舍入误差,应将表达式达式改写为一 2001 -一 1999 改写为 .2001 J99913、 用二分法求方程f(x) =x 3∙ X" =0在区间[0,1]内的根,进行一步后根的所在区间为0.5 , 1, 进行两步后根的所在区间为 0.5 , 0.75 。
华中科技大学《数值计算方法》考试试卷2006~2007学年 第一学期 《计算方法》课程考试试卷(A 卷)(开卷)院(系)__________专业班级______________学号______________ 姓名__________________考试日期: 2007年1月30日 考试时间: 下午 2:30~5:00一. 填空题 (每小题 4分,共 28份)1.已知矩阵⎥⎦⎤⎢⎣⎡-=1011A,则=∞A 。
2. 若用正n 边形的面积作为其外接圆面积的近似值,则该近似值的相对误差是 。
3.三次方程0123=+--x x x 的牛顿迭代格式是 。
4.若求解某线性方程组有迭代公式F BX X n n +=+)()1(,其中⎥⎥⎦⎤⎢⎢⎣⎡--=33a a a B ,则该迭代公式收敛的充要条件是 。
5.设xxe x f =)(,则满足条件)2,1,0(22=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛i i f i p 的二次插值公式=)(x p 。
6.已知求积公式)1()1()2/1()0()1()(10f f f dx x f ααα+++-≈⎰至少具0次代数精度,则=α 。
7.改进的Euler 方法)],(),([211n n n n n n n f h y t f y t f hy y +++=++应用于初值问题1)0(),()('==y t y t y 的数值解=n y 。
二. (10分) 为数值求得方程022=--x x 的正根,可建立如下迭代格式,2,1,0,21=+=-n x x n n ,试利用迭代法的收敛理论证明该迭代序列收敛,且满足2lim =∞→n n x .解答内容不得超过装订线三. (20分) 给定线性方程组⎪⎩⎪⎨⎧=++-=---=++2628419541022321321321x x x x x x x x x(1)试用Gauss 消去法求解其方程组;(2) 给出求解其方程组的Jacobi 迭代格式和Gauss-Seidel 迭代格式,并说明其二种迭代格式的收敛性。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。
()2.对两个不同数的近似数,误差越小,有效数位越多。
()3.一个近似数的有效数位愈多,其相对误差限愈小。
()4.用近似表示cos x产生舍入误差。
( )5.和作为的近似值有效数字位数相同。
( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。
三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。
(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。
(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。
(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。
(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。
(A) 3; (B) 4; (C) 5; (D) 6。
四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。
现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。
5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
参考答案:
一、
1、ε2,或ε2,(给出推导公式但没估计最后值得6分;给出其它ε2>
的值得4分)
2、收敛(得4分)。
因为迭代函数 12
3|sin ||)('|13/0cos )(<≤==x x g x x g ,即)上的绝对值严格小于,的一阶导数在(π (得4分) 3、 避免约化主元0)(=k kk a 或其绝对值过小产生的数值不稳定而丢失精度(若指出计算量
增加不多,加2分)
4、 1.06667x 0.15833315
1612019+=+=
x y 。
(若公式大致对得2分) 5、 )32(43)0(41f f +,或)1(41)31(43f f +, 或其它满足要求的公式。
(若给出任何代数精度>=2的公式得6分,其他代数精度<2的数值积分公式得4分)。
二、(算法正确得10分;程序结构完整得5分;命令正确无误得5分)
1、
.m 文件Newt_6.m 例子:
function [it,x]=Newt_6(f_name,x0)
%clf,hold off
del_x=0.0001;
tolerance=1e-6;it_limit=30;
it=0;
x=x0;xb=x+999;
while abs(x-xb)>tolerance
if it>it_limit fprintf('迭代次数超界:it=%3.0f\n',it);break; end
y=feval(f_name,x);
y_driv=(feval(f_name,x+del_x)-y)/del_x;
xb=x;
x=xb-y/y_driv;
it=it+1;
end
xx=0:0.01:pi/2;
yy=feval(f_name,xx);
plot(xx,yy,x,0,'ro')
命令窗口调用例子:
>> f=inline('x-cos(x)');
>> [it,x]=Newt_6(f,0)
用命令行程序也对。
三、
1、(求样条函数系数代数方程正确得10分; 系数计算正确得5分; f(0.25)正确得5分)
系数方程:⎪⎪⎪
⎭
⎫ ⎝⎛--=⎪⎪⎪⎭⎫
⎝⎛
⎪⎪⎪⎭⎫
⎝⎛
=10125.005.025.005.02321M M M A 系数:2,74
,72
,74,200010=-==-==M M M M M , 函数值:4107857.156001
)25.0(-⨯≈=f
2、(积分公式及值正确得15分;精度控制正确得5分)
837
.0)55.0)93.099.084.06.035.016.004.0(20(22.081
.0)55.0)99.06.016.0(20(24
.084=++++++++==++++=T T 因为:34
810009.0|3|->=-T T ,精度不够,故应采用辛普森方法试试:
846.0)55.0)99.06.016.0(2)93.084.035.004.0(40(64.08467
.0354
.2)55.0)60.0(2)99.016.0(40(68
.042=++++++++=≈=++++=S S 因为:324100007.0||-<≈-S S ,达到精度,所以积分近似值是:
S 4=0.846。