第7章 人工神经网络
- 格式:ppt
- 大小:1.25 MB
- 文档页数:38
人工神经网络的原理和应用人工神经网络(Artificial Neural Network,ANN)是一种模拟生物神经网络的计算模型。
它由大量的人工神经元(Artificial Neurons)相互连接而成,并通过加权和激活函数来模拟神经元之间的信息传递。
人工神经网络模型是一种在计算机中模拟信息处理和知识获取方式的数学模型,它能够通过学习自适应调整神经元间的连接权值,从而实现对数据的分类、识别、预测等功能。
在人工神经网络中,每个人工神经元接收多个输入信号,并将这些输入信号进行加权求和后经过激活函数处理得到输出信号。
神经元之间的连接权值决定了不同输入信号对输出信号的影响程度。
而激活函数则用于对神经元的输出进行非线性映射,增加人工神经网络的模拟能力。
人工神经网络的学习过程是通过反向传播算法(Backpropagation)来进行的。
反向传播算法基于梯度下降法的思想,通过计算输出误差对连接权值的偏导数来调整连接权值,使得神经网络的输出尽可能接近于所期望的输出。
反向传播算法通常需要大量的训练数据和反复迭代的过程才能得到较好的结果。
人工神经网络的应用非常广泛,以下是几个常见的应用领域:1. 图像识别:人工神经网络能够通过学习大量的图像数据,实现对图像的识别和分类。
例如,人工神经网络可以通过学习大量的猫的图片,实现对新的图片是否为猫的判断。
2. 语音识别:人工神经网络可以通过学习大量的语音数据,实现对语音的识别和转录。
例如,语音助手中的语音识别功能就是基于人工神经网络实现的。
3. 自然语言处理:人工神经网络可以通过学习大量的文本数据,实现对自然语言的理解和处理。
例如,机器翻译、情感分析等领域都可以使用人工神经网络进行处理。
4. 数据挖掘:人工神经网络可以通过学习大量的数据,实现对数据的分类、聚类、预测等任务。
例如,人工神经网络可以通过学习用户的历史行为数据,预测用户的购买行为。
5. 控制系统:人工神经网络可以通过学习环境和控制信号之间的关系,实现对复杂控制系统的建模和控制。
人工神经网络教程人工神经网络(Artificial Neural Network,ANN)是一种受到生物神经元系统启发的计算模型,用于模拟和处理复杂的问题。
它由许多人工神经元组成,通过连接的方式形成网络,可以进行数据的学习和预测,广泛应用于图像识别、语音识别、自然语言处理等领域。
人工神经网络的基本结构是由多层神经元组成的,包括输入层、隐藏层和输出层。
输入层接收外部的输入数据,而输出层输出结果。
隐藏层则在输入层和输出层之间进行信息的处理和传递。
每个神经元都有多个输入和一个输出,输入和输出之间通过权重进行连接。
神经元接收到输入后,通过激活函数进行处理,得出输出结果。
人工神经网络的学习过程是通过反向传播算法进行的。
首先,通过前向传播计算网络的输出结果,与期望的输出结果进行比较,计算出误差。
然后,误差通过反向传播逐层传递回输入层,并根据梯度下降算法不断调整权重,使得网络的输出结果与期望结果更加接近。
这个过程反复进行,直到网络的输出结果达到预期的精度要求。
人工神经网络有许多不同的类型,包括前馈神经网络、递归神经网络和卷积神经网络等。
前馈神经网络是最常见且简单的一种类型,每个神经元的输出只和上一层的神经元有连接。
递归神经网络具有循环连接,可以处理时序问题。
卷积神经网络主要用于图像和语音识别领域,通过卷积层和池化层等特殊结构进行特征提取。
人工神经网络的优点是可以自动从数据中学习特征,并进行预测和分类。
它具有强大的模式识别能力,可以应用于各种领域的问题。
然而,人工神经网络同时也存在一些挑战和限制。
首先,神经网络的训练和调优需要大量的数据和计算资源。
其次,网络的结构和参数需要人工设计和调整,不同问题可能需要不同的网络结构和参数设置。
此外,神经网络的过程是黑盒操作,很难解释其中的具体原理和过程。
总而言之,人工神经网络是一种强大的计算模型,可以模拟和处理复杂的问题。
它在各个领域都有广泛的应用,并且不断得到改进和优化。
⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。
⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。
它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。
⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。
以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。
⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。
树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。
轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。
⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。
⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。
三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。
碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。
⼈⼯神经⽹络⼀.相关知识1.背景:从⼀颗受精卵成长为⼀个复杂的多细胞⽣物,神经系统在⽣物的成长中起着主导作⽤,神经系统分为中枢神经系统和周围神经系统两⼤部分主要组成。
其中中枢系统主要分布在脑和脊髓中,分布在脑部的神经系统主要起传递、储存和加⼯信息,产⽣各种⼼理活动,⽀配与控制⽣物⾏为的作⽤。
我们把⼈的这种特性拿出来放到计算机中,也就是让计算机像⼈脑⼀样能较精确地处理信息,⼈脑中的神经系统变成计算机中的⼈⼯神经⽹络,⽣物神经系统的基本组成单位--神经细胞,对应⼈⼯神经⽹络中的神经元。
⽣物神经系统的主要功能是通过经验能对外界的信息作出正确的回应,⽐如⼀个⼈⼩时候不会⽤筷⼦,但是看得多了,别⼈教导,他就会⽤筷⼦了,我们想让⼈⼯神经⽹络也能通过学习经验(已有的训练数据)来对外界作出正确回应(预测正确未知样本),⼈类的学习过程相当于神经⽹络的训练过程。
2.神经⽹络的特点:(1)对于监督学习来说,在数据量⼩时,模型的精确度⼤概率取决于算法的设计,⽽当数据量⾜够⼤时,⼀般⽽⾔,⼀个规模⾜够⼤的神经⽹络⾮常擅长计算从样本数据到真实值的精确映射函数,所以⽐机器学习的算法效果好;(2)对于⾮结构化数据,神经⽹络能更好的解释它(结构化数据:每个特征都有明确定义;⾮结构化数据:⽐如图像的像素或⽂本的⽂字、语⾳序列之类)(3)神经⽹络对很多好的算法的兼容性很好,这使得神经⽹络的计算增快,提⾼了迭代速度3.相关应⽤:真实预测、推荐⼴告(标准的神经⽹络)、计算机视觉(图像数据-CNN)、语⾔识别(序列数据-RNN)、机器翻译(RNN)、⽆⼈驾驶(混合)⼆.神经⽹络简介1.符号定义2.神经⽹络演变(1)神经元:神经元是神经⽹络的基本组成单元,它从前⾯的神经元处接收信息,处理完信息后将结果传给后⾯的神经元,是信息的处理单元。
传输信息的通道在⽣物神经⽹络上为“突触”,在⼈⼯神经⽹络中⽤赋予权重的连接线来表⽰。
【1】单输⼊单输出的单个神经元:接收前输⼊a,⽤线性或⾮线性转换对输⼊进⾏处理,得到新的特征a'并输出。
人工神经网络基本原理人工神经网络(Artificial Neural Network,简称ANN)是一种模拟生物神经系统的计算模型,通过神经元之间的连接和传递信息的方式来进行计算和学习。
它由大量的人工神经元(Artificial Neuron)组成,每个人工神经元可以接收多个输入,经过激活函数的处理后,产生一个输出。
这些神经元之间通过权重来调整信息的传递强度和方向,从而实现信息的处理和模式的学习。
下面是人工神经网络的基本原理和工作过程。
1.人工神经元的结构和工作原理人工神经元是人工神经网络的基本组成单位,它模拟了生物神经元的结构和功能。
一个人工神经元接收多个输入信号,每个输入信号通过一个权重进行加权,然后通过激活函数进行处理,最终产生一个输出信号。
人工神经元的结构可以表示为:y = f(Σ(w_i * x_i) + b),其中y表示输出信号,x_i表示输入信号,w_i表示对应的权重,b表示偏置,f表示激活函数。
常用的激活函数有Sigmoid函数、ReLU函数等。
2.前向传播和反向传播在人工神经网络中,信息的传递分为两个过程:前向传播(Forward Propagation)和反向传播(Backward Propagation)。
(1)前向传播:在前向传播过程中,输入数据通过一层一层的神经元,从输入层传递到输出层。
每个神经元接收到上一层神经元的输出信号,并经过激活函数的处理产生一个新的输出信号。
这个过程可以理解为信息的正向流动。
通过多次的前向传播,人工神经网络可以对输入数据进行非线性的处理和抽象表示。
(2)反向传播:在反向传播过程中,首先计算输出层的误差,然后反向计算隐藏层和输入层的误差,并通过调整权重和偏置来减小误差。
这一过程可以看作是信息的反向流动。
反向传播使用梯度下降法来进行权重和偏置的更新,目的是将网络的输出尽可能地接近目标输出,从而实现训练和学习的目标。
3.神经网络的学习和训练神经网络的学习和训练是通过调整神经元之间的连接权重和偏置来实现的。