第四章cpn人工神经网络
- 格式:ppt
- 大小:403.50 KB
- 文档页数:10
1. 试比较BP 学习算法与感知机学习算法的异同。
同:两种学习算法均基于纠错学习规则,采用有指导的学习方式,根据来自输出节点的外部反馈(期望输出)调整连接权,使得网络输出节点的实际输出与外部的期望输出一致。
异:感知机学习算法中,隐含层处理单元不具备学习能力,其模式分类能力仍然非常有限;而BP 学习算法采用非线性连续变换函数,使隐含层神经元具有了学习能力。
BP 学习算法基于最小均方误差准则,采用误差函数按梯度下降的方法进行学习,其学习过程分为模式顺传播,误差逆传播、记忆训练、学习收敛4个阶段。
2. 试述BP 神经网络有哪些优点和缺点。
优点:具有良好的非线性映射能力、泛化能力和容错能力。
缺点:学习算法的收敛速度慢;存在局部极小点;隐含层层数及节点数的选取缺乏理论指导;训练时学习新样本有遗忘旧样本的趋势。
3. 试举例说明BP 神经网络擅长解决哪些问题,并针对一个具体应用实例,描述BP 神经网络解决该问题的具体方案。
擅长解决函数拟合问题(例如,拟合多项式函数),线性与非线性的分类问题(例如,疾病病例分类),预测问题(例如,房屋价格预测),模式识别问题(例如,手写数字识别)。
具体应用实例及解决方案略。
4. 请给出一个BP 神经网络的具体应用实例。
略。
5. 什么是BP 神经网络的泛化能力?如何提高BP 神经网络的泛化能力?BP 神经网络的泛化能力是指BP 神经网络对未训练样本的逼近程度或对于未知数据的预测能力。
即:BP 神经网络学习训练完成后会将所提取的样本模式对中的非线性映射关系存储在网络连接权向量中,在其后的正常工作阶段,当向BP 神经网络输入训练时未曾见过的数据时,BP 神经网络也能够完成由输入模式到输出模式的正确映射。
提高BP 神经网络泛化能力的方法包括: 1) 增加训练集中的样本数; 2) 适当减少隐藏节点个数;3) 增加网络结构中的因子数(考虑更多可能影响结果的因子作为额外的输入项); 4) 对于选取的数据样本,要尽量保证包含拐点处的数据样本,同时尽可能保证相邻样本的变化率小于误差精度要求。
人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
人工神经网络简介本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念、发展、特点、结构、模型。
本文是个科普文,来自网络资料的整理。
一、人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。
该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。
它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激活函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。
网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。
输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。
人工神经网络基本原理人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)概念由大量处理单元互联组成的非线性、自适应信息处理系统。
它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。
大脑的智慧就是一种非线性现象。
人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。
具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。
通过单元之间的大量连接模拟大脑的非局限性。
联想记忆是非局限性的典型例子。
(3)非常定性人工神经网络具有自适应、自组织、自学习能力。
神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。
经常采用迭代过程描写动力系统的演化过程。
(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。
例如能量函数,它的极值相应于系统比较稳定的状态。
非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。