人工智能导论 课件 PPT -第4章 人工神经网络与深度学习
- 格式:pptx
- 大小:2.14 MB
- 文档页数:32
人工智能导论课程教学大纲一、课程基本信息课程编号:课程中文名称:人工智能导论课程性质:学院基础课程、专业核心课程开课学期:3课内学时:32学时,其中授课32学时课外学时:32学时学分:2学分主要面向专业:自动化、测控、电气、机器人工程二、先修课程高等数学、概率论、线性代数、生命科学导论三、课程目标人工智能导论是面向理工科专业的重要基础课程。
课程以学科基础、技术基础、重点方向与领域、行业应用、伦理与法律五维知识体系为主要内容,经典与现代人工智能知识结构模块化,具有广阔的思想和技术背景。
通过课程学习,使学生系统性掌握人工智能基本概念、方法、技术,把握人工智能重点方向及领域;掌握机器学习、深度神经网络等基本方法;初步具备利用人工智能技术解决问题的基本能力;初步理解人工智能伦理及其对人工智能技术发展的重要意义。
为进一步学习相关的专业基础课程和专业课程打下必要的理论和实践基础。
(1)从大历史观角度使学生理解人工智能发展的历史和思想脉络,使学生认识到人工智能的本质和内涵,思考人之为人的价值和意义,勇于承担社会发展责任。
(2)充分发挥人工智能多学科、多领域理论、知识交叉的特点和优势,培养学生多学科知识交叉思维和创新意识。
(3)激发学生学习人工智能的热情和人机协同创新思维,为后续人工智能+X专业学习、创新创业、竞赛、就业等奠定基础。
(4)系统理解机器智能实现技术和方法,认识到机器智能对人类智能补充与增强作用,学会利用人机协同技术和方法及解决各类问题。
(5)使学生充分理解人工智能对未来人类社会经济、科技和文明发展的重要作用,具备未来能社会发展需要的人工智能人才素质。
四、教学内容与教学方法五、考核方式六、参考教材及学习资源(一)参考教材:[1]莫宏伟,徐立芳.人工智能导论.第2版.[2]莫宏伟,徐立芳.人工智能伦理导论.。
《神经网络与深度学习》课程标准【课程名称】神经网络与深度学习【适用专业】高等职业教育智能产品开发专业一、课程定位1.课程性质本课程为智能产品开发专业职业技能核心课程。
2.课程任务通过本课程学习培养学生智能产品设计与开发的综合能力,包括机器学习、深度学习相关概念,介绍TensorFlow的变量、矩阵和各种数据源等基本概念,深度剖析线性回归、支持向量机、*近邻域、神经网络和自然语言处理等算法,并结合丰富的实例详细讲解情感分析、回归分析、聚类分析、神经网络和深度学习实战等应用等。
3.课程衔接本课程的前序课程为《Python程序设计》、《人工智能导论》,后续课程为《顶岗实习》。
二、课程目标通过本课程学习,理解智能产品开发过程中涉及到的诸多AI技术,能够根据实际要求完成人工智能项目的设计、制作、调试,培养学生基本专业技能、积极参与意识、责任意识、协作意识和自信心,使教学过程更有目的性和针对性。
养成良好的沟通能力与团队协作精神,具有安全文明的工作习惯、良好的职业道德、较强的质量意识和创新精神。
具体应具备以下能力:1.理解人工智能产品结构设计与生产过程的基本概念;2.理解人工智能产品的基本算法、机器学习概念;3.理解深度学习概念,了解其应用领域;4.TensorFlow的变量、矩阵和各种数据源等基本概念5.理解线性回归概念;6.支持向量机;7.聚类分析;8.神经网络和自然语言处理等算法;9.人工智能产品控制程序编写与调试;10.智能产品使用说明书的编写。
【教学内容】学习情境 职业能力目标 学习子情境 教学内容 课时分配一、安装TensorFlow 1、安装前的环境准备2、能够使用Linux系统和Python语言3、能够独立安装Anaconda4、能够安装CUDA和cuDNN5、掌握TensorFlow测试方法(一)安装CUDA和cuDNN1、CUDA的安装2、cuDNN的安装3、Protocol Buffer4、Bazel5、从源代码编译并安装4(二)安装和测试TensorFlow1、安装TensorFlow2、运行向量相加的例子3、加载过程存在的一些问题4二、TensorFlow 编程策略 1、掌握计算图与张量2、熟练使用TensorFlow的运行模型3、正确创建变量并管理变量空间4、掌握variable_scope()与name_scope()及其使用方法(一)TensorFlow的数据模型1、分析并演示分析TensorFlow的数据模型2、会使用计算图描述TensorFlow计算模型3、张量的使用6(二)TensorFlow的运行模型1、TensorFlow系统结构概述2、简单使用会话3、使用with/as环境上下文管理器4、Session的参数配置5、placeholder机制6三、深度前馈神经网络 1、掌握网络的前馈方式2、全连接的概念3、神经元与全连接结构4、前向传播算法5、线性模型的局限性6、激活函数(一)网络的前馈方式及全连接的概念1、前馈网络2、全连接的概念3、神经元与全连接结构4(二)激活函数 1、常用激活函数2、激活函数实现去线性化3、激活函数调用栈的查看6(三)多层网络解决异或运算1、损失函数2、经典损失函数3、自定义损失函数4四、优化网络的方法 1、基于梯度的优化2、反向传播3、学习率的独立设置4、拟合(一)基于梯度的优化1、梯度下降算法的概念2、随机梯度下降4(二)反向传播 1、简要解释反向传播算法2、自适应学习率算法3、TensorFlow提供的优化器6(三)学习率的独立设置 1、指数衰减的学习率2、其他优化学习率的方法6合 计 50 三、考核与评价本学习领域的课程宜考核采用过程考核和期末上机随即抽题方式。
人工智能
《人工智能应用基础》课程标准
一、课程定位
“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,开设《人工智能应用基础》课程是十分必要的。
《人工智能应用基础》作为一门必修课程,其中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。
开设本课程的目的是培养学生的“智能”观念;了解人工智能的基本理论、基本方法和基本技术;提高智能产品的使用能力,为今后的工作中的智能设备使用打下坚实的基础。
先修课程:《计算机应用基础》
二、课程目标
(一)知识目标
1.了解人工智能产业的发展现状与市场需求;
2.了解人工智能对现代生活的改变和影响;
3.了解人工智能定义、研究领域、发展、社会价值和应用领域、未
来与展望;
4.了解知识表示、知识图谱、机器学习、人工神经网络与深度学习、
智能识别、自然语言理解、专家系统及智能体与智能机器人的相关概念及应用。
(二)能力目标
1、培养人工智能的应用能力,开拓学生的科技视野;
2、能够熟练使用生活中常用的人工智能产品;
3、熟悉人工智能对工业、医疗、安防、社交、机器人、无人驾驶、。
人工智能导论全套课件 (一)人工智能(Artificial Intelligence, AI)是指利用计算机技术和数学模型来探索和实现智能化的过程。
人工智能导论全套课件总共包括以下几个部分:人工智能概述、机器学习、深度学习、自然语言处理、计算机视觉、智能系统应用等。
下面我们逐一分析这些部分的内容。
一、人工智能概述部分介绍了人工智能的基本概念、历史发展和应用。
其中,基本概念包括人工智能的定义、主要技术和应用领域。
历史发展包括人工智能的几个发展阶段,如符号主义、连接主义、进化计算等。
应用领域主要分为教育、医疗、金融、制造、交通等领域。
此部分内容为课程开展的基础,必须理解和掌握,为后续几个部分打下基础。
二、机器学习部分介绍了机器学习的基本概念、应用领域和算法。
其中,基本概念包括监督学习、无监督学习、半监督学习、增强学习等,应用领域则包括图像识别、语音识别、预测等。
此部分算法包括线性回归、分类树、支持向量机、神经网络等。
学生应该掌握不同机器学习算法的特点和适用范围。
三、深度学习部分介绍了深度学习的主要模型和算法。
其中,深度学习模型主要包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。
算法包括反向传播、梯度下降等。
此部分主要重点是让学生掌握深度学习模型的原理和应用方法。
四、自然语言处理部分介绍了自然语言处理的基本概念、主要任务和算法。
其中,基本概念包括语言模型、分词、词性标注、句法分析、语义分析等。
主要任务包括文本分类、情感分析、文本生成等。
算法包括朴素贝叶斯、条件随机场、语言模型等。
此部分主要是让学生掌握自然语言处理的基本知识和算法。
五、计算机视觉部分介绍了计算机视觉的基本概念、主要任务和算法。
其中,基本概念包括图像特征提取、目标检测、目标跟踪等。
主要任务包括人脸识别、场景分析等。
算法包括Haar特征、HOG特征等。
此部分主要是让学生掌握计算机视觉的基本知识和算法。
六、智能系统应用部分介绍了智能系统的应用场景、系统架构和未来发展。